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 Problem 1: An RC circuit is to be designed to filter an audio signal with a DC bias so that the 
DC is eliminated. Since large filter transients are in general undesirable, the RC time constant 
should not be too large.  
 
To create a more specific objective we consider the sum of:  

1. A useful 40Hz signal 𝑥0(𝑡) = sin 40 × 2𝜋𝑡 
2. A drift 0.1Hz signal 𝑥𝑛(𝑡) = sin 0.1 × 2𝜋𝑡 

We would like to select suitable R, C such that the RC circuit with transfer function  

𝐻(𝑠) =
𝑅𝐶𝑠

𝑅𝐶𝑠 + 1 
lets the useful signal through unchanged and stops the drift signal, as much as possible. For 
example, we would like to minimize the power of the error signal  

𝐻[𝑥0 + 𝑥𝑛]− 𝑥0 = (1− 𝐻)[𝑥0] + 𝐻[𝑥𝑛] 
As a first approximation, we can try to choose RC such that the steady state amplitudes of the 
two components are the same. These amplitudes can be computed from the Bode plots of (1-H(s) 
and H(s).  

1. Use MATLAB to perform the necessary computations to obtain a coarse solution for the 
filter time constant RC; 

2. select common values for a Resistor and a Capacitor to implement the filter; 
3. simulate the time response of the filter and estimate approximately how long it would 

take to reach steady-state; 
4. verify that the simulated signal amplitudes and time to steady-state are in agreement with 

the predictions from the Bode plots and the transient response of the filter. 
 
Relevant MATLAB commands: 
 
t=[0:.001:20]';  % time vector definition 
x0=sin(40*6.28*t);  % signal definition 
xn=sin(0.1*6.28*t); % drift definition 
RC=1/12.5; H=tf([RC 0],[RC 1]);  % filter definition 
Bode(1-H,H) % Bode plots 
plot(t,x0+xn, t,x0,t,lsim(H,x0+xn,t)) % plot of noisy signal,  
                              % clean signal, and filtered signal 
plot(t,lsim(H,x0+xn,t)-x0) % plot of error signal 
 
 
SOLUTION: 
Using a quick trial-and-error iteration, we find the filter time constant that produces the same 
amplitude of distortion (1-H) and noise/drift (H) effects. (The theoretical optimization shows 
that the optimum is at the geometric mean of the two frequencies. This simple result is due to 
symmetry. It will change and require adjustment, if the noise and the signal have different 
amplitudes or the filters have different slopes.)   
 
RC_opt = 1/12.5. This filter can be implemented with C = 1uF and R = 80kΩ, which are 
reasonably common values. 
 
 



 

 
 
This filter has a response that stabilizes its transients in 4-time constants, or, roughly 0.3-0.4 
seconds.  

 
 
This is in agreement with the observed response to the two sinusoids. The total error is 
approximately 0.1, which is due to both sinusoids being attenuated by -26dB, i.e., by a factor of 
20. Also, the initial transient appears to be no more than 0.5sec.  



 
 
Problem 2: Repeat Problem 1 for a second order filter that is a cascade of two first order RC 
filters. Here you can use H2 = H*H to find the effective time constant. However, due to loading 
effects, simply cascading two first order filters does not produce the desired transfer function. 
Use Nodal/Loop analysis to find the transfer function of the general second order filter shown 
below, and based on the result make a reasonable selection of the two resistances and two 
capacitances to solve the problem.  
  
 
 
 
 
 
 
SOLUTION: We calculate first the transfer function 𝑉𝑖𝑛 → 𝑉𝑜𝑢𝑡:  
Using the intermediate node voltage 𝑉1,𝑉𝑜𝑢𝑡 = 𝑅2

𝑅2+1/𝐶2𝑠
𝑉1 = 𝑅2𝐶2𝑠

𝑅2𝐶2𝑠+1
𝑉1  

Then 𝑉1 = 𝑍
𝑍+1/𝐶1𝑠

𝑉𝑖𝑛 ,  where 𝑍 = 𝑅1|| �𝑅2 + 1
𝐶𝑠𝑠
� = 𝑅1𝑅2𝐶2𝑠+𝑅1

𝑅2𝐶2𝑠+1+𝑅1𝐶2𝑠
. It now follows that 

𝑉1 = (𝑅1𝑅2𝐶2𝑠+𝑅1)𝐶1𝑠
(𝑅1𝑅2𝐶2𝑠+𝑅1)𝐶1𝑠+𝑅2𝐶2𝑠+1+𝑅1𝐶2𝑠

𝑉𝑖𝑛 = (𝑅1𝑅2𝐶1𝐶2𝑠2+𝑅1𝐶1𝑠)
𝑅1𝑅2𝐶1𝐶2𝑠2+(𝑅1𝐶1+𝑅2𝐶2+𝑅1𝐶2) 𝑠+1

𝑉𝑖𝑛, and substituting in 

the first equation, 

𝑉𝑜𝑢𝑡 =
𝑅2𝐶2𝑠

𝑅2𝐶2𝑠 + 1 ⋅
𝑅1𝐶1(𝑅2𝐶2𝑠 + 1)𝑠

𝑅1𝑅2𝐶1𝐶2𝑠2 + (𝑅1𝐶1 + 𝑅2𝐶2 + 𝑅1𝐶2) 𝑠 + 1𝑉𝑖𝑛  

𝑉𝑜𝑢𝑡 =
𝑅1𝐶1𝑅2𝐶2𝑠2

𝑅1𝑅2𝐶1𝐶2𝑠2 +  (𝑅1𝐶1 + 𝑅2𝐶2 + 𝑅1𝐶2)𝑠 + 1𝑉𝑖𝑛  

Comparing with the decoupled cascade of two first order filters, where 𝑉𝑜𝑢𝑡 = 𝑅2𝐶2𝑠2

(𝑅𝐶𝑠+1)2
𝑉𝑖𝑛, we 

see the double zero at 0, but the two poles are different. They only approach their decoupled 
case values (−1/𝑅1𝐶1,−1/𝑅2𝐶2), (both set to -1/RC), as 𝑅1𝐶2 → 0. 

+ 
- Vin = 1 cos(ωt) (V) 

C2 
R2 

+ 
 
Vout 

 
- 
 

C1 
R1 



In order to obtain an approximate solution, we set 𝑅1𝐶2 = 𝑅1𝐶1
10

 and using the previous values as 
a ballpark estimate, we start with 𝑅1𝐶1 = 𝑅2𝐶2 = 1/12. That would be easily achieved by 
scaling the original components by, say, a factor of 3 (reduce the first stage resistance and 
increase the second stage resistance), so such a solution is feasible. 
 
After a few quick iterations yield RC_opt = 1/3.6. This filter can be implemented with 
𝑅1 = 28𝑘Ω,𝐶1 = 10𝜇𝐹,𝑅2 = 126𝑘Ω,𝐶2 = 2.2𝜇𝐹. The second resistance is a bit large (hence, 
noisy) and the capacitors will probably need to be electrolytic but the values are reasonable. 
 
On the other hand, the step response of the filter is considerably slower, since we lowered its 
bandwidth. It now takes about 2 seconds to stabilize, which is certainly significant for an audio 
application. The benefit is that we gained an additional 4dB of attenuation. This is consistent 
with the time response simulation which shows smaller errors but takes longer to reach steady-
state. 
 
MATLAB: (We use H0 for the ideal decoupled filter, for comparison and w as a vector with the 
frequency range of interest) 
RC=1/3.6; H0=tf([RC^2 0 0],[RC^2 2*RC 1]); H=tf([RC*RC 0 0],[RC*RC 2*RC+RC/10 1]);  
bode(H,1-H,H0,w),grid, pause, plot(t,lsim(H,x0+xn,t)-x0)  
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