
EEE 481                                  Homework 1  
 

Problem 1.  
Suppose that we measure a signal 0-5V with a n-bit A/D. What should be the value of n so that  

1. The maximum error is less than 1mV? 

2. The maximum error is less than 1% for V in [3-5](V)? 

3. Assuming that the clock used in the A/D conversion is 500kHz, find the maximum conversion 

time for a successive approximation converter. 

 

For min/max values at the ends of the range, the A/D will have    distinct values dividing the interval. 

Thus, the resolution is 
   

  . (If the values are arranged to divide the interval to     , then the resolution 

is 
   

    
). For a truncating A/D the maximum error is the same, 1 LSB, and for a rounding A/D the 

maximum error is ½ LSB. Considering the first case and computing the maximum error for different n, 

we find that we need 13 bits to have error less than 1mV.  

 

The relative error (%), in the worst case, is the maximum error divided by the value of the voltage. This 

achieves its maximum at the lower end of the interval. So, we want max error/3 < 0.01 or max error < 

30mV. Repeating the above calculation, we find n = 8 bits.  

 

A successive approximation converter will use roughly 1 clock cycle per bit (since DAC’s are much faster 

than that) and with a bisection algorithm that requires n-steps, so the conversion time is 26us for the first 

case and 16us for the second case. 

 

 

Problem 2.  

Consider the system        
 

 
      

 

 
            , where the multiplications and the 

addition are quantized to 0.01.  Use simulation to assess the mean, worst-case amplitude, and variance of 

the error due to quantization (compared to non-quantized operation). Apply various inputs x(k), e.g., 

random, sinusoid, quantized to 0.01.  Compare your results with the theoretical bounds computed from 

the corresponding transfer functions. 

1.                        
2.                                            

3.                    
 

 
          

4.                                    
 

For a round-off quantization, whose mean is 0 LSB, max(|n|) = ½ LSB = 0.005 and var = 1/3(½ LSB)
2
 

=8.33e-6.  RMS(n) = (var{n})
1
/
2
 = 0.0029. 

Realizing the transfer function in terms of delays of the output and input (as shown in the figure below)  

There are 4 quantization blocks, each one contributing ½ LSB uncorrelated noise to the same summation 

node. The transfer function from each one is      
 

  
 

 

, for which,                    

                             
 
      . (The equality of G(1), ||g||, ||G|| is only a coincidence of 

the simple form of the transfer function. Evaluating the above estimates (with x_n denoting the error due 

to quantization) 

1.                        = 1.143 * 4 * 0 = 0 (deterministic noise 1.143*4*0.005 = 0.0229) 

2.                                                                 

3.                      
 

 
                                     

4.                                                                 
 



Next, we simulate the quantized system, the ideal system, and the system with the noise model of 

quantizations and tabulate the results as follows:. 

 

 Rand[-1,1] Const.=0.072 Rand noise model Theoretical Estimate 

Var 2.49e-5 12.16e-5 3.39e-5 3.39e-5  [RMS: 17.6e-5] 

Mean 2.68e-5 -0.0067 7.6e-6e-5 0 [deterministic  0.023] 

Max  0.0156 0.0085 0.021 0.023 [deterministic 0.023]  

 

Notice that the stochastic variance estimate (using the 2-norm of G) is closer to the observed variance and 

that the random noise model is fairly representative of the actual errors (for this selection of external 

inputs). The conservative variance estimate using the RMS deterministic bound (in brackets) is much 

higher, while the estimate of the maximum amplitude is only conservative by 50%. (This is also because 

of the specific properties of the system for which sum(|g(k)|) = max|G(e^jw)|.) The deterministic 

estimates become more accurate for deterministic inputs that expose the worst case. Here a constant 0.072 

produced RMS error that was larger than the stochastic estimate. Also note that for the simulation of the 

random noise model the random number generators must be initialized with different and appropriate 

seeds so that they produce uncorrelated outputs. 

 

 
 

 

 

 

Problem 3.  
In a laboratory data acquisition application we would like to use the Diamond MM board to sample 

several signals at 2kHz and transmit the results to a nearby computer over the RS-232 serial port. How 

many channels can sample under reasonable assumptions.   

 

The MM has a 12-bit A/D so, without special compression, it will use 2 Bytes per channel. That is, a total 

of 2*N Bytes per sample time (N = # of channels), or 20*N Bits (assuming one start, one stop, 8-data; 

other valid protocols are also acceptable). For the transmission to occur under 0.5msec, the rate should be 
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greater than 40N kBaud. Standard rates in that vicinity are 38400, 57600, 115200. So N=1 for 57600 and 

N=2 for 115200, assuming that the distance of transmission is fairly short. The standard has 50 ft for 

speed 19200 Baud. (The number of channels could go up by 1 if the assumptions are relaxed somewhat, 

e.g., use 7 data bits.) 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%%%%%%%%%%% 

 

 

EEE 481                                  Homework 2 
 

 

Problem 1. 

Compute the z-transforms of the following sequences (here u(.) denotes the unit step)  

                
 

  
                                

 

                     
 

      
 

Recall that     
 

  
         

 

  
             

 

  
        . For a single-sided transform, (k>=0), 

      
 

  
            

    
 

  

        
 

  
  

        
       

 

  

        
 

  
  

. 

                  
 

     
 

    

       
 

            
 

       
 

 

 

Problem 2.  

Solve the difference equation        
 

 
       

 

 
                  with the initial 

conditions y(0) = 1, y(-1) = 0 and x(k)  =  u(k). 

 

Define            , so                     . The ODE, shifted by one, now becomes  

       
 

 
       

 

 
                 . Taking transforms and applying the initial 

condition property, we get 

                    
 

 
      

 

 
      

 

 
                  

Substituting the IC and X(z), 

    
 

 
  

 

 
        

   

   
 

After PFE, 

     
          

                 
 

          

                
 

Hence, 

                                      
   

        

And, 

                                                                             
 

Problem 3. 

Consider the system 
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1. Determine whether the system is stable or not  

2. Determine whether the system is controllable and/or observable 

3. Compute its transfer function  

4. Compute the first three samples of its unit-step response. 

 

1. The eigenvalues of A are -0.2 and 0.9, they are inside the unit circle, hence the system is stable. 

2. The controllability matrix [B,AB] has rank 2, so the system is completely controllable. The 

observability matrix [C;CA] has rank 2, so the system is completely observable. 

3. The transfer function is              
      

            
 

4. We compute the recursion for the states, starting with x(0)=0 and u(k)=1 for k>=0. Then,  

y(0) = 0 

y(1) = -1 

y(2) = -1.8 

y(3) = -2.54 

etc. 

 

Problem 4. 

Write the differential equation describing the motion of a pendulum with input the torque applied at the 

pivot point and output the angle of the pendulum. Derive the linearized model around the stable and the 

unstable equilibria and compute the corresponding transfer functions. Assume that the pendulum is a rigid 

rod of length 0.5m, with evenly distributed mass 50g, and has a small 100g ball attached to the free end. 

Its rotation around the pivot point is frictionless. 

 

Newton’s law yields,  
   

   
     

 

 
           , where       

 

 
   . Hence, substituting 

the pendulum parameters,  
   

   
                . 

 

The linearized system around the stable equilibrium has                   
      ,  

    

   
                

     

     
 

    

       
 

 

The linearized system around the unstable equilibrium has                     
      ,  
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Problem 1. 

Consider the continuous time system with transfer function      
    

       
. 

1. Realize G(s) in state-space and use Forward Euler to compute its discretization, using sampling 

time T = 0.1. Find the transfer function of the corresponding discrete-time system. 

2. Use Forward Euler directly on the transfer function G(s) and compute the corresponding discrete-

time transfer function. Realize the discrete-time system in state-space. 

3. Compute the first five terms of the discrete-time system impulse response using state-space 

formulae. Compare with the result of MATLAB’s impulse(.) function.  

 

1.                                
    
  

   
 
 
                  is one possible 

realization. The FE discretization is found by       
       

 
                       

          .The transfer function for the discrete time system becomes 

                           
This transfer function can be computed by hand, or by the following MATLAB commands 

 

>> G=tf([3,2],[1,8,4]) 

>> Gs=ss(G) 

>> T=.1;Gd=ss(eye(size(Gs.a))+Gs.a*T,Gs.b*T,Gs.c,Gs.d,T);tf(Gd) 

ans = 

  

     0.3 z - 0.28 

  ------------------ 

  z^2 - 1.2 z + 0.24 

  

Sample time: 0.1 seconds 

 

Notice that the transfer function does not depend on the choice of realization of the continuous transfer 

function. The above procedure can therefore be used to find the FE discretization of a continuous time 

system. 

 

2. Performing the substitution   
   

 
, we find exactly the same discrete transfer function as in Part 1. A 

state space realization is 

                                    
        
    

   
 
 
                    

which does not need to be (and is not) the same as the one in Part 1.  

 

3.  We can easily compute the recursion                         , with IC = 0 and 

                   : 
 

>> x = [0;0]; 

>> y=c*x, x=a*x+b; 

>> y=c*x, x=a*x;  

>> y=c*x, x=a*x;  

Etc. 

 

We find the values for y:      0,     0.3000,     0.0800,     0.0024,     0.00096. 

We also find the same values with h = impulse(Gd). The impulse response is independent of the 

realization. 



 

Problem 2. 

The first-principles model of a temperature control system is QYY  )293(3.0 , where Y is the 

Temperature (Kelvin) and Q is the supplied heat (Watts).  

1. Use the Forward Euler approximation of derivative 
s

kk

k
T

tYtY
tY

)()(
)( 1 
   to write a 

corresponding discrete time state-space model for a sampling time of 1sec.  

2. What is the discrete-time transfer function of the system? 

3. What are the limitations (if any) of this discretization method. 

 

1.                            

2. From Q to Y, the discrete transfer function is  
    

    
 

 

     
. (293 can be viewed as an external input, or 

the output can be interpreted as the incremental output over the equilibrium solution Y = 293 for Q = 0.) 

3. The stability constraint for the discrete model is                     . Of course, for a 

sensible approximation, the sampling time should be much less that this bound. E.g., one-half the value 

will produce a discretized system with pole at the origin, i.e., the entire dynamic response is modeled by a 

single delay.  

 

 

Problem 3. 

An analog filter with the transfer function
)11.0)(110(

1

 ss
 is to be replaced by a computer. 

Determine an appropriate sampling time and the transfer function of the discretized filter. You may use 

any discretization method you like but you should justify all choices.  

 

A reasonable choice for the sampling time would be related to the system bandwidth (0.099rad/s). One 

may choose different rules of thumb. 

 6 samples/rise time: tr = 2/BW = 20s; T = 20/6 = 3.33s or f = 0.3Hz. (Measuring tr from a step 

response simulation we find 21.9s which is reasonably close). 

 Nyquist = 10 x BW = 1rad/s = 0.16Hz => f = 0.32Hz, T = 3.14s. (This is similar to the above 

since tr = 2/BW (BW in rad/s) => T = 1/(3BW) = 1/(6piBW) (BW in Hz) => f = 19BW (BW in 

Hz).) 

 ZOH adds 6deg phase lag at BW (a feedback-related spec), wT/2 = 0.1 => T = (2/BW)0.1 = 2s  

(9 deg phase lag yields the previous T = 3.14s)   

 

Since we are trying to replace an analog filter and have a discretization with similar filtering properties, a 

Tustin discretization is the more reasonable choice. Thus, for T = 3.14s (not a unique choice), the 

discretized transfer function is 

      
                   

                       
 

 

However, for a Forward Euler discretization, the sample time is constrained by the fastest sampling 

constant (0.1). Here, choosing T = 0.1 will transform this term to    
     

   
    , i.e., its entire 

response is approximated by a single delay. Since the system response is dominated by the slower mode 

(10s+1), such an approximation is acceptable (assuming of course that such an oversampling is possible). 

For this case, 
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Problem 1. 

Consider the following system with transfer function 
)2)(1.0(

2
)(






ss

s
sP .  

 

1. Design a PID so that the closed loop crossover is at 0.7rad/s and the phase margin is 50
o
. 

2. Select a method and the sampling frequency and discretize the PID. 

 

Anticipating a discrete design we should first select the sample 

time to contribute, say, about -3deg phase at crossover, i.e., 

w_cT /2= 0.1/2 or T = 0.15 sec. Then we should add this phase 

as a correction to the intended crossover. However, the problem 

here asks for a continuous design first and separate discretization 

later.   

The phase of P(s) alone at 0.7 rad/s is -120 deg, so it marginally 

suffices to use a PI to control it. We define: 

     
        

 
 

To achieve 50 degrees phase margin with the discrete controller, 

we should compute the PID zeros to provide 50 degrees PM: 

                                       . 

Then, we compute    
     

   
      Substituting back to the 

gain equation                            .  

Computing the margins for PC we verify the design. 

 

The sampling frequency is now 1/T = 6.67 Hz and the preferred 

method of discretization of the PID is Tustin, for which we 

expect a phase margin of 47 deg., since we did not pre-

compensate for the ZOH. The controller has the transfer 

function 

       
             

     
 

which provides the expected phase margin. Naturally, its closed-

loop response is worse than the original continuous-time and 

deteriorates even further if the sampling time is increased (in the 

figure, blue trace = CT, green = DT-0.15, red = DT-0.3).  

 

 

Problem 2. 
1. Ziegler-Nichols Tuning: Apply the two Z-N methods from the notes to tune a PID for the plants:  

       
       

       
          

           

        
   

 



2. Compare the results with a PID designed for a gain crossover frequency of open-loop bandwidth 

and 45deg. phase margin.  

Hint: Define P as a transfer function object and use step(P) to get an estimate of R,L for the first Z-N 

tuning. Then iterate k on step(feedback(k*P,1)) until the system is marginally stable (slowly increasing or 

slowly decreasing response). Then estimate Ku,Pu for the second Z-N tuning. Define the compensators 

and compare step responses and bode plots for the transfer functions command-to-output and input 

disturbance-to-output   

 

We compute the approximate slopes from the step responses as 

 R1 = 1.8, L1 = 0.1, R2=0.31, L2= 0.27.  The corresponding controllers 

are  

 

        
                       

 
 

        
                      

 
 

    
For the second method, we try closing the loop with different gains, until 

oscillatory response is observed. For the first system we find 

Ku1 = 30, Pu1 = 5.54 and for the second Ku2 = 1, Pu2 = 0.89. 

The corresponding controllers are   

        
                   

 
 

        
                         

 
 

 

Note that while these gain values happened to produce an exact oscillatory 

response (due to the round numbers in the system transfer functions), this 

does not need to be the case in general; for practical applications, sufficient 

approximation can be obtained by gains that produce decaying oscillations 

with low damping. 

 

Finally, we design a controller for crossovers at the open-loop bandwidth: 

The first system has BW = 0.577rad/s and the second has BW = 3.2rad/s. 

Performing the design, we find 

        
              

 
           

                         

 
 

 

The step responses with these controllers are shown in the following 

figures. (Bode plot of loop-tf, step responses. Open loop = blue, OL-ZN= 

green, CL-ZN = red, PM-tuned = cyan).  

 

For the first plant, the ZN produces a high bandwidth closed loop with 

large overshoot. In fact the PID of the OL-ZN is too oscillatory and here 

only the PI response is shown. A partial reason for this is that in the OL-ZN 

the bandwidth estimate was too optimistic due to the very low delay 

estimate.  

 
For the second system the Fbk-ZN method and yields similar results to the 

Phase margin tuning but the OL-ZN does not produce a stabilizing controller. The plant does not 

attenuate the high frequencies enough and the OL-ZN method yields a very optimistic estimate of the 

controller gain (by more than an order of magnitude). 

 



 

 

 

 

Problem 3. 

1. Design a PID controller to achieve a bandwidth of 0.5Hz, 50deg phase margin, and to be 

discretized with a sampling frequency of 10Hz for the system with transfer function   

       
       

       
    

2. Compare the results with a design in discrete time directly, where the plant is discretized and the 

parameters of a discrete-time PID are calculated to achieve the same specifications.  

 

We design continuous controller with an additional PM corresponding to the ZOH half-sample delay 

Tw_c/2 = 0.1 x (0.5/1.5) / 2 = 0.016 rad = 1 deg. (In other words, this system will be very close to its CT 

counterpart.) We also select the derivative time constant as 0.05s, if necessary, anticipating the Tustin 

transformation, to yield the PID poles at 0 and 1.  

 

The angle of the plant at the intended crossover (0.33rad/s) is -32deg., implying that no controller zeros 

are necessary. Hence, we select a controller 

     
 

 
 

Its gain is computed to make |CP| = 1 at crossover, and K = 0.35. Using the Tustin transformation, we 

obtain the discrete-time controller 

       
               

    
 

This controller yields a Phase Margin of 56.7 deg, at ~0.33 rad/s, as requested.  

 

Next, we consider an entirely discrete time design. We compute the ZOH-equivalent of the plant  

        
                 

                    
 

And consider the discrete PID 

       
 

   
 

(From the CT design, we do not expect to need anything more.) 

We compute the angle of the plant and the PID pole at crossover: 

>> [m,p]=bode(Pd*Cd,0.33) 

p  =  -124 
This verifies that no zero is necessary. The gain to achieve the crossover is 0.035, so  

      
     

   
 

Both methods yield very similar controllers and responses, as expected since 

the sampling time is very small. (Any differences are expected to appear 

much closer to the Nyquist frequency.) Also, notice that the two controllers 

are very similar since at the crossover frequency z is approximately 1.  

 

In the plot, the blue trace is the open loop plant, the green is the CT design 

with ZOH-correction and the red is the DT design. 
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Problem 1. 

1. Design a PID controller to achieve a bandwidth of 0.5Hz, 50deg phase margin, and to be 

discretized with a sampling frequency of 10Hz for the system with transfer function   

       
       

       
    

2. An additive disturbance enters the plant output with transfer function         
 

      
. Design a 

feedforward component for the PID controller, also discretized at 10Hz, to reduce the effect of 

the disturbance on the output.    

 

1.  From the BW specification, we make a first guess for the crossover 

frequency 0.5/1.5 Hz = 0.33Hz = 2.1 rad/s. With the sampling time at T 

= 0.1sec (10Hz), the ZOH phase is that of half-sample delay at 

crossover, or –(2.1)(0.1)/2 = 0.1 rad = 6deg. The continuous PID is 

 

cpid = 

  

0.9639 s^2 + 2.805 s + 2.041  

---------------------------- 

        0.05 s^2 + s 

  

 

The discretized PID (Tustin) is  

 

dpid = 

11.09 z^2 - 19.18 z + 8.287 

--------------------------- 

          z^2 - z 

 Sample time: 0.1 seconds  

 

2.  For the prefilter, we can work either in continuous time (but that 

requires the redesign of the PID without the ZOH to obtain the 

equivalent continuous time closed loop system) or in discrete time (but 

here the factorization function operate in continuous time so a Tustin 

transform is necessary). Other than that, we follow the stable projection 

algorithm described in the notes.  

 

As alternatives, we note the approximation of the Plant-inverse by the 

inverse of its outer part (i.e., the invertible part, where the RHP zeros 

are replaced by their mirror images (for C-T systems,  or their inverses 

for D-T systems). This approximation has the correct magnitude but its 

phase is approximately correct only for low frequencies. Similarly, one 

can also use the DC of the plant as an approximation so the FF is simply 

          . 

 

A code implementing the solution is given below. 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
%EEE 481, HW 5, Problem 1 

  



a=-.5 
P=tf([a 2],[1 3 2]) 
Q=tf(1,[.1 1]) 
[pid1,cpid]=pidpmtune(3.14,P,.1,50+6) 
dpid=c2d(cpid,.1,'tustin') 
Pd=c2d(P,.1) 
Qd=c2d(Q,.1) 
% step(fbk(Pd*dpid,1));pause 
% bode(fbk(Pd*dpid,1));pause 
% margin(Pd*dpid);pause 

  
Sd=feedback(1,Pd*dpid); SPd=feedback(Pd,dpid); SQd=Sd*Qd; 
W=1,r=1e-6,W=c2d(tf([.1 1],[1 1e-4]),.1,'tustin'); 
Gd=[W*SPd;r]; WTd=([W*SQd;0]); 
[SPi,SPip,SPo]=iofr(ss(d2c(Gd,'tustin'))); Stil=inv([SPi,SPip]); 
R=minreal(Stil*d2c(WTd,'tustin')); 
X2=stabproj(R-R.d)+R.d;  H2o=minreal(inv(SPo)*[1 0]*X2); 
eig(H2o) 
cut=[]; 
while isempty(cut), cut=input('cut '),end           % choose 1 here! 
[H2s,H2f]=slowfast(H2o-H2o.d,cut);H2f=H2f+H2o.d; 
Hd=c2d(H2f,.1,'Tustin');   % H2 optimal design 

  
[Hi,Hip,Ho]=iofr(ss(d2c(Pd,'tustin')));Hd_alt=c2d(inv(Ho)*Q,.1,'Tustin'); 
     % Outer Approximation 
Hd_dc=inv(dcgain(Pd))*Qd; % DC-gain Approximation 

  
step(Sd*Qd,SPd*Hd,SPd*Hd_alt,SPd*Hd_dc);pause 
sigma(Sd*Qd,Sd*Qd-SPd*Hd,Sd*Qd-SPd*Hd_alt,Sd*Qd-SPd*Hd_dc) 
disp('Error system Norms:')  
disp('    No-FF,  H2-optimal, Outer app,  DC-gain')  
disp([norm(W*(Sd*Qd)),norm(W*(Sd*Qd-SPd*Hd)), ... 

norm(W*(Sd*Qd-SPd*Hd_alt)),norm(W*(Sd*Qd-SPd*Hd_dc))]) 

 

++++++++++++++++++++++++++++++++++++++++++++++++++ 

 
function [pid,cpid]=pidpmtune(bw,g,tau,pm,n) 
% [pid,cpid]=pidpmtune(bw,g,tau,pm) 
% bw = bandwidth 
% g = system 
% tau = derivative TC 
% pm = phase margin 
% n = PI/PID order (forced) 

  
if nargin<3,tau=.01; end 
if isempty(tau),tau=.01;end 
if nargin<4;pm=50;end 
if isempty(pm);pm=50;end 
if nargin<5;n=[];end 

  
gc=bw/1.5; 

  
cpid=tf(1,[1,0]); 
[m,p]=bode(g*cpid,gc); 
p=mod(p,360); 
if p>0;p=p-360;end 
th=(-180-p+pm) 
if isempty(n) 



    if abs(th)>75; n=2;else;n=1;end 
end 

  
if n==1;cpid=tf(1,[1 0]);else;cpid=tf(1,[tau,1,0]);end 
[m,p]=bode(g*cpid,gc); 
p=mod(p,360); 
if p>0;p=p-360;end 
th=(-180-p+pm); 
a=gc/tan(abs(th)/n*pi/180) 
if n==2;cpid=tf([1 2*a a*a],[tau,1,0]);else;cpid=tf([1 a],[1,0]);end 
[m,p]=bode(g*cpid,gc); 
cpid=cpid*(1/m); 

  
[nu,de]=tfdata(cpid,'v'); 

  
if length(nu)<3;nu=[0,nu];end 
pid=[nu(2)-nu(3)*tau,nu(3),nu(1)-tau*(nu(2)-nu(3)*tau)]; 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

As a metric of the success of the design, we compute the error system norms, which describe the 

amplification of the variance of the disturbance signal. We observe that the Outer approximation 

produces the lowest error at low frequencies but the highest variance amplification. Also notice 

that the proximity of the RHP zero to the bandwidth results in a 

small performance improvement over the no-feedforward case. 
 

Error system Norms: 

    No-FF,  H2-optimal, Outer app,  DC-gain 

  2.5023e-001  2.3813e-001  3.3556e-001  

2.8175e-001 

(The Ad hoc solution of the outer approximation is actually worse than 

no feedforward, in terms of variance to white noise disturbance!) 

 

The feedforward has a high pass transfer function (looks simple but is 

actually 5
th
 order). 

 

 

  

Problem 2. 

The read arm on a computer disk drive has transfer function  

      
    

  
   

1. Design an analog PID controller to achieve a bandwidth of approx. 60Hz with 50deg. phase 

margin.  

2. Design a discrete PID for the same bandwidth and phase margin, with a sampling frequency 1kHz 

and simulate the closed loop step response.   

3. What is the minimum sampling rate that can be used, while achieving 60Hz bandwidth and 50deg 

phase margin with a PID?  

4. Design a prefilter to achieve overshoot to step reference changes under 5%.    

Hint: You need a complete PID for this problem (2-zeros). Use a filter for the pseudo-differentiator with 

T = 0.001, consistent with the 1ms sampling time.  

 



The continuous-time design  is following the standard procedure, with 

50 deg. phase margin and 377rad/s as intended closed loop bandwidth. 

The resulting closed loop has the correct phase margin and almost exact 

bandwidth (395 rad/s, no iteration is necessary here). 

 

>> [pid1,cpid1]=pidpmtune(377,P,.001/2,50) 

 

cpid1 =  

 

0.2329 s^2 + 34.49 s + 1277 

  -------------------------------- 

           0.0005 s^2 + s 

 

 

Next, the discrete-time design will be computed by discretizing the 

continuous controller but with an adjusted phase margin to compensate 

for the ZOH. This angle is 
  

 
 

   

   
 

     

 
           

 

>> [pid2,cpid2]=pidpmtune(377,P,.001/2,50+7.2) 

 

cpid2 = 

  

  0.2407 s^2 + 27.52 s + 786.6 

  --------------------------------- 

            0.0005 s^2 + s 

 

And the discrete pid is found as its Tustin-equivalent: 

 

>> dpid2=c2d(cpid2,.001,'tustin') 

 

dpid2 = 

  

  254.7 z^2 - 481 z + 227.1 

  ----------------------------------- 

        z^2 - z  

  

Sample time: 0.001 seconds 

 

The discrete time loop has phase margin 50.1 deg. and a slightly larger 440rad/s bandwidth.  The 

frequency and step responses of the CT and DT closed-loop systems are fairly close to each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

The phase margin equation for this system is 

            
 

    
 

 

    
 

   

 
      

 

 
         

Where   is the PID zero; this yields the constraint 

     
 

 
         

 

    
 

 

    
 

   

 
     

 

    
 

 

    
 

   

 
    

 

We plot the left-hand side as a function of w to find that the maximum possible crossover frequency is 

712 rad/s  corresponding to BW ~ 1068 rad/s or 170 Hz. (Notice, here, we selected the pseudo-derivative 

time constant as 0.0005s).  Of course, for a reasonable integral action, the PID zero should not contribute 

more than 75-80 degrees. 

 

4. For a prefilter, we can use the general procedure of an additive signal 

at the plant input, as in the previous problem. Alternatively, a simpler 

design is to use a low-pass filter or a 2-DOF implementation of the PID 

with the slow zeros in the feedback path. We will only discuss the last 

two options here. 

 

A simple first order low-pass set-point filter can be designed 

approximately based on the frequency response of the closed-loop 

transfer function. We can then iterate on the filter pole to meet the 

specification: 

 

>> p=100; step(c2d(tf([1/500 1],[1/p 1]),.001,'Tustin')*fbk(c2d(P,.001)*dpid2,1))  

 

 

Problem 3. 

Design a PID controller for the flexible inverted pendulum with transfer function 
       

                     
 

                               

                     
 

For this problem, the PID should be augmented by a low-pass filter to increase roll-off beyond bandwidth 

and avoid the excessive excitation of the flexible modes. The sampling frequency is 1000Hz and the 

choice of closed-loop bandwidth is left as a design parameter. Use a 3
rd

 order low-pass filter, with 

bandwidth roughly at 2x or 3x of the crossover frequency. In your design, include a prefilter to maintain 

overshoot to step reference changes under 5%.   Verify the stability of your controller with simulations. 

 

The filter is needed to attenuate the resonance peak of the flexible mode so that it does not cause the loop 

magnitude with the PID to exceed unity. At that frequency, the PID will be in its high frequency gain that 

is expected to be large, since considerable phase lead is required to stabilize the plant. On the other hand, 

the crossover frequency should be higher than the instability (4.4 rad/s). So we need to determine a 

sensible filter F to allow us to iterate on crossover/phase margin. 

 

  Roughly, the design equation is                  . We expect that the PID zeros do not 

contribute more than 150 deg and since we are looking at a crossover around 10 rad/s, the ZOH will have 

a minimal effect. So we can iterate very quickly                        and adjust the pole of F 

so that this inequality holds for some frequencies above 5 rad/s. We arrive at a value of 40 for the filter 

pole. We then set-up an iteration to compute a reasonable PID tuning: 

 
%EEE 481, HW 5, Problem 3 

  



P=tf(1.478,[1  0.0635  -19.54])+tf([0.000332  0.3785  177.5],[1 15.52   

64750]); 
T=0.001; 
wc=[]; 
while isempty(wc), wc=input('crossover '),end 

  
F=tf(1,[1/40,1]);F=F*F*F; 
zoh = T/2*wc*180/pi; 

  
[pid1,cpid]=pidpmtune(wc*1.5,P*F,.001,35+zoh) 
dpid=c2d(cpid,.001,'tustin') 
Pd=c2d(P*F,.001); 

  
 step(fbk(Pd*dpid,1));pause 
 bode(fbk(Pd*dpid,1));pause 
 margin(Pd*dpid);pause 

  
After comparing the responses of a few controllers with different wc and PM, we select PM = 35 and wc 

= 7 as the best one.  The final controller (C-T, D-T)  is:  

 

cpid = 

  

  7.572 s^2 + 23.44 s + 18.14 

  --------------------------- 

         0.001 s^2 + s 

 

dpid = 

 

  5056 z^2 - 1.01e04 z + 5040 

  --------------------------- 

    z^2 - 1.333 z + 0.3333 

  

Sample time: 0.001 seconds 

 

It yields the following step and frequency responses: 

 

  
 

The large overshoot is due to the proximity of the RHP pole of the plant to the closed-loop bandwidth. It 

does necessitate the use of a prefilter.We use a simplified prefilter 
       

    
 and try different values of   to 

get the overshoot below 5%, arriving at the value      . The response is not great (significant 

undershoot) but for the reduced complexity prefilter, it is adequate. 



 

 >> step((tf([.05 1],[1.7 1]))*fbk(P*cpid,1))  

 

The discretized prefilter is 

 

  0.0297 z - 0.02911 

  ------------------ 

      z - 0.9994 

  

Sample time: 0.001 seconds 

 

(Note: The discrete simulation  

>> step(c2d(tf([.05 1],[1.7 1]),.001,'tustin')*fbk(Pd*dpid,1)) 

diverges due to numerical sensitivity issues. To obtain a correct result P, F, and cpid should all be 

converted to state-space from the beginning 

) 
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EEE 481                                  Homework 6 
 

 

Problem 1. 

Consider the pendulum model with input the torque applied at the pivot point and output the angle of the 

pendulum. (Assume that the pendulum is a rigid rod of length 0.5m, mass 275g evenly distributed, and its 

rotation around the pivot point is frictionless.) 

1. Design a state observer to estimate the angle and angular velocity from noisy angle 

measurements.  

2. Collect 20s of simulation data at 100Hz with random 10Hz excitation around the stable 

equilibrium such that the amplitude of oscillation is approximately 6degrees. Implement a 12-bit 

quantization on the angle measurement for the 360degree range and a 10-bit quantization on the 

torque for the range [-1, 1]. Formulate the parameter estimation problem and use the batch least-

squares algorithm to estimate the parameters of the corresponding transfer function.    

3. Repeat Part 3 for an Arduino-based controller with 10-bit ADC quantization and 8-bit DAC 

quantization.   

Illustrate your findings with a few well-chosen simulations. 

 

 

We start with the pendulum model 



      
   

 
             

Where m is the mass, L is the length,   
   

 
 is the inertia, and   is the friction coefficient for the 

pendulum, and       is the I/O pair. The torque T is proportional to the current driving the pendulum 

motor, but since we have no further data, we will assume a proportionality constant of 1. Linearizing the 

model around the stable equilibrium      , we obtain the transfer function  

     
    

       
 

And the state-space realization in terms of angle and angular velocity 

    
      
  

    
 
 
     

               

For the discrete-time model, to be used for state estimation, we find the ZOH equivalent: 

 

        
             
             

          
     

       
     

              
For this we define the state observer 

                           
         

where L is the observer gain which can computed using a variety of approaches. One, particularly 

attractive method is by using the Kalman Filter equations in their steady-state solution, given by the 

discrete Riccati equation                                                . 

While this equation, taken as a recursion, will converge to the steady-state solution, MATLAB also 

implements efficient numerical methods to solve it: 

>> L = dlqe(A,G,C,Q,R) 

Here, G,Q are the input and intensity (covariance) matrices for the state noise and R is the intensity of the 

output noise. Since we do not have any additional information to model the noise, or optimize specific 

aspects of the Kalman Filter response, we will simply choose, G = I, Q = BB’, and R = a small scalar, to 

be iterated until a “reasonable” speed of convergence is obtained. For example, 

>> Hd = c2d(H,0.0025) 

>> L=dlqe(Hd.a,eye(2,2),Hd.c,Hd.b*Hd.b',0.01),abs(eig(Hd.a-L*Hd.c)) 

This yieds  

L = [0.4542; 0.1064] 

and magnitude of the observer error system eigenvalues 0.872; the latter implies convergence of the error 

system in 20 samples, or 0.2 sec, which is a reasonable time from a feedback control perspective. (In a 

quick design, the crossover of the feedback system would be selected around 10-20 rad/s, a factor of 2-4 

above the bandwidth of the system poles, both for the stable and the unstable equilibrium case.) 

 

Finally, for implementation purposes, it is often a good idea to use a controller to stabilize the system so 

that its response stays bounded for any possible test condition. (Especially, for system identification 

applications.) Omitting the details, here we design a PID to provide 50deg phase margin at 13rad/s: 

[Kp, Ki, Kd] = [1.7044e+000  3.3016e+000  2.1153e-001] 

 

Next, we construct a simulation model to solve the nonlinear pendulum equation, and connect the 

observer to the system I/O.  



 
 

Pendulum Subsystem: 

 
Observer Subsystem: 

 
This simulation model allows the study of observer and identification 

problems under a variety of conditions. We list some below: 

- Convergence for different initial conditions (defined in the 

Pendulum mask) 

- Convergence with and without the PID controller, with and 

without random excitation, with and without output noise 



- Use of different observer gains, obtained with different output noise weights (R) in the Riccati 

equation 

- Stable and unstable equilibrium (requires adjustment of the observer model). 

 

Example: Uncontrolled system (for the unstable equilibrium such tests 

can be performed only for short time intervals), starting with I.C. [1, 0]. 

Here, the angle output is noisy but the velocity is not. Their estimates 

present a “smoothed” version of the angle, but the velocity estimate is 

noisy. For a 20s interval, the two traces overlap. With a zoom-in during 

the initial transient, we can observe the convergence, which takes 

roughly 0.3s as predicted from the eigenvalues of the observer error 

subsystem.   

 

  

 

 

  

 

For the identification experiment, we connect the excitation at the pendulum input. With zero I.C., and 

after some trial-and-error we find a gain for the excitation (0.02) which causes the angle deviations to be 

below 6 degrees. (This is necessary to keep the system near the linearization point where       .) 

 

 
 

We collect the data (U,Y) and form a regressor for a second order system. For a generalization, we define 

the filter F (e.g., a delay) and then write the regressor 

                  
(for a general case of regressor construction, see a system identification text). Then, the LS approximation 

problem has a solution  

                 
From which the identified system can be expressed as 

  

  
            

              
 



The MATLAB implementation of this algorithm is shown below 

>> F=c2d(tf(1,[.1 1]),.01) 

>> w=[lsim(F,Y(:,2)),lsim(F*F,Y(:,2)),lsim(F,U),lsim(F*F,U)];q=w\Y(:,2) 

>> Hd=minreal((q(3)*F+q(4)*F*F)/(1-q(1)*F-q(2)*F*F)), H=d2c(Hd) 

Then 

      
                    

               
         

                 

                      
 

Notice that, even though the identified model is unstable, its coefficients are fairly “close” to the true 

linearization (P), implying that a controller designed for the identified system will also work for the actual 

system. (The theory behind this statement is “coprime factor perturbations”, “gap metric” is discussed in 

graduate courses.) However, the identification of the resonance is usually a difficult task and some 

“smearing” of the peak occurs. A similar result is obtained with the controller in feedback, but now the 

excitation must be increased by an order of magnitude to achieve the same range of output variation. 

Otherwise, the output noise causes the signal to noise ratio (SNR) to decrease and the accuracy of the 

identification deteriorates.  Finally, identification with the pure ARX regressor (delay, F = tf(1,[1 0],.01)) 

is unsuccessful for this case, because it puts too much emphasis on the high frequencies. 

 




