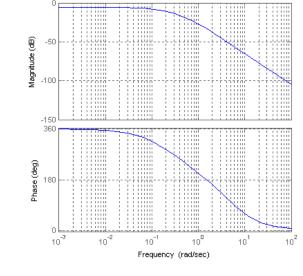
EEE 481 Test 2


NAME: SOLUTIONS

75', Closed-book, Closed-Notes, Calculators and One 8 1/5 x 11 sheet (2pages) of notes and formulae allowed.

1. Design a PID controller to achieve a crossover of 1 rad/s, 60deg phase margin, for the plant with transfer function (also shown in the adjacent plot)

$$P(s) = \frac{2(-0.2s+1)}{(7s+1)(s^2+6s+4)}$$

At 1rad/s, $\angle P = -156^\circ$, |P| = 0.043. The required phase lead from the compensator zero is $156+90-120 = 126^\circ$, so we must use a PID. We choose a time constant for the derivative filter $\tau = 0.1$, so that its contribution is -6° phase lag. The total contribution from the PID zeros now becomes 132° , or 66° per zero which is reasonable. The PID zeros are computed at -0.44 and the gain correction is 1/0.051. The final PID transfer function is $\frac{19.6 \text{ s}^2 + 17.3 \text{ s} + 3.82}{0.1 \text{ s}^2 + \text{s}}$ Another possibility is to use $\tau = 0.05$ for a -3° lag, anticipating the easier discretization with 0.1s sampling. Now the PID is $\frac{19.0 \text{ s}^2 2 + 18.0 \text{ s} + 4.2}{0.05 \text{ s}^2 + \text{s}}$.

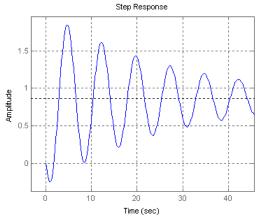
Bode Diagram

2. Select a suitable sample time and discretize the controller. What will be the phase margin of the discrete time closed loop system?

A $T_s = 0.1$ sec sample time would contribute -3° phase lag (half-sample delay), which is reasonable. The Tustin discretization of the controller becomes $\frac{136.2 \text{ z}^2 - 260.6 \text{ z} + 124.7}{\text{z}^2 - 1.333 \text{ z} + 0.3333}$ For the alternative PID design, the Tustin discretization is $\frac{199.5 \text{ z}^2 - 380.7 \text{ z} + 181.6}{\text{z}^2 - \text{z}}$. The DT closed-loop PM is approximately 57°.

3. Do you expect that a prefilter will be needed to avoid overshoots in the step response? Briefly describe the design of such a prefilter. The zero is only at $\frac{1}{2}$ the loop crossover so we expect only a moderate need for a prefilter. For its design, we would start with a lowpass filter (and its Tustin equivalent in DT) $F(s) = \frac{p}{z} \cdot \frac{s+z}{s+p}$, where $z \approx$

BW, $p \simeq 0.44$, and iterate the pole and the zero until a desired overshoot is obtained.


4. Use Ziegler-Nichols rules to design a PID for a system with the step response shown in the adjacent plot.

From the plot, we estimate R = 0.15/2.5 and L = 2.5, so $PID = \frac{8.3 \text{ s}^2 + 8 \text{ s} + 1.6}{\text{s}}$

5. A system is tested in feedback with a proportional controller with gain 10. Use Ziegler-Nichols rules to design a PID controller if the closed-loop step response is as shown in the adjacent plot. From the plot, we estimate Pu = 12-5 and Ku = 10, so

$$PID = \frac{5.3 \text{ s}^2 + 6.0 \text{ s} + 1.7}{\text{s}}$$

	Step Response											
Amplitude	0.6											
	0.5											
	0.4											
	0.3		1									
	0.2											
	0.1	/										
	0											
	-0.1	5	10	15	20	25	30	35	40	45		
Time (sec)												

1	Ρ	PI	PID	1	Р	PI	PID
Кр	1/RL	0.9/RL	1.2/RL	Кр	0.5Ku	0.45Ku	0.6Ku
Ki	-	0.27/RL²	0.6/RL ²	Ki	-	0.54Ku/Pu	1.2Ku/Pu
Kđ	-	-	0.5/R	Kd	-	-	0.075KuPu