

**Problem 1:**

Consider the filter with impulse response  $h(t) = e^{-t}u(t-1) - e^{-2t}u(t)$ .

1. Find the transfer function
2. Find the Laplace transform of the output when  $x(t) = \sin(t)u(t)$
3. Find the output by taking the inverse Laplace transform of your answer to part 2.
4. Can you obtain the same result using Fourier Transforms?

**Problem 2:**

Consider the continuous time causal filter with transfer function

$$H(s) = \frac{s}{(s-1)(s-2)}$$

1. Compute the response of the filter to  $x(t) = u(t)$ .
2. Compute the response of the filter to  $x(t) = u(-t)$ .
3. Repeat parts 1 and 2 for a stable system with the same transfer function.

**Problem 3:**

Consider the discrete time stable filter with transfer function

$$H(z) = \frac{z}{(z-0.1)(z-0.2)}$$

1. Compute the response of the filter to  $x[n] = u[n]$ .
2. Repeat part 1 for a causal filter with the same transfer function.