EEE 304 Test 1 NAME:

Problem 1:
1

For the continuous time system with transfer function H(s) =
(s+0.5)(s+2)

1. Find the region of convergence of H(s) corresponding to:
1.1. a stable system.
1.2. a causal system.
2. Compute the unit step response (x(t)=u(t)), assuming that it is stable.

1.1: ROC ={-0.5< Res}
1.2:ROC ={-0.5< Res}
1
2:Y(s) = ROC ={-0.5<Res}n{0 < Res
(©) (s+0.5)(s+2)s { yod }
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causal causal

+

1
S

causal

ya)=ua)—%e*ﬂua)+%e4ma)

Problem 2:
1

(z+0.5)(z+2)
1. Find the region of convergence of H(z) corresponding to:
1.1. a stable system.
1.2. a causal system.
2. Compute the unit step response (x(n)=u(n)) of the system assuming that it is causal.

For the discrete time system with transfer function H(z) =

1.1:ROC ={05<|z|< 2}
1.2:ROC={2<|z[}

2:Y(2) = .
T (2+05)(z+2)(2-))

ROC ={2 < z[}{l<] z [}

2/9 2/9 -4/9 42 z 2 z 4 z
+ =17

z—-1 (z+0.5) (z+2) 9z-1 9(z+05) 9(z+2)
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causal causal Causal causal causal

2 2 n-1 4 n-1
y(n) = §u(n -1) +§(—0.5) u(n-1) —5(—2) u(n-1)



NAME__ SOLUTIONS
EEE 304 HW 2

Problem 1:

Consider the filter with impulse response h(t) = e *u(t).

1. Find the transfer function

2. Find the Fourier transform of the output when X(t) = sin(5t)u(t)

3. Find the output when X(t) = sin(5t)u(t) by taking the inverse Fourier transform of your answer to part 2.

4. Repeat parts 2 and 3 using Laplace Transform

1 H(s):i,ROC={Res>—4}; H(jw) =— !
s+4 jw+4

2. F{x}:i F{sin5t}* F{u(t)}= Zij[d(w— 5)-o(w+ 5)]*[;/ + 72'5(W):|

1 1 1 V4
=2j[j(w_5) - j(w+5)}+zj[5(w_5)_5(w+5)]

Y(jw)=H(jw)><(jw)=l{ 1 1 ! 1 } ”{ L sw-5)-

- — - —— - +—| = - o(w+5)
2j| j(w=5) jw+4 jw+5) jw+4| 2j| j5+4 - j5+4

SO N N S S S T P 2 N
3 FrOwi=F {2j{j(w—5) w4 jw+5) jw+4}+2j{j5+46(w ) —j5+26(w+5)}}

_F1{1_{(J:5+4)l +(_j_5_4)71 —(__j5+4)71 —(j?_4)1}+ - _” o(w-5)—-———— ” 5(w+5)}
2j| j(w=5) jw+4 j(w+5) jw+4 2j(j5+4) 2j(-j5+4)

:Fl{ __1 { ! +7r§(w—5)}+ . l_ { 1
2j(j5+4) | j(w-5) -2j(-j5+4) [ j(w+5)

it 1 - jst 5 &
e 0 iyt 0 g ol

: 5
eBtu() t + —e“u(t
()} 1 ®

+7r§(w+5)}+ _5/41}
jw+4

{2](]54—4)

—Re 1 ejst+jtan’1(4/5)—180u(t) +£e741u(t)
(16 + 25) 41

1 5
=Re{—=——cos(5t + tan *(4/5) —180°)u(t) } + —e “u(t
{m ( (475) ) ()} 1 ®

4. L{x}=

, ROC ={Re s> 0};
s?4+25 { }

1 5
Y(s)=H(s)X(s) =——
©) ©X() S+4s?+25

1 5 A  Bs+C
t)=L{Y(s)}=L" =L +
y® ey {s+4sz+25} {S+4 sz+25}
Note: A=5/[(-4)* + 25]=5/41;B,C: As® + 25A+ Bs? +4Bs +Cs+4C=5=B=-5/41,C=4/41

5/41 -5/41s  4/41 5 5 4
=Lty + =+—e "u(t) - — cos(5t)u(t) + — sin(5t)u(t
{S+4} {s2+25 sz+25} {41 © 4 (G0u) 205 ( )()}

, ROC ={Re s >0}




Problem 2:
Consider the continuous time causal filter with transfer function
H(s)=— -1
(s+1(s-2)
1. Compute the response of the filter to x[t] = u[t].
2. Compute the response of the filter to x[t] = u[-t].

3. Repeat parts 1 and 2 for a stable system with the same transfer function.

1. Causality = ROC,, ={Res > 2}
s-1
(s+1(s-2)s

SR
S J roc=Res>0 (s+1) ROC=Res>-1 (s-2) ROC=Res>2

1 2 . 1 a
y(t)=Eu(t)+§e u(t)+ge u(t)

Y(s)=H(s)X(s) = ; ROC o{Res > 2}n{Res >0}={Res > 2}

s-1 _ 3
2.Y(s)=H(s)X(s) = 512)6-D09) ROC o{Res > 2}n{Res < 0} ={}

y(t) not well - defined.

3. Stability = ROC,, ={-1<Res< 2}
s-1
(s+1(s-2)s

TEI e
S J Roc=Res>0 (s+1) ROC=Res>-1 (s-2) ROC=Res<2

1 2 -t 1 2t _1 E -t _1 2t (.
y(t):Eu(t)+§e u(t)+€[—e u(—t)]—zu(t)+3e u(t) 5e u(-t)

_ B B s-1 _ : _r
3.2:Y(s)=H(s)X(s) = 5iDG6-2)(s)’ ROC o{-1<Res<2}n{Res <0}={-1<Res< 0}

o i PO e~ O (=
S ) Roc=Res<0 (s+1) ROC=Res>-1 (s-2) ROC=Res<2

1 2 4 1) et = Luret) - 2e tu() s Letu
y(t)=—§[—u(—t)]—§e U(t)—g[—e u(—t)]—zu( t) 3¢ u(t)+6€ u(-t)

3.1:Y(s)=H(s)X(s) = ; ROC o{-1<Res<2}n{Res>0}={0<Res < 2}




Problem 3:

Consider the discrete time stable filter with transfer function

z-1
H(@)= (z-05)(z-2)

1. Compute the response of the filter to x[n] = u[n].

2. Repeat part 1 for a causal filter with the same transfer function.

1. Stability = ROC,, ={0.5<| z |< 2}

(z-1z _
(z-05)(z-2)(z-1)’ ROC o{0.5<z|<2Ztn{l<z[}

_{—1/3} +{4/3} +{o}
z-05 ROC=0.5<|z| -2 ROC=|z|<2 z-1 ROC=1<|¢|

y(n) = —%O.S“‘lu(n ~-1)- % 2" u(-n)

Y(2) =H(@)X(2) =

2. Causality = ROC, ={2 <]z |}

(z-1)z _
(z-05)(z-2)(z-1) ROCo{2<z[}n{i<z[}

_{—1/3} +{4/3} +{ 0 }
2-05] gocoosaqy (2= 2] poceaqy (21 pocaaepy

y(n) = —%O.S”‘lu(n -1) +%2”‘1u(n -1)

Y(2)=H(@)X(2) =




EEE 304 Test 2 Name: SOLUTIONS

Problem 1:
(-0.1s+1)

For the continuous-time causal system with transfer function H(s) = (2511
S+

compute the
following:

1. The amplitude and the phase of the steady-state response to a sinusoid input x(t) = sin(10t+30°)u(t).

2. The discrete-time equivalent of H(s), say G(z), using the Backward Euler Approximation and a
sampling interval of T = 0.1s.

3. For G(z), compute the amplitude and the phase of the steady-state response to the sinusoid x(t) sampled
at the time instants nT, i.e., x(n) = sin(n+30 °)u(n)

1. The steady-state response is Y (t) =] H(j10) | sin(10t +30° + ZH (j10)), so the amplitude is

[(-0.DQAO) +1 | 2
[(2)0)? +1 V401

=0.0706

ampl. = H(j10) |:\/

ZH (j10) = tan ‘1((_L1)(1())j —tan™ (Lilo)j =—tan*(1)-tan*(20) = -45-87 = -132°
phase = 30-132 = -102°

2. Backward Euler uses the substitution s = (z-1)/Tz

(—0.131&1} o1
G(z) = H(s)| 1 = = '

T2 (22—1+1] (2.1z-2)
0.1z

3. The steady-state response is Y (n) =| G(e™)|sin(n+30°+ £G(e™)), so the amplitude is
|0.1] 3 0.1 0.1

(22" -2)| J(2.1c0s(1) - 2)? + (2.1sin(L))?  3.872
ZG(e")=—tan™ _2dsin) | _ —tan‘l(ﬂj = —tan‘l[—mj -180 =
2.1cos(l) — 2 —0.865 0.865
= tan(2.042)-180 = -116.1°
phase = 30°+ £G(e') = -86.1°

ampl.=|G(e") |= =0.0508

Notice that the sampling rate (10Hz) is not too fast relative to the sinusoid of frequency 10rad/s (1.6Hz)
so that there is appreciable relative difference between continuous and discrete response. Their absolute
difference is still small, however, since the sinusoid is well-above the system bandwidth (0.5rad/s).



Magnituce (dB)
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EEE 304 Homework 3 SOLUTIONS

Problem 1:
Consider the following systems:
. s-1 . .
1. Transfer function H(s) = —————— (Continuous time, causal)
(s+2)(s+4)
. z-1 . .
2. Transfer function H(z) = (Discrete time, causal)

(z-0.5)(z-0.8)
Compute the following:

1. Bode plot (expression, graph)
2. Response to sin(t) (for CT) and sin(2rn/10) (for DT)

w? +1
VW2 + 44/w? +16

ZH(jw) = tanl( Im = Wj— tanl(ﬂj - tanl(ﬂj =180 — tanl(ﬂj - tanl(ﬂj - tanl(ﬂj
Re=-1 2 4 1 1 2

=
y(t) = H(jD|sin(t + H(j1)) = 0.1534sin(t + 94.4°)

LIH(w) =

lel® —1| ~ \/(cosQ—l)z +(sinQ)?
e’ —0.5]||e* —0.8| \/(cosQ—o.s)z +(sin (2)2\/(0059—0.8)2 +(sinQ)® ’

ZH (") =1180 + tan* (&j —tant (&j —tan™t (ﬂj | =# Negative Re parts

2./H(Ee") =

cosQ -1 cosQ-0.5 cosQ—-0.8
=
y(n)=H (e’sJ sin(% N+ /H (ej5 D :1.583sin(%n - 43.4°J

hagnitude (dB)
=

0 I L o5 n M|
180 T T a0

System: hid
Freguency (radizec): 0627
Phaze (deq): -43.3

Phase (deq)
i
h

180k . L . L
107 1” 10’ 10° 107 107 10

Frequency (radizec) Freguency (radisec)




Problem 2:
1. Use forward and backward Euler approximations of derivative to derive the DT counterparts of the

-0.2s+1
system with transfer function H(s) = (01)% for sampling times 0.1, 1, 10.
s+1)(s+

2. Use MATLAB to compare the step responses and frequency responses of the discretizations in P.2.1
with the CT transfer function, and its descretization using the function c2d, with zoh and foh options.
Briefly, describe your observations.

_0227t

Forward—EuIer:s:Z?_l: H,(z) = _ (—0-22+0-2+T)T

2=l - -
[z 1 j(zT ) (z-1+T)z-1+2T)

T
~0.022+4003 1 _o4
(z-0.9)z-0.8)
. —02Tz+(02+T)T | -02z+1.2 To1
(z-@-T)Nz-@-2T)) (z)Xz+1)
—-22+102 T 210
(z+9)z+19)
z-1
) -02—+1 o
Backward — Euler :s = - —% = H,(2) = T = ((-022+0.2+T2)Tz
T (z—l j(z—l j (z-1+Tz)z-1+2T2)
—+1| —+2
Tz Tz
(-0.01z +0.02)z T-01
(1.1z-1)1.22-1)
 ((M-02)z+02)1z | (0.8z2+0.2)z T.1
(@+T)z-1)@+2T)z-1) | (2z-1)3z-1)
(982 +2)z T-10
(11z-1)21z-1)
Step Response Step Responsze Step Response Bode Diagram Biode Diagram Bode Diagram
a [u}
10 1) 10
15 15 15 g g - g =
g a0 é i g 30
oL L E" -40 E&‘ -40 E@ -40
=50 - =50
2o 12 oo E : : E
g /‘ g g f .
0 1 1 0= T = - g o0 g T
g’ =180 g’ -135 % -90\
05t {1 os 4 st 1 £ £ e \5
=270 [ -180
-225
-1 L Rl L El -360 =270 =270
] s 10 ] 5 10 0 50 T 10 10 100 10? 10 10°

Time (sec) Time (sec) Time (zec) Frequency (radizec) Fregquency (radizec) Frequency (radizec)



Observations: From the bode plots, the CT-DT frequency response approximation starts deteriorating about 1 decade
before the half-sampling frequency (max Nyquist rate). The Forward Euler generates a frequency response
approximation but the system is unstable. From the rest, the ZOH generates the max lag while the FOH is usually
(not always) the best approximation. In the step responses, the ZOH shows as one full step behind (accurate at
sampling times only) and the FOH zig-zags about the continuous response. The F-Euler instability is clear for
T=1,10. (Zoom in the plots to see details).

MATLAB COMMAND HISTORY

T=.1;num=T*[T-0.2 0.2 0];den=conv([1+T -1],[1+2*T,-1]) ;Hdb=tFf(num,den,T)
T=.1;num=[-0.2*T 0.2*T+T*T];den=conv([1 -1+T],[1 -1+2*T]);Hdf=tF(num,den,T)
T=.1;Hdzoh=c2d(H,T, "zoh") ,Hdfoh=c2d(H,T, "foh*")

subplot(131)

step(H,Hdf,Hdb,Hdzoh,Hdfoh)

axis([0,10,-1 2]

T=1;Hdzoh=c2d(H,T, "zoh") ,Hdfoh=c2d(H, T, "foh™)

T=1;num=[-0.2*T 0.2*T+T*T];den=conv([1 -1+T],[1 -1+2*T]) ;Hdf=tf(num,den,T)
T=1;num=T*[T-0.2 0.2 0];den=conv([1+T -1],[1+2*T,-1]) ;Hdb=tf(num,den,T)
subplot(132)

step(H,HdF,Hdb,Hdzoh,Hdfoh)

axis([0,10,-1 2]

T=10;num=T*[T-0.2 0.2 0];den=conv([1+T -1],[1+2*T,-1]) ;Hdb=tFf(num,den,T)
T=10;num=[-0.2*T 0.2*T+T*T];den=conv([1 -1+T],[1 -1+2*T]);Hdf=tf(num,den,T)
T=10;Hdzoh=c2d(H,T, "zoh*") ,Hdfoh=c2d(H, T, "foh*")

subplot(133)

step(H,Hdf,Hdb,Hdzoh,Hdfoh)

axis([0,50,-1 2]

clf

T=.1;num=T*[T-0.2 0.2 0];den=conv([1+T -1],[1+2*T,-1]) ;Hdb=tFf(num,den,T)
T=.1;num=[-0.2*T 0.2*T+T*T];den=conv([1 -1+T],[1 -1+2*T]);Hdf=tF(num,den,T)
T=_.1;Hdzoh=c2d(H,T, "zoh*) ,Hdfoh=c2d(H, T, "foh*")

subplot(131)

bode(H,Hdf,Hdb,Hdzoh,Hdfoh)

T=1;Hdzoh=c2d(H,T, "zoh") ,Hdfoh=c2d(H, T, "foh™)

T=1;num=[-0.2*T 0.2*T+T*T];den=conv([1l -1+T],[1 -1+2*T]) ;Hdf=tFf(num,den,T)
T=1;num=T*[T-0.2 0.2 0];den=conv([1+T -1],[1+2*T,-1]) ;Hdb=tf(num,den,T)
subplot(132)

bode(H,Hdf,Hdb,Hdzoh,Hdfoh)

T=10;num=T*[T-0.2 0.2 0];den=conv([1+T -1],[1+2*T,-1]) ;Hdb=tFf(num,den,T)
T=10;num=[-0.2*T 0.2*T+T*T];den=conv([1 -1+T],[1 -1+2*T]);Hdf=tF(num,den,T)
T=10;Hdzoh=c2d(H,T, "zoh") ,Hdfoh=c2d(H, T, "foh*")

subplot(133)

bode(H,Hdf,Hdb,Hdzoh,Hdfoh)



EEE 304 Test 3 NAME:

Problem 1:

Suppose that a continuous time signal z(t) has Z(jw) that is bandlimited to wp. The signal is
filtered by a low-pass 2" order Butterworth filter with cutoff frequency wo/2. Let the output of
the filter be x(t).

2(t) X() x(®

I 2nd-order Butterworth > SAMPLING ) Reconstruction | >
(ideal low pass)

Find the sampling rate to allow perfect reconstruction of x(t) with an ideal low pass filter.
(Explain.)

The Butterworth filter attenuates frequencies greater than wo/2, but it does not reject them
completely. In fact, using the high frequency asymptote for the magnitude (W/wc)?, where the
cutoff frequency is wo/2, the magnitude at wy is approximately 4. (A more exact computation
yields 0.2425). That is the frequencies of z(t) between wy/2 and wy are attenuated by at most a
factor of 4 and cannot be considered as negligible. Hence, in general, X(jw) is only guaranteed to
be bandlimited to wy, (same as Z). Then, for perfect reconstruction, the sampling rate should be
at least 2wy.

Problem 2:
Find the largest sampling interval Ts to allow perfect reconstruction of the signals

1. sin5tcos 2t

2. sint—sin 2t

3. te'u(t)

1. The Fourier transform of the product signal is the convolution of the Fourier transforms of the
individual signals, so the maximum frequency is 5+2 = 7. Then, the largest sampling interval is

Ts=nl7.

2. The Fourier transform of the summation signal is the summation of the Fourier transforms of
the individual signals, which has maximum frequency max(1,2) = 2. Then, the sampling interval
isTs = n/2.

3. The Fourier transform of the signal can be found in the tables as 1/(jw+1)2. This is not a
bandlimited signal so perfect reconstruction is not possible for any nonzero Ts (Ts-->0).



EEE 304 HW 4

Problem 1:
Do Problems 7.29, 7.31 from the textbook.

7.29
A Xp A X
i > | >
w10k 2120k /2 2n
A Y A Yp
UT UT
|
, . — > ' I >
/s w2 27 (m/4)20k 2120k
A Yc Yc
Ut 1
M- (Y -
| | ——> ' | | >
(n/4)20k w20k 220K (n/4)20k w20k 2120k
7.31

Consider a test signal x.(t)=exp(jwt), with w < /T. Then, following the operations in Fig.P.7.31,



X(I’l) - ejwnT — (e jwT )n

y(n) = % y(n-1)+x(n) =H(2)|,_, (e Wt )n (since x is an exponential)

1 e 2
:1_}/2—1 (eJT) =2_e—jWT (eJT)
2 z=eMT
_ 2 jwnT | _ 2 jwt
Ye (t) = LOWpaSS|:2_—ije jl = We (because W< ﬂ-T)

= H(jw) = ZLWT (since, for an LTI system with an exponential input x_(t) = e™, y (t) = H(jw)e ™)
—e

Notice that from the last expression, the transfer function is H(s) = 2/(2-exp(-sT)) which is not a
finite dimensional system.

Problem 2:
Find the largest sampling interval Ts to allow perfect reconstruction of the signals (x*y denotes
convolution)

sint . . : :
1. —sint=>w,_, =1+1=T, = -z (using convolution of Fourier transforms).
t W 2

max

9. sin 2t *sindt=>w, ., =0=T, =" 5 o (using the filtering property, any Ts will do).
Wmax
3 SInZtsin3t:>wmaX _043T = %
Wmax 5
4. S'n4t*sin2t:>Wmax=23Ts: - :%'



EEE 304 TEST 4 NAME:

Problem:
a. Determine the signal produced if the following sequence of operations is performed on a
signal x(t) that is bandlimited to wy, (i.e., X(jw) = 0 for |w|> wy,).

1. Modulation with a square wave carrier of frequency 3wy, and an unknown duty cycle, i.e.:

1 |td
s(t) = Ith<d " here de(0,T/2) and T is the period of s(t)
0 otherwise

2. Bandpass filtering with an ideal filter H(jw) = 1 for 2wpy <|w|< 3wWp,.
3. Modulation with the same square wave carrier.
4. Lowdpass filtering with an ideal filter HGw) = 1 for |w|< wp,.

b. How does the duty cycle parameter d affect the output signal?

a.
1. From Fourier tables (or Fourier transform via Fourier Series expansion)

S(ja’):ZZSIn:WOTl §(a>—kwo){ _ZZSm k3w d o
k

Wo=3w,,, T;=d

o —k3w,,)

1 z 2sink3w,.d

xs(jw>=$><(jw)*8(jw)=z X (0~ k3w, )

2. The filtering will allow only half of the first harmonic to pass. It will eliminate all other
components and the DC.

3w _d . .
xH(jw):H(jw)xs(jw)={sm ;V (X (i(@-3w,))+ X (i(@+3w,))] |ol<3w,
0 otherwise

For visualization, with the usual triangle for X(jw), the filtered signal Xn(jw) will be:

3. Modulating again, we get the same expression as Xs but with Xy in the place of X.

_ 1 _ . 1 <« 2sink3w,d .
X (10) =5 X (j0)*8(j0) = T = =0 X (0 kaw,)
_ zsm kﬂ3kwmd sin3w,,d [X (j(@w—k3w, —3w_))+ X (j(w—k3w, +3w._))]

The low frequency signal is obtained for k =1 and k = -1.




Visualization:

Color code:

~ XXX X
mu o nn
NP oL

4. After low-pass filtering the low frequency signal is

_ sin®3w,d .
X (jo) ZTX(JW)

b. The output signal is

_ sin“3w_d _ .
X (jo) :me(ja))
The duty cycle parameter d can take values in (0, T/2) while 3wy, is 2n/T. So the sin argument
ranges from O to . At the two extremes the coefficient of X is zero since in one it is modulated
by the zero signal and in the other by a constant. Both get filtered out by the bandpass filter.
The peak is for d = T/4, for which the output amplitude is 1/x* ~ 0.1 of the input (X).



EEE 304 HW?S  SOLUTIONS

Problem 1: Problem 8.24 from the textbook.

(a) With A =0,

. 27 27 . 1 . . 1 . . 2T
S =—)>»o0lo-n—| X, =—S *X ==>» X - jn—
(jw) TZ (co nTj (j0) =S (j@)* X (je) TZ (Jw JnTj
After filtering Xs we get only the first side-lobes, multiplied with A:
Y(jw):H(jw)xs(jw)=${X(jw—jZT—”j+X(jw+ji—”ﬂ

= Z_I_—A{%{X[ja)— JZ_I_—”] + X(ja)+ JZT—”H} = Z_I_—AF{x(t) cos(zT—ﬂt)}

(b) With A =0,

. of i Na—jor 2T 27 ) -2
S(jw) =S°(jw)e 2?25 a)—n? e T
After filtering,

] ] ] A ) ] 2™ ) 2?2
Y(ja)):H(ja))Xs(ja)):? X ja)—j?e T +X ja)+j?e T

:%F X(t) cos 2—7Tt—2LA , = a)czz—”, ch—ZLA
T T T

(c) The maximum allowable wy is determined by the “no-aliasing” condition so it is n/T.



Problem 8.47 and Solution

In this problem we want to consider the effect of alossin synchronization in phase and/or
frequency. The modulation and demodul ation systems are shown in the figure below.

Wikl e
x[n] > yIn] y[n] > —r[nT
cos(wc n + 6c¢) cos(wc n + 6d)

For parts (a) and (b) of this problem, the difference in frequency is zero, and the
difference in the phase is denoted by A6 = 6d - Oc.

(a) If the spectrum is shown in Figure P8.47(b), sketch the spectrum of w[n]. (The
spectrum is a symmetric triangle that is bandlimited at frequency wm.)

(b) Show that w can be chosen so that the output r[n] isr[n] = X[n] cos AB. In
particular, what isr[n] if A6 =n/27?

Solution

Observe the following
y[n] = x[n] cos (wc n + 6c)
w[n] =y[n] cos (wc n + 6d)
w[n] = x[n] cos (wc n + 6c) cos (wc n + 6d)
w[n] = 0.5 x[n] cos A6 + 0.5 x[n] cos (2wc n + 6c¢ + 6d)

Observe that in the frequency domain the first term in the equation for w[n] isascaled
version of the original signal and that the second term is a scaled and shifted version of
the original signal. This observation can be used to sketch the result.

There are actually two cases here, depending on the magnitude of the phase shifts. One
case has overlap the other does not.

Finally, if the carrier frequency is chosen correctly, it is possible to use an ideal low-pass
filter (in the frequency domain) to filter out the second term in the equation for wn]. In
the specia case where the phase shift is /2, then the output r[n] is zero.



Problem 3: (8.49 of textbook)

(a) s(t) periodic so its Fourier transform is computed through the Fourier series expansion. That
is,

.27
s(t):Zakejth, wo:ZT—”
. 2 sinka, T T sinkz /2
S(ja))=27z2ak5[a)—k?j, aszl, Tl:_ = a, :T

a,=1/2
(The ax is zero for even k, other than 0.)

The modulated (chopped) x(t) has Fourier transform

X (jo) =ix(jw)*5(jw) :Zakx(ja)_ J'sz—”j

yielding the band-pass filtered-chopped signal, say v(t)
. . . . 27 . .27 . .27
V(jw)=H,(j®)> aX| jo- jk? = Aa,X| jo— T +Aa_X| jo+ iT

:éX(j(o— JZ—EJ+AX(1a)+ Jz—ﬂj
V4 T V4 T
The maximum allowable frequency content in x(t) for this expression to be valid is oy < ©/T.

Next, V(jo) is re-modulated (chopped) and low-pass filtered. The modulation by s(t) produces
two replicas of X(jo) at 0, each multiplied by 1/, yielding a total coefficient of 2A/ 7. The
rest of the replicas are at k2n/T that are filtered out by the H, low-pass filter. So,

. : . 2A /.
Y(jo) = Hy(jo)Vs (jo) =— X (jo)
with the same condition on the maximum frequency in x(t), om < w/T.

(b) From the last expression, the equivalent gain of the overall system is 2A/ 7z°.



EEE 304 Test5 Name: _ SOLUTIONS

Problem 1:
For the feedback system shown below, compute the transfer functions y/d, u/d.

v

r— ° Cs) ——» PO y

ys) 1 uis) _ —C(s)
d(s) 1+P(s)C(s)  d(s) 1+P(s)C(s)

Problem 2:
For the feedback system of Problem 1, suppose P(s)=1 and C(s) =K/s.

1. Determine K so that the crossover frequency is 1.
2. For the same K, find the Phase Margin of the feedback system.

=1=>K=1

1. \P(s)C(s)ls:,-wc,Wczl

2. PM =180+ Z/PC(jw,) =180 —tan~*(1/0) = 90°



EEE 304 HW 6 SOLUTIONS

Problem 1:
For the feedback system shown below, compute the transfer functions y/r, y/d, u/r, u/d.

d

: e cis) | fL P(s) y

()

y(s) PC y(s) P uis) C u(s) -CP
r(s) 1+PC' d(s) 1+PC' r(s) 1+CP’ d(s) 1+CP’

Problem 2:
For the feedback system of Problem 1, suppose P(s) =1/(s+1).

a. When C(s) = K, design K so that the loop crossover frequency (i.e., w: [P(jw)C(jw) |= 1) is
10. What is the contribution of a constant unit disturbance to the output?

b. When C(s) = K(Ts+1)/s, design K,T so that the crossover frequency is 10 and the phase
margin (i.e., the difference between the loop angle and —180 at the crossover frequency,
Z/P(jw,)C(jw,)+180) is 50°. What is the contribution of a constant unit disturbance to the
output?

K
Y1+ ()
K >0 for stability (£C+ £P > -180)

. (s) = d(sy=_ L 1_-UL05 /1105 . 0 0.09(L— e 5 U (1)
S
= yd,ss - Ilmt%w yd (t) = 009

1+ PC s+K+1s s+K+1
b. @, =10:/C+ /P =-180+50=-130=tan ' (Tw,) — 90 —tan *(w,)
=tan"(Tw,) =-443=Tw, =0.98 =T =0.098

K1+ (Tw,) ‘ )
o, =10:|P(jo,)C(jw,) |= lz‘wW ‘ |K|—72

K > 0 for stability (£C + £ZP > -180)

S 1 1 1
yd()—— (s)=— <=2 =2
1+PC SP+s+K(Ts+1)s s®+(1+KT)s+K s*+8.02s+72

a=4,wo=7.5

=y, (1) =013 Sin(7.50U (1) = ¥y o = lim,,, y, (1) =0

a. o, =10:[P(jo,)C(ja,) |—1:>‘ =1=|K|=+/101=10.05



Kostas Tsakalis
Pencil

Kostas Tsakalis
Pencil


EEE 304 TEST 4 SOLUTIONS

Problem 1:

Determine the signal produced if the following sequence of operations is performed on a signal
X(t) that is bandlimited to wy, (i.e., X(jw) = 0 for |w|> wy,).

1. Modulation with a cosine carrier of frequency 3w,

2. Bandpass filtering with an ideal filter H(jw) = 1 for 2wy, <|w|< 3 Wy,

3. Modulation with a cosine carrier of frequency 3wp,.

4. Lowdpass filtering with an ideal filter H(jw) = 1 for |w|< wp,.

A A
1 .
\ 1 modulation 3w_m . 12
J | f > f | : >
A A

bandpass 2-3w_m

modulation 3w_m ——-

A 2
L I~

lowpass 1w_m

FINAL RESULT: ¥ x(t)



EEE 304 Test 2

Problem 1:

Consider the following system with transfer function H(s) = © 131
As+

causal)

D

1. Find the amplitude of the steady-state response to a sinusoid input x(t) = sin(5t+30°)u(t).

2. Compute the discrete-time equivalent of H(s), say G(z), using the Backward Euler Approximation and

asampling interval of T = 0.01s.

Name: SOLUTIONS

> (Continuous time,

3. For G(z), compute the amplitude of the steady-state response to the sinusoid x(t) sampled at the time

instants nT, i.e., x(n) = sin(0.05n+30°)u(n)

1. The steady-state response is Y (t) =| H(]j5) |sin(5t + 30° + £ZH (}5)), so the amplitudeis

1 _ 1 o
[(0.D(5)]*+1 1.25

|H(]9)

2. Backward Euler uses the substitution s= (z-1)/Tz
1 0.017° 0.017°

G(2)=H (S)|$2T7—1 =

- 27 (22140122 (L1z-172
(0_12 1+1j ( )" ( )
0.01z

3. The steady-state responseis Yy (n) =| G(e'**®) | sin(0.05n + 30° + ZG(e'**®)), so the amplitude is
0.01

|0.01(ej0.05)2 | ~ |O.Ol(ej0.05)2 |

0.01

|G(e™) I
=0.784

Notice that the sampling rate (100Hz) isfast relative to the filter
bandwidth (10rad/s ~ 1.6Hz) so the discretization isfairly accurate.
Also, the sampling of the sinusoid of frequency 5 rad/s at 100Hz is
much faster than the Nyquist rate, indicating good agreement
between continuous and discrete response.

Y ou can view the resultsin MATLAB by issuing the following
commands:

>> Hetf(1,[.1 1]); H=HH

>> Hd=tf([.1 0],[1.1 -1],.01); Hd=Hd*Hd
>> t=[0:.01:10];

>> x=sin(5*t);

>> y=lsinm(H x,t);

>> plot(t,y)

>> yd=l si m(Hd, x, t);

>> plot(t,y,t,yd)

>> bode( H, Hd)

Also, keep in mind that MATLAB displays the Bode plotsin terms
of the continuous time frequency @ =Q/T

1

08

0.8

0.4

0z

0

02

-0.4

-0.6

-08

System: Hd

|(L1e°% _1)?| [(L1e°®—1)?| (L1cos(0.05)—1)2 +(L1sn(0.05)% 0.0127

1}

5

Fresuency (radisec): 499

Magnitude (dB). -2.1
u

t
=

Magnitude (dB)

60 -

-0

Phass (deg)

-1

-1

s
=

0 [k}

Bode Diagram

9 92 94 96 98

—n

45

a5k

oo -

35 -

B0 &

10°

1’

Frequency (radisec



EEE 304 Test 1 NAME:

Problem 1:
Compute the unit step response (x(t)=u(t)) of the system

H(s) = = (Continuous time, stable)
(s—0.5)(s+2)

1
~ (s—0.5)(s+2)s
-1 4/5 1/5

=+ +
S, (s-05 (s+2)

causal

Y(S) ROC ={-2< Res< 0.5 n{0< Res}

%,_/
anticausal causal

y(t) = —u(t) —geof’tu(—t) ; ée‘”u(t)

Problem 2:
Compute the unit step response (x(nN)=u(n)) of the system
H(2) = L (Discrete time, stable)

(z-0.5)(z+2)

Z
~ (z-05)(z+2)(z-1)
2/13 —4/15 -2/5
= + +
z-1 (z+2) (z-05)

causal

Y(2) ROC ={0.5<|z|< 2} n{1<| z}

;Y_J
anticausal causal

y(n) = éu(n -1+ % (-2)""u(-n) - %0.5”1u(n -1)




EEE 304 Test 3 NAME:

Problem 1:
Suppose that a continuous time signal x(t) has X (jw) that is bandlimited to wp. Find the sampling
rate to allow perfect reconstruction with ideal low pass filters of dx/dt. (Explain.)

y = dx/dt isan LTI system, so it is described by a multiplication in the frequency domain. Since
X(w) is zero beyond w0, soisY (jw). Then, for perfect reconstruction, the sampling rate should
be at least 2wp.

Problem 2:

Find the largest sampling interval Tsto allow perfect reconstruction of the signals (x*y denotes
convolution)

1. sintcos2t.

2. cost*sin2t

1. The Fourier transform of the composite signal is the convolution of the Fourier transforms of
the individual signals, so the maximum frequency is 2+1 = 3. Then, the largest sampling interval
isTs= /3.

2. The Fourier transform of the composite signal is the multiplication of the Fourier transforms
of the individual signals, which is 0. Then, the sampling interval is Ts can be arbitrarily large.
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