EEE 304 Test 1 NAME:  solutions

Problem 1:

For the continuous time system with transfer function H(s) = _
(s+1(s-2)
1. Find the region of convergence of H(s) corresponding to:
1.1. a stable system.
1.2. a causal system.

2. Compute the unit step response (x(t)=u(t)), assuming that it is causal.

1. Stability : ROC ={-1<Res< 2}, Causality:ROC ={Res > 2}

2. L{x}= 1, ROC ={Res > 0};
S

s 1_ 1
(s+1)(s-2)s (s+1)(s—2)’

s+1 s-2

Y(s)=H(s)X(s) = ROC ={Res > 2}

ya»=L%v@»=Lf{———5———}=L

(s+1)(s-2)
_ L—l{_ll 3} n L-l{l/_3} = {_—1 e u(t) +1€2tu(t)}
S+1 g $—2Jgs 3 3
Problem 2:
For the discrete time system with transfer function H(z) = Z—_l
(z-2)(z+2)

1. Find the region of convergence of H(z) corresponding to:
1.1. a stable system.
1.2. a causal system.

2. Compute the unit step response (x(n)=u(n)) of the system assuming that it is stable.

1. Stability = ROC,, ={|z|<2}. Causality = ROC, ={2<|z[}
(z-1)z z

2. Y(2)=H(2)X(2)= -2+ 2] = (z—2)(z+2); ROCo{|zk2}n{l< z|}

_{1/2} +{1/2}
- |z-2 s Z+2)

1., 1, ...
y(n) == 2"u(=n-1 -2 (-2)"u(-n-1)

1 n-1 1 n-1
=227 u(=n) =2 (2" u(-n)

n<n-1



EEE 304 Test 2 Name:

Problem 1:

(s —20)
)

For the continuous-time causal system with transfer function H(s) = (515 compute the
_l_
following:
1. The amplitude and the phase of the steady-state response to a sinusoid input x(t) = sin(10t+30°)u(t).
2. The discrete-time equivalent of H(s), say G(z), using the Forward Euler Approximation and a sampling
interval of T = 0.1s.
3. For G(z), compute the amplitude and the phase of the steady-state response to the sinusoid x(t) sampled
at the time instants nT, i.e., x(n) = sin(n+30 °)u(n)

1. Atsteady - state,
y(t) =| H(j10) | sin(10t + 30° + ZH (j10))

- (j10-20)
H(J10)= (j10 +5)
H({10) |:|(j10—20)| ~ 4/100+400 _y

|(j10+5)|  100+25
ZH(j10) = £(j10-20) - £(j10+5) = tan‘l[l—goj — tan‘l(%j =180 —tan*(1/2)—tan*(2) = 90°

2 G(Z)—H(s)| ([z-/T-20) z-1-2  z-3
| : =% T ([z-1/T+5) z-1+05 z-05

3. Atsteady state
y(n) = G(e™)|sin(n+30°+ £G(e™))

e -3 [cos() - 3]+ jsin() .
e 05 [cos(l)—0.5]+ jsin(l)’
~ JIcos(®) 3] +sin?(1)
~ Jlcos(®) - 0.5] +sin?(1)
ZG(e™) = tan ™ (sin(1) /[cos(L) — 3]) - tan *(sin(L) /[cos(1) —.5]) +180; Note : One negative real part

=180+ tan *(0.84/[0.54 — 3])— tan *(0.84/[0.54 — 0.5]) =180 + tan (- 0.34) — tan *(21)
=180-18.8-87.3
=73.9°

G(e"= Note :angleisin rad so cos(1) = 0.54, sin(1) = 0.84

|G(e™)| ~3.09




EEE 304 Test 3 NAME:

Closed-book, closed-notes, calculators and transform tables allowed, 45’

Problem 1:

Suppose that a continuous time signal z(t) has Fourier transform Z(jw) with maximum
magnitude 1. The signal is to be converted to discrete time for processing, as shown in the figure
below, with sampling time fixed at T = 1ms.

z(t

X(t) y(®)

—>

Anti-Aliasing .| SAMPLING DT-Filter Reconstruction
Filter i

—>

=

Briefly discuss the role of the anti-aliasing filter.

Suppose that when |X(jw)| < 0.01, for w larger than the Nyquist frequency, the aliasing
effects are negligible. Design a 1% order anti-aliasing filter to meet this specification.
Assuming ideal reconstruction, find the frequency response of the above system from x(t)
to y(t), when the Discrete-Time Filter has transfer function

e 0.1
=709

Anti-aliasing filters are analog low-pass filters that are used prior to sampling in order to
attenuate the high frequencies of the analog signal and reduce the aliasing effects.

A first order anti-aliasing filter has a transfer function of the form G(s) = ﬁ where W
is the cutoff frequency. Since X(jw)=G(jw)Z(jw) and |Z(jw)|<1, the specification
|X(jw)|<0.01 is satisfied when |G(jw)|<0.01 beyond the Nyquist frequency n/T. But

B _ w _ 1 . 2 approx K
I6(w)| = s = o so [G(w)| < 0.01 =>( ) +12100° == (%) >
W

100 . This inequality should hold for all w > W < 10m.

Alternatively, a first order filter rolls off at 20dB/dec after its corner frequency (same as
bandwidth) and we need -40dB attenuation at Nyquist. Hence, the corner frequency (W)
should be 2 decades below Nyquist (10007).

Consider an exponential input x(t) = e/¥t. After sampling, we get x;(n) = e/*™™. This
exponential input produces an exponential output after filtering, i.e., y,(n) =
H(e/"T)e/WT™  Assuming that the frequency is below Nyquist, the reconstructed signal
will be the same frequency, with amplitude as modified by the filter. That is, y(t) =
H(e/"T)e/™t. Hence the frequency response from x to y is H(e/*T).



Problem 2:
Find the largest sampling interval Ts to allow perfect reconstruction of the signals

i Fourier
y, Sin 7ttC°5_2t === > pulsey (W) [O(W—2) + S(W+2)] => W =9 =>T, <

F
2. sint—sin3t =>w,_,, =max(@,3)=3=>T, <%

F
3. eu(t) =>— ! 1 =>W,,, =o=>T, =0 (perfect reconstruction is not possible)
jw+

F
4 sint*sin2t =>oc [o(Ww-1) -o(w+1)][o(W-2)-o(W+2)]=0=>wW,,, =0=>T, >
(any Ts willdo)



EEE 304 TEST 4 NAME:

Problem:
a. Determine the signal produced if the following sequence of operations is performed on a
signal x(t) that is bandlimited to wy, (i.e., X(jw) = 0 for |w|> wy,).

1. Modulation with a square wave carrier of frequency 3w, and an unknown duty cycle “d”, i.e.:

1 tl<d

s(t) = It] . where d e(0,T/2),and T isthe period of s(t)
0 otherwise

2. Bandpass filtering with an ideal filter H(jw) = 1/d for 2wy, <|w|< 4w,

3. Modulation with the same square wave carrier.

4. Lowdpass filtering with an ideal filter HGw) = 1 for |w|< wp,.

b. How does the duty cycle parameter d affect the output signal?

1. From Fourier tables (or Fourier transform via Fourier Series expansion)
2sin kWT 2sin k3w d

S(jo) = X ==, ol —lan, X

Wy =3w,,, T;=d

} ) ) 1 2sink3w,.d
X (jo) ZEX(Jw)*S(Jw) =—> ——"=X

¥ D (i(@—k3w,))
The replicas of X(jw) are centered at each harmonic frequency k3w, extending +/- wy around it.
2. The filtering will allow only the frequencies around the first harmonic to pass. It will eliminate
all other components and the DC. The signal amplitude will be the amplitude of the first
harmonic multiplied by 1/d (filter) and the original signal X(jw).
sin3w,.d
X (j0) = H(jo)X, (jo) = {—ﬂd

5w —k3w,,)

[X(i(@-3w,))+ X (j(@+3w,))] |ol< 4w,
0 otherwise
For visualization, with the usual triangle for X(jw), the filtered signal Xu(jw) will be:

3. Modulating again, we get the same expression as Xs but with Xy in the place of X.

. 1 . . 1 « 2sink3w,d .
Xy (j0) =5 =X, (o) *S (jo) == 3 = ==X, (i@~ k3w,)

Zﬂ-k k

IO )X (o, <90,
k

The low frequency signal is obtained for k = 1 and k = -1.



Visualization:

4. After low-pass filtering the low frequency signal is

sin?3w._d .
—mx(Ja))

>(LF’(ja)):2 ﬂ'zd

b. The output signal is
sin®3w,,d

>(LF’(ja)):2 ﬂ'zd

X(jo)

v

The duty cycle parameter d can take values in (0, T/2) while 3w, is 27/T. So the sin argument
ranges from O to w. At the two extremes the numerator of the coefficient of X is zero since in one
it is modulated by the zero signal and in the other by a constant. Both get filtered out by the
bandpass filter which amplifies the signal by 1/d. The overall coefficient is still zero in both ends

but it rises linearly (faster) around 0.

Using numerical evaluation, the peak appears around d = T/5, for which the output amplitude is

~0.9 of the input (X).



SOLUTIONS_

Name:

Test5
For the feedback system shown below, compute the transfer functions e/d, u/r

EEE 304
Problem 1

>
Wl%
A
w
T

C(s)

e

r—p

1+ PC(s)

1
1+ PC(s)’

e—
- =

Problem 2:

Bode Plot of P(s)

1/(s+0.2) and C(s) = K(Ts+1)/s.
Determine K, T so that the crossover frequency is

1 and the Phase Margin is at least 60°.

For the feedback system of Problem 1, suppose

P(s)

(You may use the given Bode plot to compute

the necessary quantities graphically.)

|
|
|
|
w0
<
(6ap) oseud

10

Frequency (rad/sec)

At crossover, the phase condition is

1

=-90"+0 +tan ' (Tw,) —tan " (w, /0.2)

Z _1 + /K + L(Tjow, +1) + £

Jo,+0.2

Jo,
=-180" +60°

Using this value we get the gain condition

—tan(T)=49° = T =1.14

I~
©
o

I
v
7
z
—
+1S
« (@]
I+
ol
v
I
ﬂc
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N
o
s
-wc
—
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NAME Solutions
EEE 304 HW 1

Problem 1:

Consider the filter with impulse response h(t) = e™*'u(t).
1. Find the transfer function
2. Find the Laplace transform of the output when X(t) = sin(5t)u(t)

3. Find the output by taking the inverse Laplace transform of your answer to part 2.

4. Can you obtain the same result using Fourier Transforms?

1. H(s)=—— ROC ={Res > 4}
s+4

2. L{x}:%, ROC ={Res > (};
s°+25

1 5
Y(s)=H(s)X(s)=—————,ROC ={Res >0
(s)=H(s)X(s) T { }

3-y(t):|-'1{Y(S)}=|_-1{ 1 5 }:L‘l{ A +Bs+C}

s+4 52425 s+4 s*+25
Note : A=5/[(—4)? + 25] =5/ 41 B,C : As* + 25A + Bs? + 4Bs+ Cs + 4C =5= B = -5/ 41, C = 20/ 41

5/41 -5/41s 20/41 5 5 4
=L +L7 + =J=eu(t) ——= cos(5t)u(t) + — sin(5t)u(t
{5+4} {SZ+25 sz+25} {41 ® a1 Gtu(t) a1 ( )()}

4. Yes. But finding the F{sin5t u(t)} is very involved (take the convolution F{sin5t} F{u(t)}) and group terms
appropriately. The Fourier approach would fail if the jw-axis is not inside the Laplace ROC nor on its boundary.



Problem 2:
Consider the continuous time causal filter with transfer function
H(s) = S S
(s+1(s-1)
1. Compute the response of the filter to x[t] = u[t]
2. Compute the response of the filter to x[t] = u[-t]

3. Repeat parts 1 and 2 for a stable system with the same transfer function.

1.Causality = ROC,, ={Res>1}
Y(s)= H(s)X(s)=— - ROC o{Res>T~{Res>0}={Res>1}
(s+D(s-Ds

{—1} { 1/2 } { 1/2 }
S J RoC=Res>0 (s+1) ROC=Res>-1 (s-1) ROC=Re s>1

1 1.
y(t)=—u(t)+Ee u(t)+Ee u(t)

1 . 3
2.Y(s)=H(s)X(s)= 51 D6-_D0s)’ ROC o{Res>1}n{Res < 0}={}

y(t) not well - defined.

3. Stability = ROC,, ={~1<Res <1}

3.1:Y(s)= H(s)X(s):é; ROC o{-1<Res<1}n{Res>0}={0<Res<1}
(s+D(s-1Ds

{—1} { 1/2 } { 1/2 }
S ROC=Res>0 (S+1) ROC=Res>-1 (S_l) ROC=Re s<1

y(t) = —u(t) + %e“u(t) + %[—etu(—t)] —u(t)+ %e‘tu(t) —%e‘u(—t)

. _ _ 1 . _ =Jd_
3.2.Y(s)_H(s)X(s)—(S+1)(S_1)(_S),ROC o>{-1<Res<l}n{Res<0}={-1<Res <0}

o £ P (v O =
S J Roc=Res<0 (s+1) ROC=Res>-1 (s-1) ROC=Re s<1

YO =—-u(-D]- S e "u®) ~ 5 [-eu(-0] =u(-) — e u(O) + S eu(-Y




Problem 3:

Consider the discrete time stable filter with transfer function

1
H@z)= (z-0.5)(z-2)

1. Compute the response of the filter to x[n] = u[n].

2. Repeat part 1 for a causal filter with the same transfer function.

1. Stability = ROC, ={0.5<|z|< 2}
z
(z-0.5)(z-2)(z-1)

_{ 2/3} +{4/3} +{—2}
z-0.5 ROC=0.5<[z]| z2-2 ROC=|z|<2 z-1 ROC=1<[¢|

y(n) = %O.S”‘lu(n -1 —%2“‘1u(—n) —2u(n-1)

Y(z)=H(2)X(2) = i ROC o{05<z|<2}n{l<z[}

2. Causality = ROC, ={2 <]z |}
z

YD =H@X@ =gt ROC 22l )

_{ 2/3 } +{4/3} +{—2}
2-05] gocoosaqy 2= 2] poceaqy (271 pocaaepy

y(n) = %O.S”‘lu(n -1 +%2”‘1u(n ~1)-2u(n-1)




Magnitude (dB)

Phase (deg)

EEE 304 Homework 2

Problem 1:
Consider the following systems:
s—0.1

1. Transfer function H(S) = ——————— (Continuous time, causal)
(s+1)(s+10)
10(z-1.01

2. Transfer function H(z) = 10(z=1.01) (Discrete time, causal)
(z-0.9)(2)

Compute the following:

1. Bode plot (expression, graph)
2. Response to sin(2nt) (for CT) and sin(2nn/10) (for DT)

Jw? +0.12
W2 +1dw? +107

ZH(jw)=tan"'(Im=w,Re = —0.1)— tan™’ W tan | 212180 — tan ! | Y | = tan [ Y| tan |
1 10 0.1 1 10

j—
y(t) = H(j6.28) sin(t + H( j6.28)) = 0.0836sin(2t — 22.2°)

LIH(w) =

2 [HE) 10]e* ~1.01] :10\/(0059—1.01)2 +(sin Q) |
e’ —0.9]e" | \/(cosQ—O.9)2 +(sinQ)?

N
o

n
=}
T

o

n
=}
T

A
S

ZH(€*)=1180 + tan ™ (ﬂj —tan”' (&j —Q; | =#Negative Re parts
cosQ2—1.01 cosQ2—-0.9
=
y(n)=|H [e ‘SJ sin(% n+ 2H [eJS D ~10.44 sin(% n— 25.9°J
NOTES:
Bode Diagram - The DT system is a discrete approximation of the

continuous one with sampling time T = 0.1. It is also
- scaled by a gain of 100. The approximation is good
] up to frequencies ~0.1(Nyquist) = 0.1(3.14/T) = 3.14
] rad/s. Thus, the transfer function roll-off at high
frequencies does not appear in the DT system. Also,
our frequency is beyond this (arbitrary) limit by a

-60

180

90 -

-90 -

-180 =

factor of two. We xpect some deviation of the DT
results from the CT ones (un-scaled magnitude 0.104
vs 0.084, phase 26° vs 22°)

- In the computation of magnitude and phase of the
DT system the DT frequency Q = oT = n/5
rad/sample was used. However, when using

e MATLAB’s “bode” command, the frequency must

Frequency (radisec) be converted to rad/sec (o=2 m). That is,
Hd=tf(10*[1 -1.01],[1 -.9 0],.1) [m,p]=bode(Hd,6.28), yields the correct result m = 10.44, p =-25.9.



Problem 2:
1. Use forward and backward Euler approximations of derivative to derive the DT counterparts of the

-0.2s+1
system with transfer function H(S) = ————, for sampling times 0.1, 1.
(s+1)(s+2)
—0227
Forward—EuIer:s=Z—_1:>Hd(z)= T _ (£022+02+T)T
T z-1 Y z-1 (z-1+T)z-1+2T)
— 41| —+2
T T
02Tz +(0.2+T)T
(z-1-T))z-(1-2T))
022714
-1 —V.Li——
Backward — Euler : s = — > = H,(2) = T = (£022+0.2+T2)Tz
T z-1 z-1 (z-1+Tz)z—-1+2T2)
—+l | —+2
Tz Tz

(T-0.2)z+0.2)Tz
(1+T)z-1)(1+2T)z-1)

2. Use MATLAB to compare the step responses and frequency responses of the discretizations in P.2.1
with the CT transfer function, and its descretization using the function c2d, with Tustin, zoh and foh
options (sample code is given below). Briefly, describe your observations.

- All approximations are good up to one order of magnitude below the Nyquist frequency. Some
continue to be reasonable up to 1/3 of Nyquist frequency.
- Forward Euler fails when T = 1 (|[T*pole| < 2 is violated).

H=tf([-.2 1].[1 3 2]);T=.1

num=T*[T-0.2 0.2 0];den=conv([1+T -1],[1+2*T,-1]) ;Hdb=tf(num,den,T)
num=[-0.2*T 0.2*T+T*T];den=conv([1 -1+T],[1 -1+2*T]) ;Hdf=tF(num,den,T)
Hdzoh=c2d(H,T, "zoh") ,Hdfoh=c2d(H, T, "foh") ,Hdtust=c2d(H, T, "tustin®),
subplot(121)

step(H,HdF,Hdb,Hdzoh,Hdfoh,Hdtust)

axis([0,10,-1 2])

subplot(122)

bode(H,Hdf,Hdb,Hdzoh,Hdfoh,Hdtust)

Step Response Bode Diagram .
— Step Response Bode Diagram
S~— 2 400

50 ~|

-100 200
-150

-200 I
; ]
-250 ! ]
-200
-300
05F = — —m=— = — == — 1 E F- =
= 350 05 = -400
360 == _ 360
/ ~
L | /
o 270 \\ 0 71—]j 1 180 \ x
\ .

180 AN
AN 05 1

9 \ -180

Magnitude (dB)
Magnitude (dB)
o

Amplitude
N
Amplitude

Phase (deg)
Phase (deg)
o
|

-0.5

4 . 0 . A . -360 .
0 5 10 10° 10° 10° 0 5 10 10° 10° 10°
Time (sec) Frequency (rad/sec) Time (sec) Frequency (rad/sec)




EEE 304 HW 3 SOLUTIONS

Problem 1:
Do Problems 7.28, 7.31 from the textbook.

7.28
Consider the periodic signal x(t) = ¥, a,e/*"ot, w, = 2? = 207, ay = S This signal is

filtered by an ideal Anti-Aliasing Filter with cutoff-frequency 205. Hence only the terms with
frequency less than the cutoff will pass (with the same amplitude) and the rest will be rejected.
For an exponential to be in the pass band we must have kw, < 2057 = k < 205/20 = k < 10.

So, x.(t) = Yi2_ o age/FWot = Y10 | a,e/¥20™t When this signal is sampled with sampling
time Ts (need a different symbol here; the book uses the same creating confusion)

x.()p(t) = Z §(t —nTs) Z agelkwot = Z Z a,e/*20mnTs §(t — nTs)
k=—10 k=—10

Z Zk_—w ﬁ 6(t —nTs)

Thus, x(n) = X122 _1, ake]kzon
a. This sequence is periodic in n, with the period being N = 20.
b. Furthermore, by comparing directly with (3.94), x(n) is in the form of a Fourier Series

. . . . . 1
expansion (Discrete Time), so the coefficients are simply a;, = ST

7.31
Consider a test signal x(t)=exp(jwt), with w < 7/T. Then, following the operations in Fig.P.7.31,

X(n) — ejwnT — (e wT )”

y(n) = % y(n-D+x(n)=H (Z)| rea T (e ot )n (since x is an exponential)

1 v 2 e
o ) = 2 e ")

=1—%z‘1 _

— 2 jwnT 2 jwt T
y.(t) = Lowpass[2 P e } = e™ (because w < T)

2—-ij; (since, for an LTI system with an exponential input x _ (t) = e, y_(t) = HGw)e ™)
—e

= H(jw) =
Notice that from the last expression, the transfer function is H(s) = 2/(2-exp(-sT)) which is not a
finite dimensional system. Since the book does not specify the amplitude of the lowpass, in the

reconstruction we assumed that the low-pass has the correct amplitude to recover the signal (i.e.,

T). If we assume an amplitude of 1, the transfer function must be divided by T.



Problem 2:
Find the largest sampling interval Ts to allow perfect reconstruction of the signals (x*y denotes

convolution)
sint . T T, . . .
1. t—sm 2t=>w,, =1+2=T, =——=— (using convolution of Fourier transforms).
in2t, . .
2. B wsint = w_ . =min2]) =T, = %
in 2t sin 3t
3 st =243mT, ==
t t max 5
sint . . T 7 .
4. *sin4t => w, . <min(l,4),= T, = —— = —. In fact, if we compute the product of the

max

fourier transforms we get 0 so any Ts > 0 will do.
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Problem 8.47 and Solution

In this problem we want to consider the effect of alossin synchronization in phase and/or
frequency. The modulation and demodul ation systems are shown in the figure below.

Wikl e
x[n] > yIn] y[n] > —r[nT
cos(wc n + 6c¢) cos(wc n + 6d)

For parts (a) and (b) of this problem, the difference in frequency is zero, and the
difference in the phase is denoted by A6 = 6d - Oc.

(a) If the spectrum is shown in Figure P8.47(b), sketch the spectrum of w[n]. (The
spectrum is a symmetric triangle that is bandlimited at frequency wm.)

(b) Show that w can be chosen so that the output r[n] isr[n] = X[n] cos AB. In
particular, what isr[n] if A6 =n/27?

Solution

Observe the following
y[n] = x[n] cos (wc n + 6c)
w[n] =y[n] cos (wc n + 6d)
w[n] = x[n] cos (wc n + 6c) cos (wc n + 6d)
w[n] = 0.5 x[n] cos A6 + 0.5 x[n] cos (2wc n + 6c¢ + 6d)

Observe that in the frequency domain the first term in the equation for w[n] isascaled
version of the original signal and that the second term is a scaled and shifted version of
the original signal. This observation can be used to sketch the result.

There are actually two cases here, depending on the magnitude of the phase shifts. One
case has overlap the other does not.

Finally, if the carrier frequency is chosen correctly, it is possible to use an ideal low-pass
filter (in the frequency domain) to filter out the second term in the equation for wn]. In
the specia case where the phase shift is /2, then the output r[n] is zero.



Problem 3: (8.49 of textbook)

(a) s(t) periodic so its Fourier transform is computed through the Fourier series expansion. That
is,

.27
s(t):Zakejth, wo:ZT—”
. 2 sinka, T T sinkz /2
S(ja))=27z2ak5[a)—k?j, aszl, Tl:_ = a, :T

a,=1/2
(The ax is zero for even k, other than 0.)

The modulated (chopped) x(t) has Fourier transform

X (jo) =ix(jw)*5(jw) :Zakx(ja)_ J'sz—”j

yielding the band-pass filtered-chopped signal, say v(t)
. . . . 27 . .27 . .27
V(jw)=H,(j®)> aX| jo- jk? = Aa,X| jo— T +Aa_X| jo+ iT

:éX(j(o— JZ—EJ+AX(1a)+ Jz—ﬂj
V4 T V4 T
The maximum allowable frequency content in x(t) for this expression to be valid is oy < ©/T.

Next, V(jo) is re-modulated (chopped) and low-pass filtered. The modulation by s(t) produces
two replicas of X(jo) at 0, each multiplied by 1/, yielding a total coefficient of 2A/ 7. The
rest of the replicas are at k2n/T that are filtered out by the H, low-pass filter. So,

. : . 2A /.
Y(jo) = Hy(jo)Vs (jo) =— X (jo)
with the same condition on the maximum frequency in x(t), om < w/T.

(b) From the last expression, the equivalent gain of the overall system is 2A/ 7z°.
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Problem 1:
For the feedback system shown below, compute the transfer functions y/r, y/d, u/r, u/d.

d

r € C(s) . @ P(s) y

y(s) PC y(s) P us) C u(s) -CP
r(s) 1+PC’ d(s) 1+PC' r(s) 1+CP’ d(s) 1+CP’

Problem 2: (Low Bandwidth Controller)
For the feedback system of Problem 1, suppose P(s) =1/(s+1).

a. When C(s) = K, design K so that the loop crossover frequency (i.e., w: [P(jw)C(jw) |= 1)
is 0.5. What is the contribution of a constant unit disturbance to the output?

b. When C(s) = K(Ts+1)/s, design K, T so that the crossover frequency is 0.5 and the
phase margin (i.e., the difference between the loop angle and —180 at the crossover
frequency, ZP(jw,)C(jw,)+180) is at least 50°. What is the contribution of a constant
unit disturbance to the output?

a. o,=05:|P(jo,)C(jo,) 1= :1:>|K| =41.25 =1.12

+(o,)°
K > 0 for stability (£C + £ZP > -180)
P 1 1 -1/212 +1/2.12 L

— d(s) = = t)=2121—-e 2 U(t
Ya(S) 1+ PC (s) sS+K+1s s+2.12 = Ya(®) ( ¢ )J()

= yd,ss = Iimtﬁ)oo yd (t) = 047
b. w,=05:2C+ 2P >-180+50=-130

= tan*(Tw,) - 90 —tan *(@,) > -130 = Tw, > —40+265=T =0

K

0,1+ (@)’
K > 0 for stability (£C + £ZP > -180)

P S 1 1
Y4 (8) = —==d(s) =

1+ PC s2+s+KsS s2+s+0.56
a=0.5,w0=0.56

=y, (1) =180 sin(0.560)U (t) = y, . = lim,_,, v, (t) =0
Verify in MATLAB, using step(feedback(P,1.12),feedback(P,C))

o, =0.5:|P(jo,)C(jo,) |F1= =1=|K|=0.56 = C(s) =0.56/s
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Problem 3: (High Bandwidth Controller)
For the feedback system of Problem 1, suppose P(s) =1/(s+1).

a. When C(s) = K, design K so that the loop crossover frequency (i.e., w: [P(Gw)C(jw) |= 1)
is 20. What is the contribution of a constant unit disturbance to the output?
b. When C(s) = K(Ts+1)/s, design K, T so that the crossover frequency is 20 and the

phase margin (i.e., the difference between the loop angle and —180 at the crossover
frequency, ZP(jw,)C(jw,)+180) is at least 50°. What is the contribution of a constant

unit disturbance to the output?
K

Y1+ (@)
K > 0 for stability (£C + £P > -180)

P 1 1 -1/21 1/21
Yo = e 9 = kT Tseal s
= Yo = ”mt9m Y4 (t) =0.048
b. o, =20:4C+ 2P =-180+50>-130

=tan"(Tw,) >-130+90+87.1=47.1=Tw, =1.08= T =0.054
Kyl+ (To,)?

o1+ (@)’
K > 0 for stability (£C + ZP > -180)

P S 1 1 1
Ya(8) =—5=d(s)=— =2 =2
1+PC S°+s+K(Ts+D) s s“+(1+KT)s+K s°+15.7s+272

a=7.85P,'vio=14.5
= Y, (t)=0.07e"* sin(l4.5)U () = Yy, =lim_,, y,(t) =0
Verify in MATLAB, using step(feedback(P,20),feedback(P,C))\

a. o, =20:|P(jo,)C(jo,) 1= =1=|K|=+401=20

=y, (t) =0.0481—e 2 U (t)

o, =201 P(jo,)C(jo,) |=1= =1=|K|=272= C(s) = 272(0.054s +1)/ 5

Problem 4: (Optional, 10% bonus)

Select a suitable sampling rate and use your favorite continuous-to-discrete conversion method to
discretize the controllers of P.2 and P.3 (obtain discrete-time “equivalents”). Simulate the
responses in SIMULINK (discrete-time controller, continuous time system).

For Pr.3.b, following the rule of 6 samples/rise-time, we have t_r = 2/BW ~ 2/20 = 0.1.

Hence, the sampling rate is 6 samples/0.1sec or 60sam/sec => Ts = 0.017sec.

Using the Forward Euler method (no fast poles=> no sampling constraints), we get the discrete
equivalent Cd(z) = (14.69z-10.06)/(z-1). Simulink will accept the connection of DT and CT
systems as long as there is only one sampling time. (For multirate systems, rate conversion
blocks must be used.) The SIMULINK GUI is shown in the figure below.

1l

Step 1

—hd p 146910067 Ii oy pl

1.1 s+1

Transfer Fcn Scope

Step Subtract 1

Subtract Discrete Filter
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