EEE 481 Homework Problems

pP.3.1
Consider the system x(k +1) = 0.95x(k) + 0.05u(k) , where the multiplications are quantized to 0.01.

Use simulation to assess the mean, and variance of the error due to quantization (compared to non-
quantized operations). Apply various inputs u(k), e.g., random, sinusoid, quantized to 0.01.

The multiplication quantization is modeled as random noise n(k) of uniform distribution % LSB. We will
ignore addition. The system now is x(k +1) = 0.95x(k) + 0.05u(k) + n, (k) + n, (k) .Then, the output
contribution of that noise (x_n(K)) is described by the transfer function G(z)=1/(z-0.95) (the quantization
occurs after taking the product 0.05u(k)) and is bounded as follows:

1. mean(x_n) = G(1)mean(nl)+ G(1)mean(n2)

2. var{x_n(k)} <= |G(e"jQ)|,>var{n1(k)} +|G(e"jQ)|,*var{n2(k)}

Notice that both quantization noises enter at the same node so there is only one transfer function.

Computing the theoretical estimates, G(1)=1/0.05=20. |G|,” = sum|g(k)|>=1/(1-0.95%)=10.256. (The last
one is based on Parseval, or simply using Matlab.)

For a round-off quantization, whose mean is 0 LSB, max(|n|)= % LSB = 0.005 and var = (%2 LSB)%?
=8.33e-6. Thus,

1. mean(x_n) = 20*(0+0)=0

3. var{x_n(k)} <= 10.256*(8.33e-6+8.33e-6)=0.17e-3
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The Simulink implementation of a simulator is shown above. We try different input signals: random
numbers (uniform or gaussian), sinusoids, etc. In general, we must try different frequencies and different
amplitudes as well, since the quantization makes the system nonlinear and the response to a scaled input
is not simply the scaled response. The main results are tabulated below. Notice that, for stochastic inputs,
the variance estimate is the least conservative one, but the estimate does not bound the actual signal,
especially for low amplitude excitation where the nonlinearity is more prevalent (for input amplitude
0.05, the input to the quantized system is actually zero!). For slow sinusoids of small amplitude, the
stochastic variance bound is too optimistic. This is where the more conservative norm(G,inf) estimate of
the system gain becomes more appropriate. Also, it is possible that the mean is nonzero. In this case, the
variance estimate should be adjusted (for simplicity, we skip the adjustment, keeping track of the mean to
correctly interpret the results).




A priori estimate | Computed Computed Computed Computed
rand{-0.05,0.05} rand{-10,10} 0.05sin(0.001K) | 10sin(0.001k)

var = 0.17e-3 0.022¢-3 0.168e-3 1.28e-3 2.3e-3

mean =0 -0.028e-3 0.32e-3 -0.07e-3 0.06e-3

As a last remark, the mean estimate becomes relevant if we use a different quantization scheme (floor,
ceil) that have a nonzero mean. This estimate is fairly accurate.

P.3.2
Ziegler-Nichols Tuning: Apply the two Z-N methods from the notes to tune a PID for the plant
P(s) = M Compare the results with a PID designed for a gain crossover frequency of 2 rad/s

s +3s+1
and 50deg. phase margin.

Hint: Define P as a transfer function object and use step(P) to get an estimate of R,L for the first Z-N
tuning. Then iterate k on step(feedback(k*P,1)) until the system is marginally stable (slowly increasing or
slowly decreasing response). Then estimate Ku,Pu for the second Z-N tuning. Define the compensators
and compare step responses and bode plots for the transfer functions command-to-output and input
disturbance-to-output

P=tf(5*[-.2 1],[1 3 1])

step(P),grid

R=(2.4-.52)/(2.33-.8),L=0.37, %from graph, R=1.22

s=tf([1 0].1);
Kp=1.2/R/L;Ki=0.6/R/L/L;Kd=0.6/R;ZN1=Kp+Ki/s+Kd*s/(.01*s+1)
%use a Fast pole for the pseudo-differentiator
step(fbk(P*5,1))

step(fbk(P*3,1))

step(fbk(P*2,1))

Ku=3,Pu=2.58-0.942, %Pu=1.56
Kp=0.6*Ku;Ki=1.2*Ku/Pu;Kd=0.075*Ku*Pu; ZN2=Kp+Ki/s+Kd*s/(.01*s+1)

% design a pid using crossover/pm methods for a similar BW
[m,p]=bode(P*1/s/(.01*s +1),2)
Ph=-(p-360)-130

Tz=tan(Ph/2*pi1/180)/2

C=tf(conv([Tz 1],[Tz 1D).[-01 1 O
k=1/bode(P*C, 2)

C=tf(conv([Tz 1],[Tz 1]),[-01 1 OP*k
%k=1.04, Tz=0.59,Ph=99.5
step(fbk(P*C,1),fbk(P*2ZN1,1),fbk(P*2ZN2,1))
bodemag (fbk(P*C,1),fobk(P*2ZN1,1),fbk(P*2ZN2,1))
bodemag (fbk(1,P*C),fbk(1,P*2ZN1),fbk(1,P*2ZN2))

Notice that both ZN methods yield much smaller phase margins than the classical design (20-30 deg). They do,
however, offer smaller sensitivity at low frequencies without increasing the loop bandwidth too much. (They do
increase the Sensitivity peak and resonance effect). The closed-loop test ZN is somewhat more reliable.
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P.1

The read arm on a computer disk drive has transfer function H(s) =

1. Design an analog PID controller to achieve a bandwidth of approx. 100Hz with 50deg phase margin.

1000

5 -

2. Design a digital PID with a sampling rate 1kHz and simulate the closed loop step response.
3. Keeping the same coefficients of the digital PID, perform a simulation study to determine approximate

high/low limits of the sampling rate for which the closed loop is stable.

Solution:

1. This plant has constant phase —180deg. Taking
the pseudo-derivative pole at 10-times the crossover
frequency, corresponding to a phase delay of
5.7deg, the required phase lead from each zero is
145.7/2 deg. whose tangent is 3.24, so t, =3.24/w..
For the crossover frequency we can pick the desired
closed-loop BW (100Hz) as a first approximation. A
better guess is w, = BW/1.5 = 419 rad/s. For this
selection, t,= 1/4190 = 2.4e-4 and t,= 7.7e-3. We
substitute these values in the PID transfer function
and evaluate the required gain for a crossover at
419: K=1/bode(H*C,419), which produces
K=6.48e3 and a final compensator

0.3842s% +99.795s + 6480
C(s) = >
0.00024s° +s

2. The sampling time is Ts = 1/1000 s = 1e-3. Since
the control signal is reconstructed with a ZOH, we
add phase lag (-w.T4/2) at crossover = -12 deg. So
the required phase lead is now 157.7 deg from the
two zeros. Each zero should contribute t,
=tan(157.7/2) /w.= 1.2e-2. Notice the higher lead
required due to the lag from the “slow” sampling
rate). Now K=1/bode(Hd,Cd) = 2.8e3, where Hd is
the plant with Ts/2 delay. So,

2
Cd(s) = 0.41s° +67.5s +2813

0.00024s* +s
We discretize this controller using Tustin to get

594 z° -1093z +502.8

C.(z
r(2) 7% -0.6486 z + 0.3514

The bode plots of continuous and discrete closed loops and the step responses are shown in the adjacent

figure.
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3. In this part, we examine how the loop behavior changes if we change the sampling rate but keep the
discrete PID transfer function the same. One interpretation of this is a non-real time implementation
where the sampling time can vary. To study this we must form the loop between the plant H discretized at
the new frequency and the PID with a sample time adjustment. This is a little involved since MATLAB
checks for consistency in sample times. The relevant commands are:
tsn=1.6e-4,Ct.Ts=tsn;step(feedback(H*C, 1), feedback(c2d(H,tsn)*Ct,1))
Then, change tsn and repeat.

The limits of stability are approximately one decade of sampling rates around the design value (1e-3):
3.5e-4 < Ts < 2.1e-3.

(Roughly a factor of 2-3; however, the practical limits for acceptable performance are much tighter.)
The responses are shown below for Ts=3.5e-4 (left) and 2.1e-3 (right).
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P.2
Consider the system x(k +1) = 0.9x(k) + 0.2u(k) , where the multiplications and the addition are

guantized to 0.01. Use simulation to assess the mean, worst-case amplitude, and variance of the error due
to quantization (compared to non-quantized operation). Apply various inputs u(k), e.g., random, sinusoid,
quantized to 0.01. Compare your results with the theoretical bounds computed from the corresponding
transfer functions.

1. mean(x_n) = G(1)mean(n)

2. max|x_n(k)| <= sum|g(k)|max|n(k)|, (g = Z*{G})

3. var{x_n(k)} <= |G(e"jQ)|,>var{n(k)}

4. RMS bound: var{x}~RMS*{x} <= maxq|G(e"jQ)|* RMS*{n}

5. Use MATLAB’s “linmod”” command to generate the desired transfer functions directly from Simulink
models.

The quantizations are modeled as random noise n(k) of uniform distribution %2 LSB. The system now is
X(k +1) = 0.9x(k) +0.2u(k) + n, (k) + n, (k) + n; (k) .Then, the output contribution of that noise (x_n(k)) is

described by the transfer function G(z)=1/(z-0.9) (the quantization occurs after taking the product 0.5u(k)) and is
bounded as follows:

1. mean(x_n) = G(1)mean(nl)+ G(1)mean(n2) + G(1)mean(n3) ;

2. [x_n(K)| <= sum|g(K)| 3max|n(K)|, (g = Z*{G})

3. var{x_n(k)} <= [G(e"jQ)|,>var{n1(k)} +|G(e"jQ)|,var{n2(k)} +|G(e"jQ)|,>var{n3(k)}

4. RMS bound: var{x}~RMS*{x} <= maxq|G(e"jQ)|> RMS*{n}

Notice that all quantization noises enter at the same node so there is only one transfer function. This is a coincidence
of the model structure. Cascade models will not enjoy such a property.
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Computing the theoretical estimates, G(1)=1/0.1=10. sum(|g(k)|=10). |G|,? = sum|g(k)|*=1/(1-0.9%)=5.263. (The last
one is based on Parseval, or simply using Matlab.) maxq|G(e"j<2)[*=100.

For a round-off quantization, whose mean is 0 LSB, max(|n|)= % LSB = 0.005 and var = (% LSB)?*° =8.33e-6. Thus,
1. mean(x_n) = 10*(0+0+0) =0

2. |x_n(k)| <= 10(0.015) = 0.15

3. var{x_n(k)} <= 5.263*(3*8.33e-6) = 0.13e-3

4. RMS bound: var{x}~RMS*{x} <= 100 *(3*8.33e-6) = 2.5¢-3

The Simulink implementation of a simulator is shown above. We try different input signals: random numbers
(uniform or gaussian), sinusoids, etc. In general, we must try different frequencies and different amplitudes as well,



since the quantization makes the system nonlinear and the response to a scaled input is not simply the scaled
response. The main results are tabulated below. Notice that, for the large stochastic input, the variance estimate is
the least conservative one, but the estimate does not bound the actual signal. For low amplitude excitation where the
nonlinearity is more prevalent, the deterministic bounds are more meaningful.

A priori estimate Computed Computed Computed Computed
rand{-0.05,0.05} | rand{-10,10} 0.05sin(0.001k) | 10sin(0.001k)
var = 0.13e-3 0.65e-3 0.10e-3 2.1e-3 0.29e-3
= 2.5e-3 (rms)
Max = 0.15 0.063 0.032 0.09 0.073
mean =0 -0. 12e-3 4.3e-3 0.28e-3 0.033e-3

Also, it is possible that the mean is nonzero. In this case, the variance estimate should be adjusted (for simplicity, we
skip the adjustment, keeping track of the mean to correctly interpret the results). For example, the mean estimate
becomes relevant if we use a different quantization scheme (floor, ceil) that have a nonzero mean. This estimate is
fairly accurate.



Amplitude

P.3
Ziegler-Nichols Tuning: Apply the two Z-N methods to tune a PID for the plants

(-0.1s+1) (-0.55+1)
P(S)=—-—" P(S)=——-7—7"—.
)= ae 1 )= 081
Compare the results with a PID designed for a comparable gain crossover frequency and 50deg. phase

margin.

Hint: Define P as a transfer function object and use step(P) to get an estimate of R,L for the first Z-N
tuning. Then iterate k on step(feedback(k*P,1)) until the system is marginally stable (slowly increasing or
slowly decreasing response). Then estimate Ku,Pu for the second Z-N tuning. Define the compensators
and compare step responses and bode plots for the transfer functions command-to-output and input
disturbance-to-output

P=tf([--1 1].[21 4 1D

figure(1),step(P),grid

R=(.407-.113)/(2-33-.8),L=0.25, %from graph

s=tf([1 0].1);

Kp=1.2/R/L;Ki=0.6/R/L/L ;Kd=0.6/R;ZN1=Kp+Ki/s+Kd*s/(.01*s+1)
figure(2),step(fbk(P*5,1))

figure(2),step(fbk(P*20,1))

figure(2),step(fbk(P*40,1))

Ku=40,Pu=6.47-5._49,
Kp=0.6*Ku;Ki=1.2*Ku/Pu;Kd=0.075*Ku*Pu; ZN2=Kp+Ki/s+Kd*s/(.01*s+1)
figure(3),bode(P*ZN1,P*ZN2)

wc=4.65;

[m,p]=bode(P*1/s/(.01*s +1),wc)

pz=-130-(p-360)

tau=tan(pz/2*pi/180)/wc

C=tf(conv([tau 1],[tau 1]),[-01 1 OD)

K=1/bode(P*C,wc)

C=tf(conv([tau 1],[tau 1]),[-01 1 O]D*K
figure(4),bode(P*C,P*ZN1,P*ZN2)
figure(5),step(fbk(P*C,1), fbk(P*2ZN1,1),fbk(P*ZN2,1))
figure(6) ,bodemag(fbk(P*C, 1), fbk(P*2ZN1,1),fbk(P*2ZN2,1))
figure(7) ,bodemag(fbk(1,P*C), fbk(1,P*ZN1),fbk(1,P*ZN2))
figure(8),bodemag(fbk(P,C),fbk(P,ZN1),fbk(P,ZN2))

Notice that both ZN methods yield much smaller phase margins than the classical design (20-30 deg).
They do, however, offer smaller sensitivity at low frequencies without increasing the loop bandwidth too
much. (They do increase the Sensitivity peak and resonance effect).

The step responses, command frequency responses, and input disturbance frequency responses are shown below.

Step Response

Bode Dizgram

Bode Diagranm

Magnitude (@B}
Magnitude (dB)




P=tf([--5 1],.[1 -5 1])

figure(1),step(P),grid

R=(.541-.15)/(1.7-1.14),L=0.9, %fFrom graph

s=tf([1 0].1);

Kp=1.2/R/L;Ki=0.6/R/L/L ;Kd=0.6/R;ZN1=Kp+Ki/s+Kd*s/(.01*s+1)
Ffigure(2),step(fbk(P*5,1))

figure(2),step(fbk(P*.9,1))

figure(2),step(fbk(P*1,1))

Ku=1,Pu=33.8-29.3,
Kp=0.6*Ku;Ki=1.2*Ku/Pu;Kd=0.075*Ku*Pu; ZN2=Kp+Ki/s+Kd*s/(.01*s+1)
Ffigure(3),bode(P*ZN1,P*ZN2)

wc=1.2;

[m,p]=bode(P*1/s/(.01*s +1),wc)

pz=-130-(p-360)

tau=tan(pz/2*pi/180)/wc

C=tf(conv([tau 1],[tau 1]),[-01 1 0O])

K=1/bode(P*C,wc)

C=tf(conv([tau 1],[tau 1]),[-01 1 OPD*K

figure(4) ,bode(P*C,P*ZN1,P*ZN2)
figure(b),step(fbk(P*C,1),fbk(P*2ZN1,1),fbk(P*ZN2,1))
figure(6),bodemag(fbk(P*C,1),fbk(P*ZN1,1), fbk(P*ZN2,1))
figure(7) ,bodemag(fbk(1,P*C), fbk(1,P*2ZN1),fbk(1,P*ZN2))
figure(8) ,bodemag(fbk(P,C),fbk(P,ZN1),fbk(P,ZN2))

Here the PIDs have difficulty balancing the fast phase transition around the resonance and the bandwidth
limitation from the RHP zero. The open-loop step-response ZN is too optimistic and yields a very
oscillatory design. For the classical PID we choose the closed-loop ZN crossover. (The one corresponding
to the open-loop ZN, has slow and fast modes and is not shown here). The closed-loop ZN and the
classical design have similar behavior.
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EEE 481 Homework 3

1
1. Ziegler-Nichols Tuning: Apply the two Z-N methods from the notes to tune a PID for the

plants:

(-0.1s+1)
s?+4s+2

_ 10(-055+1)

P (s) = ==
1(5) s2 +10s + 20

P, (s)

2. Compare the results with a PID designed for a gain crossover frequency of 2 rad/s and 45deg.
phase margin.

Hint: Define P as a transfer function object and use step(P) to get an estimate of R,L for the first
Z-N tuning. Then iterate k on step(feedback(k*P,1)) until the system is marginally stable (slowly
increasing or slowly decreasing response). Then estimate Ku,Pu for the second Z-N tuning.
Define the compensators and compare step responses and bode plots for the transfer functions
command-to-output and input disturbance-to-output

2
1. Design a PID controller to achieve a bandwidth of 1Hz, 50deg phase margin, and to be

discretized with a sampling rate of 10Hz for the system with transfer function

(-0.1s+1)

P(s)=
(5) s®+45+2

2. Compare the results with a design in discrete time directly, where the plant is discretized and
the parameters of a discrete-time PID are calculated to achieve the same specifications.

3
. . . 100
The read arm on a computer disk drive has transfer function H(s) = ——.
S
1. Design an analog PID controller to achieve a bandwidth of approx. 100Hz with 50deg phase

margin.

2. Design a discrete PID for the same bandwidth and phase margin, with a sampling rate 1kHz
and simulate the closed loop step response.

3. What is the maximum bandwidth that can be achieved with a PID having 50deg phase margin
and 1kHz sampling?

4. Suppose that the sampling time clock is unreliable and fluctuates. Test the robustness of the
PID in 2 by finding (through simulations) the limits of stability to changes in the sampling rate
(i.e., keep the discrete-time PID coefficients the same).

5. Design a simple prefilter to achieve overshoot to step reference changes under 5%.

Hint: You need a complete PID for this problem (2-zeros). You may or may not use a filter for the
pseudo-differentiator; if so, choose T = 0.001, consistent with the 1ms sampling time.



EEE 481 Homework 3 SOLUTIONS

1

1. Ziegler-Nichols Tuning: Apply the two Z-N methods from the notes to tune a PID for the plants:
P,(s) = —-01s+1 P ( )_10(—0.55+1)
W= stz Y T 524105 + 20

2. Compare the results with a PID designed for a gain crossover frequency of 2 rad/s and 45deg. phase
margin.

Hint: Define P as a transfer function object and use step(P) to get an estimate of R,L for the first Z-N
tuning. Then iterate k on step(feedback(k*P,1)) until the system is marginally stable (slowly increasing or
slowly decreasing response). Then estimate Ku,Pu for the second Z-N tuning. Define the compensators
and compare step responses and bode plots for the transfer functions command-to-output and input
disturbance-to-output

We begin with the step response of the system P1 and estimate the parameters R=0.25,L=0.2 and enter them
in the ZN computation:

Cla=

25"2+24s+60

A similar computation for P2 yields R=0.45, L=1 and
C2a=
1.111s"2 + 2.667 s + 1.333

S

Applying the second method we compute closed-loop step responses with increasing gains until
sustained oscillations are obtained. In practice, one should avoid stressing the plant too much and
observing few cycles of a slowly decaying oscillation is sufficient to obtain good estimates of the
ultimate gain and period.

For P1 we find Ku=38, Pu=1.59-0.595=1, for which
Clb=
28552 +228s+45.6

S

For P2 we find Ku=1.8, Pu=1, for which
C2b=
0.135s"2 +1.08s + 2.16

S

Next, we compute PID gains for both systems using a classical phase margin approach:
Angle{PID} = -180+P.M.-angle{P} at the crossover frequency
Where angle{PID} = N*angle{s+a}-90 and N = 2 for PID, 1 for Pl and O for | controllers.



(In case a pseudo differentiator is used, a third term is added —angle{Ts+1}).

For P1, angle(P1) = -115, so N*angle{s+a} = 70 which is barely achievable with N =1. To remain

consistent with the rest of the tunings, we use N=2, from which a = 2.86.
Entering this value in the gain computation we find

Clc=tf(conv([1 2.86],[1 2.86]),[1 0])

[m,p]=bode(P1*C1c,2), m=0.75

Clc=tf(conv([1 2.86],[1 2.86]),[1 0])/m

Clc=

1.328 s"2 + 7.595 s + 10.86

S

For P2, angle(P2) = -96, so N*angle{s+a} = 51 which is achievable with N
=1 or 2. Preserving the choice N=2, we get @ = 4.2. Entering this value in the
gain computation we find

C2c=tf(conv([1 4.2],[1 4.2]),[1 0])

[m,p]=bode(P2*C2c,2), m=6.0

C2c=tf(conv([1 2.86],[1 2.86]),[1 0])/m

C2c=

0.1674 s"2 + 0.9574 s + 1.369

S
We now use all these controllers to compute step and frequency responses:

C1la (blue) is very oscillatory but yields similar bandwidth as C1b (green),
which produces a fairly reasonable response. C1c (red) is a lower bandwidth
controller but has also good response characteristics.

On the other hand, C2a is unstable and both C2b and C2c exhibit large
inverse response and amplify high frequencies. The problem here is in the
right half plane zero that is not properly attenuated by Z-N and is very near
the crossover frequency in the classical design. Remedies for these problems
include the addition of a lowpass filter and the reduction of the crossover
frequency.
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2
1. Design a PID controller to achieve a bandwidth of 1Hz, 50deg phase margin, and to be
discretized with a sampling rate of 10Hz for the system with transfer function
p . —01s+1
1() = s2+4s+2
2. Compare the results with a design in discrete time directly, where the plant is discretized and the
parameters of a discrete-time PID are calculated to achieve the same specifications.

The angle condition for this problem is

angle{P,} + angle{PID} + angle{ZOH} = —180 + 50
evaluated at 1Hz = 6.28rad/sec. First, we estimate the crossover value as 6.28/1.5 = 4.2rad/sec. The ZOH
discretized at 10Hz (T=0.1sec) has angle —wT/2 = 0.21rad = -12deg. The plant P1 has angle
[m,p]=bode(P1,4.2); p = - 156deg.
Hence, angle{PID} = 38 deg. This (positive phase) can only be achieved by a PID. Furthermore, since we
are trying to design a controller for a plant with roll-off rate only -20db/dec and the sampling rate is not very
high relative to the desired bandwidth, it is advisable to include a pseudo-differentiator pole (sT/2+1) in the
PID. If not, then the controller discretization will not approximate well the continuous design. Moreover, it
will have no high frequency roll-off and will be susceptible to high frequency noise. For consistency in our
comparison, we select this pole to be at 2/T so that its Tustin discretization will be simply “z”. We will
make the same choice later in the discrete design.
Adding the pseudo differentiator pole will add lag in the PID. We now have

4.2 T4.2 4.2
angle{PID} = N tan™?! - 90 — tan~?! — = Ntan™?! - 102 = 38
The only choice for N is 2, for which we find

4.2

tan(15)

Next, we compute the controller gain from the magnitude equation

= 1.53

>> C=tf(conv([1 1.53],[1 1.53]),[0.05 1 0]);
>> [m,p]=bode(P1*C,4.2); m= 2.2000e-001
>> C=tf(conv([1 1.53],[1 1.53]),[0.05 1 0])/m
Transfer function:

454552 + 1391 s+ 10.64

0.05s"2 +s
Cd=c2d(C,0.1,'tustin")

Transfer function:
52.67 22 - 90.38 z + 38.77

"2-12
Sampling time: 0.1

The closed-loop response is reasonable and the loop has the desired 50deg phase margin but the closed
loop bandwidth is large, 13.7 rad/sec instead of 6.28. If there is a strict requirement on the closed loop
bandwidth, then we can apply an iterative algorithm (similar to the solution of nonlinear equations) to
find the crossover frequency that will produce the desired bandwidth. Such algorithms may or may not



converge quickly to the solution and it is highly recommended that the intermediate steps are
automated for their application.

Next, we will perform the design entirely in discrete time. Here we consider the PID of the form
(z —a)?

C(z) =K———

) z(z—1)

while the plant is Pd = c2d(P1,0.1)

Transfer function:
-0.003827 z + 0.01206

z72-1.654 z + 0.6703
Sampling time: 0.1

We evaluate its phase at the crossover frequency 4.2 rad/sec = 0.42 rad/sample (Note: Matlab assumes
the frequency is expressed in rad/sec)

[m,p]=bode(Pd,4.2)

p = -1.6815e+002

angle{PID} = N tan™?! _sin04z 0.42(rad) — tan™?! _sin04z =—180+ 50+ 168
cos0.42 —a cos0.42 -1
o Ntant 0% (C784180) =38 2tan~t —n0*2 6y
cos0.42 —a cos0.42 —a
=a=0.86
Thus,
>> D=tf(conv([1 -a],[1 -a]),[1 -1 0],.1); ]

>>[m,p]=bode(Pd*D,4.2)
m= 1.8962e-002
>> D=tf(conv([1 -a],[1 -a]),[1 -1 0],.1)/m

Magnitude (46

Transfer function:
52.74 z°2 -90.71z + 39

Phase (deg)

"2 -z ’

Step Response

The two controllers (continuous design-compensated-Tustin-discretized and "

full discrete) are virtually identical as illustrated by their closed loop step and 1t
frequency responses.

Arnplitde




3
The read arm on a computer disk drive has transfer function

1000

H(s) = 2
1. 1. Design an analog PID controller to achieve a bandwidth of approx. 100Hz with 50deg phase
margin.
2. 2. Design a discrete PID for the same bandwidth and phase margin, with a sampling rate 1kHz and
simulate the closed loop step response.
3. 3. What is the maximum bandwidth that can be achieved with a PID having 50deg phase margin
and 1kHz sampling?
4. 4. Suppose that the sampling time clock is unreliable and fluctuates. Test the robustness of the PID

in 2 by finding (through simulations) the limits of stability to changes in the sampling rate (i.e., keep the
discrete-time PID coefficients the same).
5. 5. Design a simple prefilter to achieve overshoot to step reference changes under 5%.

Hint: You need a complete PID for this problem (2-zeros). You may or may not use a filter for the
pseudo-differentiator; if so, choose T = 0.001, consistent with the 1ms sampling time.

1. Analog PID design: Crossover frequency = 100*6.28/1.5 = 420 rad/sec.
Cs) = K (s + a)?
)= s(Ts+1)
1.1 Angle equation
angle{H(s)} + angle{C(s)} = —180 + 50 = angle{C(s)} = 50

420 420
angle{C(s)} = 2tan™! P 90 —tan~10.42 = 50 > tan‘lT =8l=a=64

1.2. Gain equation
C=tf(conv([1 64],[1 64]),[.001 1 0])
[m,p]=bode(P*C,420)

m=

2.2462e+000
C=tf(conv([1 64],[1 64]),[.001 1 0])/m

Transfer function:
0.4452 s"2 + 56.99 s + 1824

0.001s"2 +s

The feedback loop for this controller has bandwidth 113Hz, PM 50deg and a 30% overshoot (quite
reasonable). However, the controller zeros are placed at 64rad/sec, contributing 81degrees of
phase lead each, near the limit of design feasibility. The fact that the zeros are so much lower than
the crossover frequency means that the closed-loop will have some slow pole-zero cancellations
(compared to bandwidth) that will take extra time to dissipate.

2. Discrete PID design
2.1. Angle equation: Need additional phase lead to compensate for the ZOH, -wT/2 = 0.21 rad/sec
=12 deg.



420
angle{C(s)} = 2tan_17 —90 —tan"10.42 = 50 + angle{ZOH} = a = 22

The situation is worse now, with the zeros even lower. Possible remedies for this situation are to
decrease the time constant of the pseudo-derivative term (e.g. T/2) or increase the sampling
frequency. At any rate, we will continue according to the problem statement.

2.2. Gain equation
C=tf(conv([1 22],[1 22]),[.001 1 O])
[m,p]=bode(P*C,420)

m=
2.2012e+000
C=tf(conv([1 22],[1 22]),[.001 1 0])/m

Transfer function:
0.4543 s"2 + 19.99 s + 219.9

0.001 "2 +s

2.3. Controller discretization
Cd3=c2d(C,0.001,'tustin")

Transfer function:
309.6 z"2 - 605.7 z + 296.2

z"2-1.333z +0.3333

Sampling time: 0.001

Bode Diagram

\ \ \ \ . . . . .
0 001 002 008 004 005 005 007 008 003 01
Time (sec)

The response plots show that even though the discrete time implementation is at the limits of its
capabilities, the match between continuous and discrete responses is reasonably close.

3. The maximum achievable bandwidth for either continuous or discrete design is determined from
the angle equation. In the continuous case, the limiting factor is the angle of the pseudo-derivative
term (since T is fixed). The plant here has fixed phase for all frequencies, which is rather
uncommon. The maximum the zeros can contribute is 90 deg (practical limit is 75-80deg). Thus,
angle{C(s)} =180 — 90 —tan ' w % 0.001 = 50 = tan™ 1 w x 0.001 = 40 = w4,

= 839rad/s
For the discrete design, the ZOH contributes additional phase lag:

w
angle{C(s)} = 180 — 90 — tan 1w % 0.001 = 50 + wT/2 = m+tan_1

= Wpax = 488rad/s

1000~ *0

(We find the solution of this nonlinear equation by plotting the values of the left hand-side and

finding the crossing.)

Note: In general, for such problems a pure discrete PID design might do a little better since it does

not involve any approximations.



4. Iterate for different T the evaluation of closed-loop step responses. In order to maintain the same
discrete controller parameters we need to extract its numerator and denominator, as follows:
[num,den]=tfdata(Cd3,'v")
num =

3.0956e+002 -6.0565e+002 2.9624e+002
den =

1.0000e+000 -1.3333e+000 3.3333e-001

T=0.001
step(fok(P*C,1),fbk(c2d(P, T)*tf(num,den,T),1),t)
T= ... etc

For increasing sampling times the limit is T*2. For decreasing sampling times the limit is T/7.

5.We use the closed-loop Bode plot for guidance to place the prefilter pole.

We begin with a value around 100rad/sec and iterate the step response evaluation until the
overshoot drops below the required threshold. The zero we can fix roughly around bandwidth
where the frequency response is rolling off.

step(c2d(tf([1/2000 1],[1/200 1]),.001, tustin’y*fbk(c2d(P,0.001)*Cd,1),fbk(c2d(P,0.001)*Cd, 1))

Note that looking at step responses provides better resolution for the overshoot than looking at
Bode plots.

. . . e —s+1 . .
The required prefilter to satisfy the overshoot specification is F(s) = 1"1"0—5 and its discrete time

S
200
implementation is (using Tustin)

Transfer function:
0.2727 z - 0.09091

z-0.8182

Sampling time: 0.001
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P=tf(1,[1 1 Q))
uc=tf([-1 1],[1
Pd=c2d(P,1)
bode(P,Pd)
107(-3.9/20) % dB value from bode plot figure
step(fbk(.638*Pd,1)) % estimate OSH and Tr
bqtélle(fbk(.638*Pd,1),fbk(.638*P,1))

gri

bo_(cjle(P,Pd)

)

gri
W=.486 % frequency value from bode plot figure
a=cos(W)-sin(W)/tan(-pi*5/180-atan(sin(W)/(1-cos(W))))

C=tf([T -a],[1 -1],1)

bode(C*Pd)

107(-5.13/20) % dB value from bode plot figure

C=tf([1 -al,[1 -1],1)*.554

step(fbk(.638*Pd,1),fbk(C*Pd,1)) % estimate OSH and Tr
step(fbk(Pd,.638),fbk(Pd,C)) % see the difference in input disturbance response
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EEE 481 Homework 1

Problem 1.
Suppose that we measure a signal 0-10V with a 8-bit A/D.
1. What is the resolution?
2. What is the maximum error?
3. How many bits are needed to achieve a maximum error less than 2mv?
4. Assuming that the clock used in the A/D conversion is 5MHz, find the maximum conversion time
for a successive approximation converter.

Problem 2.
Consider the system y(k + 2) — %y(k +1)+ %y(k) =x(tk+1)— %x(k), where the multiplications
and the addition are quantized to 0.01. Use simulation to assess the mean, worst-case amplitude, and
variance of the error due to quantization (compared to non-quantized operation). Apply various inputs
x(K), e.g., random, sinusoid, quantized to 0.01. Compare your results with the theoretical bounds
computed from the corresponding transfer functions.

1. mean(x,) = G(1)mean(n)

2. max|x, (k)| < (Zlg(k)zl)maXIn(k)I, (g = 271G}
3. var{x,(k)} < |G(ej9)|2var{n(k)}
4. var{x} =~ RMS?{x} < max? |G(e/?)| RMS?{n}
5. Use MATLAB’s “linmod” command to generate the desired transfer functions directly from
Simulink models.
Problem 3.

In a data acquisition application we would like to use the Diamond MM board to sample 16 channels with
range 0-5V, and transmit the results over the RS-232 serial port.

1. What is the minimum Baud rate required so that the transmission takes less than 0.1sec?

2. What is the maximum error in the A/D conversion?

Problem 4.
A sinusoid with frequency 1Hz is applied to a sampler /ZOH combination. The sampling frequency is
10Hz. List all the frequencies present at the output below 50Hz.



EEE 481 Homework 1 Solutions

Problem 1.
Suppose that we measure asignal 0-10V with a8-bit A/D.
1. What isthe resolution?
2. What isthe maximum error?
3. How many bits are needed to achieve a maximum error less than 2mVv?
4. Assuming that the clock used in the A/D conversion is 5MHz, find the maximum conversion time
for a successive approximation converter.

For min/max values at the ends of the range, the A/D will have 2™ distinct values dividing the interval.
Thus, the resolution islz—;(] = 0.039V. For atruncating A/D the maximum error isthe same, 0.39V, and
for arounding A/D the maximum error is%2 LSB = 0.195V. Applying the same formulafor different n,

we need 13 bitsto have error lessthan 2mV (1.2mV). A successive approximation converter will use
roughly 1 clock cycle per bit, so the conversion timeis 1.6us.

Problem 2.

Consider the system y(k + 2) — >y (k + 1) + (k) = x(k + 1) — 2 x(k), where the multiplications
and the addition are quantized to 0.01. Use simulation to assess the mean, worst-case amplitude, and
variance of the error due to quantization (compared to non-quantized operation). Apply variousinputs
x(Kk), e.g., random, sinusoid, quantized to 0.01. Compare your results with the theoretical bounds
computed from the corresponding transfer functions.

mean(x,) = G(1)mean(n)

max|x, (k)| < (Zlgk))max|n(k)|, (g = Z7{G})

var{x, (k)} < |G(em)|zvar{n(k)}

var{x} =~ RMS?{x} < max? |G(e/*)| RMS?{n}

(Optional: Use MATLAB’s" linmod” command to generate the desired transfer functions
directly from Simulink models.)

ok W DE

For a round-off quantization, whose mean is 0 LSB, max(|n|) = ¥ LSB = 0.005 and var = 1/3(%: L SB)?
=8.33e-6. RMS(n) = (var{n})"/* = 0.0029.
Realizing the transfer function in terms of delays of the output and input (as shown in the figure below)

There are 4 quantization blocks, each one contributing ¥2 L SB uncorrelated noise to the same summation
1

node. The transfer function from each oneis G(z) = SRR for which, G(1) = 2.667,%|g(k)| =
A _ZZ §

2.667, max|G(e/*)| = 2.667, |G|, = 1.352. Evaluating the above estimates (with x_n denoting the
error due to quantization)

1. mean(x,) = G(1)mean(n) =2.667* 4* 0=0

2. max|x, (k)| < Clg(k)Dmax|n(k)|,(g = Z7{G}) = 2.667 * 4 x 0.005 = 0.053

3. var{x, (10} < |G(e/®)[-var(n(k)} = 1.3522 + 4 » 8.33¢ — 6 = 6.09 — 5

4. var{x} = RMS?{x} < (max |G(e/®)|RMS{n})? < (2.667 * 4 % 0.0029)> = 9.57¢ — 4
Next, we simulate the quantized system, the ideal system, and the system with the noise model of
guanti zations and tabulate the results as follows..

Rand[-1,1] Sin(0.1t) Rand noise model | Estimate
Var 0.056e-3 0.067e-3 0.0615e-3 0.061e-3 [0.95e-3]
Mean | 17.5e-6 3.9e-6 78.0e-6 0
Max 0.0302 0.0251 0.0306 0.053




Notice that the stochastic variance estimate (using the 2-norm of G) is close to the observed variance and
that the random noise mode isfairly representative of the actual errors (for this selection of external
inputs). The conservative variance estimates using the RM S deterministic bound (in brackets) is much
higher, while the estimate of the maximum amplitude is only conservative by afactor of 2. (Thisisaso
because of the specific properties of the system for which sum(|jg(k)[) = max|G(e"jw)|.) Also note that for
the ssmulation of the random noise model the random number generators must be initialized with different
and appropriate seeds so that they produce uncorrelated outputs.

Uniform Random
Number

3.028e-005
0.02505

0.000 1266

5
z1

Math  Diserate-Time
FunetionZ Integrator

0142

z
Unifarm Random ¢ ing <M Unit Delay5 Unit Delayd
b1 <N
<N

0.0001175

Uniform Random Gaind d 10522005
<A
0172 Gain? @: M varmean
Unifarm Randem Gainid = ivide!
ntegrato
'IE b Minbdax1 -l

Uniform Randomain11 1
Humberd .

Problem 3.
In a data acquisition application we would like to use the Diamond MM board to sample 16 channels with
range 0-5V, and transmit the results over the RS-232 serial port.

1. What isthe minimum Baud rate required so that the transmission takes less than 0.1sec?

2. What isthe maximum error in the A/D conversion?

The MM has a 12-bit A/D so, without special compression, it will use 2 Bytes per channel. That is, a total
of 32 Bytes per sample time, or 320 Bits (assuming one start, one stop, 8-data; other valid protocols are
also acceptable). For the transmission to occur under 0.1sec, the rate should be greater than 3200Baud.
The closest standard rate is 4800Baud. Since the MM has 12bit A/D, the maximum error is 1.22mV.

Problem 4.
A sinusoid with frequency 1Hz is applied to a sampler /ZOH combination. The sampling frequency is
10Hz. List dl the frequencies present at the output below 50Hz.

From the sampling theorem, replicas of the origina signal spectrum will be centered at n x 10Hz
frequencies,n=1, 2, 3, ... The ZOH will attenuate al past DC, but its exact zeros are only at n x 10Hz,
so it will not zero any of the sinusoid replicas. Thus, the output will contain frequencies

[1, 19, 21, 29, 31, 39, 41, 49]Hz.



EEE 481 Homework 2

Problem 1.
Compute the z-transforms of the following sequences (here u(.) denotes the unit step)

u(k — 2), sin (% k) , {2 — e 013 (k), 0.9%u(k — 1)

Problem 2.
Solve the difference equation y(k + 2) — 3y (k + 1) + £ y(k) = x(k + 1) — £ x(k) with the initial
conditions y(0)=1, y(-1) = 0 and x(k) = u(k-1).

Problem 3.
Consider the system

-02 1 0
X1 = AX, + Bu, N A= 0 03 B= 1
where :

=CX
=% Cc=[0.1 2]
Determine whether the system is stable or not
Determine whether the system is controllable and/or observable

Compute its transfer function
Compute the first three samples of its unit-step response.

rpODNDPE

Problem 4.

Write the differential equation describing the motion of a pendulum with input the torque applied at the
pivot point and output the angle of the pendulum. Derive the linearized model around the stable and the
unstable equilibria and compute the corresponding transfer functions. Assume that the pendulumisarigid
rod of length 0.5m, mass 200g evenly distributed, and its rotation around the pivot point is frictionless.



EEE 481 Homework 2 SOLUTIONS

Problem 1.
Compute the z-transforms of the following sequences (here u(.) denotes the unit step)

u(k — 2), sin (% k) , {2 — e O3y (k), 0.9%u(k — 1)

Z{u(k —=2)} = z72Z{u(k)} =

z(z—1)
For asingle-sided transform, (k>=0) Z{ | Ek} _ _ zsing
g , (k>=0), Z {sin = T tzes THT

For a double-sided transform, sin% k = sin (% k) u(k) + sin (— _6—” k) u(—k) — sin (— _?" 0) 5(k), so

ZSinT[ z71 sinn
LT - -
Z{sm—k} =—%F6_— — - 6 _
6 z2—2zcos —+1 z72-2z"lcos —+1
6" 1RoC:|z|>1 6" Roc:|z1<1
2z z

Z {{2 B e_o-lk}u(k)} “Gz=1) (z-e D)

i 3 _ 1 B _ 1 z 0.9
Z{0.9%u(k — 1)} = 0.92{0.9**u(k — 1)} = 0.9z

(z—0.9) (z-0.9)

Problem 2.
Solve the difference equation y(k +2) =2y (k + 1) + = y(k) = x(k + 1) — £ x(k) with the initial
conditions y(0)=1, y(-1) = 0 and x(k) = u(k-1).

One approachisto definev(k) = y(k — 1), sov(0) = y(—1),v(1) = y(0). The ODE, shifted by one,
now becomes v(k + 2) — %v(k +1)+ %v(k) = x(k) — éx(k — 1). Taking transforms and applying
theinitial condition property, we get
3 3 1 1
z?V(2) — z%v(0) — zv(1) — ZZV(Z) + ZZ‘U(O) + gV(z) =X(z) — gz_lX(Z)
Substituting the IC and X(2),

[2 3 +1]V()— +(1 1) 1
z 4Z 8 Z) =2 5z)z—-1
After PFE,
Vig) = . -1 N 2.133z71 N —2.4z71 N 0.267z1
@D= =5t -0mT 71 T7-os T 7oz
Hence,

v(k) = 200.5) Tu(k — 1) — (0.25)*Tu(k — 1) + 2.133u(k — 2) — 2.4(0.5)*2u(k — 2)
+0.267(0.25)2u(k — 2)
And,
y(k) = 2(0.5)*u(k) — (0.25)*u(k) + 2.133u(k — 1) — 2.4(0.5)* tu(k — 1)
+0.267(0.25)¢  Tu(k — 1)

(Notice: depending on the approach, one may obtain different but equivalent expressions, e.g.,
2(0.5) u(k) — (0.25) u(k) = 16(k) + 2(0.5)(0.5)* Tu(k — 1) — (0.25)(0.25)*Tu(k — 1) =
y(k) = (k) — 1.4(0.5)* Tu(k — 1) + 0.017(0.25)*1u(k — 1) + 2.133u(k — 2), etc.)



Problem 3.

Consider the system
{— 02 1 } {0}
X1 = AX, + Bu, A= B=
—Cx where 0 03 1

Y= ™ c=[01 2]

1. Determine whether the system is stable or not

2. Determine whether the system is controllable and/or observable

3. Computeitstransfer function

4. Compute thefirst three samples of its unit-step response.

1. The eigenvalues of A are-0.2 and 0.3, they are inside the unit circle, hence the system is stable.
2. The controllability matrix [B,AB] hasrank 2, so the system is completely controllable. The
observahility matrix [C;CA] hasrank 2, so the system is completely observable.

3. Thetransfer functionisC(zl —A)™ B + D = ————

4. We compute the recursion for the states, starting with x(0)=0 and u(k)=1 for k>=0. Then,
y(0)=0

y(1) =2
y(2) =27
y(3) =2.89
etc.
Problem 4.

Write the differential equation describing the motion of a pendulum with input the torque applied at the
pivot point and output the angle of the pendulum. Derive the linearized model around the stable and the
unstable equilibria and compute the corresponding transfer functions. Assume that the pendulum isarigid
rod of length 0.5m, mass 200g evenly distributed, and its rotation around the pivot point is frictionless.

2
Newton's law yields,]ZTZ = —mg%sine + u, whereJ = %mLZ. Hence, substituting the pendulum
2
parameters, — = —305in6 + 60w,
The linearized system around the stable equilibrium has sin 8 =~ cos 08,8, = 6, = uy = 0,

0, _ 306, + 60 O.(s) _ 60
dt? L L u, (s)  s2+30

The linearized system around the unstable equilibrium has sin6 =~ cosm 8;, 6, = T, 96 =ugy =0,
dz@‘—309 +60 O.(s) _ 60
dt? L L u, (s) s2-30




EEE 481 Homework 3

Problem 1.
Consider the continuous time system with transfer function G(s) = 523_:; i "

1. Readlize G(s) in state-space and use Forward Euler to compute its discretization, using sampling
time T = 0.1. Find the transfer function of the corresponding discrete-time system.

2. UseForward Euler directly on the transfer function G(s) and compute the corresponding discrete-
time transfer function. Realize the discrete-time system in state-space.

3. Computethefirst five terms of the discrete-time system impul se response using state-space
formulae. Compare with the result of MATLAB’simpulse(.) function.

Problem 2.
The first-principles model of atemperature control systemis Y = —-0.2(Y —273) + Q, where Y isthe
Temperature (Kelvin) and Q is the supplied heat (Watts).

Y(t -Y(t
Yltea) ~Y(t) k+l?|' () to write a

S
corresponding discrete time state-space model for a sampling time of 2sec.

2. What isthe discrete-time transfer function of the system?
3. What arethe limitations (if any) of this discretization method.

1. Usethe Forward Euler approximation of derivative Y(tk) =

Problem 3.

An anaog filter with the transfer function 1 isto be replaced by a computer. Determine
(2s+1)(0.01s+1)

an appropriate sampling time and the transfer function of the discretized filter. Y ou may use any
discretization method you like but you should justify all choices.



EEE 481 Homework 3

Problem 1.
Consider the continuous time system with transfer function G(s) = 523:; 2+ "

1. Realize G(s) in state-space and use Forward Euler to compute its discretization, using sampling
time T = 0.1. Find the transfer function of the corresponding discrete-time system.

2. UseForward Euler directly on the transfer function G(s) and compute the corresponding discrete-
time transfer function. Redlize the discrete-time system in state-space.

3. Compute the first five terms of the discrete-time system impul se response using state-space
formulae. Compare with the result of MATLAB’ simpulse(.) function.

1. x =Ax+ Bu,y =Cx + Du, [A,B,C,D] = {[_25 _02] , [é] ,[1.5 5], [0]}, isone possible

realization. The FE discretization is found by %(T) =~ =£—=5 = x4y = (I + TA)x, + TBuy,

v = Cx;, + Duy.The transfer function for the discrete time system becomes
Gy(z) =C(zl — [ +TA]D)YTB] + D
Thistransfer function can be computed by hand, or by the following MATLAB commands

>> G=tf([3,2],[1,5/4])
>> Gs=s3(G)
>> T=1;Gd=ss(eye(size(Gs.a))+Gs.a* T,Gs.b* T,Gs.c,Gs.d, T);tf (Gd)

ans =

03z-0.28

Z"2-15z+054
Sample time: 0.1 seconds

Notice that the transfer function does not depend on the choice of realization of the continuous transfer
function. The above procedure can therefore be used to find the FE discretization of a continuous time
system.

2. Performing the substitution s = ? we find exactly the same discrete transfer function asin Part 1. A
state space realization is

1.5 —-0.5471 11
Xis1 = A% + Buy, yi = Cx + Dy, [4,8,¢,01={[> 7 >%|,| ] 103 0281, 0]},
which does not need to be (and is not) the same as the onein Part 1.

3. Wecan easily compute therecursion xj 1 = Axy + Buy, y, = Cx; + Duy, withIC=0and
u, =1fork =0,0oth.

>>x =[0;0];

>> y=C* X, X=a* X+Db;
>> y=C*X, X=a*X;
>> y=C*X, X=a*X;
Etc.

Wefind thevaluesfory: 0, 0.3000, 0.1700, 0.0930, 0.0477, 0.0213
We aso find the same values with h = impulse(Gd).



Problem 2.
The first-principles model of atemperature control systemis Y = —0.2(Y —273) + Q, where Y isthe
Temperature (Kelvin) and Q is the supplied heat (Watts).

towritea

. Y(t,.,)-Y(t
1. Usethe Forward Euler approximation of derivative Y (t, ) = M

S
corresponding discrete time state-space model for a sampling time of 2sec.
2. What isthe discrete-time transfer function of the system?
3. What are the limitations (if any) of this discretization method.

1. Yk-l—l - Yk = _04Yk + 1092 + 2Qk
2. From Qto Y, the discrete transfer function is

Y(z) _ L . .
20 = 7oe (273 can be viewed as an external input, or

the output can be interpreted as the incremental output over the equilibrium solution Y = 273 for Q =0.)
3. The gtahility constraint for the discrete model is|1 — 0.2T;| < 1 = T, < 10. Of course, for asensible
approximation, the sampling time should be much less that this bound. E.g., one-half the value will
produce a discretized system with pole at the origin, i.e., the entire dynamic response is modeled by a
single delay.

Problem 3.

An analog filter with the transfer function ! isto be replaced by a computer. Determine
(2s+1)(0.01s+1)

an appropriate sampling time and the transfer function of the discretized filter. Y ou may use any
discretization method you like but you should justify all choices.

A reasonabl e choice for the sampling time would be related to the system bandwidth (0.5rad/s). One may
choose different rules of thumb.
e 6 samplesrisetime: tr = 2/BW =4s;, T = 4/6 = 0.67s or f = 1.5Hz. (Measuring tr from a step
response simulation we find 4.4s which is reasonably close).
e Nyquist =10x BW =5rad/s=0.8Hz=>f = 1.6Hz, T = 0.625s. (Thisis similar to the above since
tr =2/BW (BW inrad/s) => T = 1/(3BW) = 1/(6piBW) (BW in Hz) =>f = 19BW (BW in Hz).)
e ZOH adds 6deg phase lag at BW (a feedback-related spec), wT/2=0.1=>T = (2/BW)0.1=0.4s
(9 deg phase lag yields the previous T = 0.639)

Since we are trying to replace an anaog filter and have a discretization with ssimilar filtering properties, a
Tustin discretization is the more reasonable choice. Thus, for T = 0.625s (not a unique choice), the
discretized transfer functionis

0.1309 z% + 0.2619z + 0.1309

_ Ha@ = 020832 = 0.6845
One potentia drawback of this solution isthat it is bi-proper (y_k requiresu_Kk)

However, for a Forward Euler discretization, the sample time is constrained by the fastest sampling

constant (0.01). Here, choosing T = 0.01 will transform thisterm to 0.01 (g;) +1=2z,i.e, theentire

response is approximated by a single delay. Since the system response is dominated by the slower mode
(2s+1), such an approximation is acceptable (assuming of course that such an oversampling is possible).
For this case,

0.005

Ha() = "0 .995)



EEE 481 Homework 4

Problem 1.
1

Consider the following system with transfer function P(s) = ————.
(s+0.)(s+1)

1. Design aPID so that the closed loop crossover is at 7rad/s and the phase margin is 50°.
2. Select amethod and the sampling frequency and discretize the PID.

Problem 2.
1. Ziegler-Nichols Tuning: Apply the two Z-N methods from the notes to tune a PID for the plants:
Pi(s) = —0.1s + 2 P )_20(—0.25+1)
W= 2ras+2 2T 524105 + 20

2. Compare the results with a PID designed for a gain crossover frequency of open-loop bandwidth
and 45deg. phase margin.
Hint: Define P as a transfer function object and use step(P) to get an estimate of R,L for thefirst Z-N
tuning. Then iterate k on step(feedback(k* P,1)) until the systemis marginally stable (Sowly increasing or
slowly decreasing response). Then estimate Ku,Pu for the second Z-N tuning. Define the compensators
and compare step responses and bode plots for the transfer functions command-to-output and input
disturbance-to-output

Problem 3.
1. DesignaPID controller to achieve a bandwidth of 1Hz, 50deg phase margin, and to be
discretized with a sampling frequency of 10Hz for the system with transfer function
p . —01s+1
1(8) = s?+4s+2
2. Comparetheresults with adesign in discrete time directly, where the plant is discretized and the
parameters of adiscrete-time PID are cal culated to achieve the same specifications.



EEE 481 Homework 4 SOLUTIONS

Problem 1.
1

Consider the following system with transfer function P(s) = ————.
(s+0.h(s+1

1. Design aPID so that the crossover is at 7rad/s and the phase margin is 50°.
2. Select amethod and the sampling frequency and discretize the PID.

For a discrete design we should first select the sample time to contribute, say, -3deg phase at crossover,
i.e., w_CT /2=0.105/2 or T = 0.015 sec. The phase of Palone at 7 rad/sis-171 deg, so we need a PID to
control it. We define:
K(s + a)?
€)= s(zs +1)
To achieve 50 degrees phase margin with the discrete controller, we should compute the PID zerosto
provide 50+3 deg phase margin. Here, however, the problem asks for 50 degrees PM:
2tan~! 2 —90° —tan"! 7t = —130° = 2tan‘1£ = 137, for T = T. Then, we computea = th =
an——
2
ﬁ = 2.76. Substituting back to the gain equation |P(j7)C(j7)] = 1 = K = 6.15. Computing the
margins for PC we verify the design.

The sampling frequency isnow 1/T = 66.7 Hz and the preferred method of discretization of the PID is
Tustin, for which we expect a phase margin of 47 deg., since we did not pre-compensate for the ZOH.
The controller has the transfer function

284.9 z2 — 546.8 z + 262.3

C =
a(2) (z—1)(z — 0.333)
If we evaluate its margins, it provides a 46.9 degree PM, very close to the expected value. The step and
frequency responses are also very close to the continuous time versions.




Problem 2.
1. Ziegler-Nichols Tuning: Apply the two Z-N methods from the notes to tune a PID for the plants:
_ —01s+2 20(—-0.2s+1)

P(s) = 22
2(8) = 57705 7 20

2. Compare the results with a PID designed for a gain crossover frequency of open-loop bandwidth
and 45deg. phase margin.
Hint: Define P as a transfer function object and use step(P) to get an estimate of R,L for thefirst Z-N
tuning. Then iterate k on step(feedback(k* P,1)) until the systemis marginally stable (sSowly increasing or
slowly decreasing response). Then estimate Ku,Pu for the second Z-N tuning. Define the compensators
and compar e step responses and bode plots for the transfer functions command-to-output and input
disturbance-to-output

We compute the approximate slopes from the
step responses as
R1=0.34,L1=0.21, R2=1.47, L2= 0.26. 12

Step Response

The corresponding controllers are

1.47 s%2 + 16.8s + 40.
C1 (5) = S 08t
0.34s%+ 3.18s +6.2

Cy(s) = S 05 -

System; M
Titne (secondsy 1.93
Amplitude: 0533

/

System: P1
Time (seconds): 0457

Amplitude

For the second method, we try closing the loop et |g

with different gains, until oscillatory response

is observed. For the first system we find B2 1| ampltude: 0.1 T
Kul = 40, Pul = 0.70 and for the second Ku2 = n
2.5, Pul =0.74. o 1
The corresponding controllers are
C(s) = 2.09s%+ 245 + 68.8 02—
S Time (seconds)

0.139s% + 1.5s5 + 4.05
S

Cy(s) =

Note that while these gain val ues happened to produce an exact oscillatory response (due to the round
numbers in the system transfer functions), this does not need to be the case in general; for practical
applications, sufficient approximation can be obtained by gains that produce decaying oscillations with
low damping.

Finally, we design a controller for crossovers at the open-loop bandwidth: The first system has BW =
0.577rad/s and the second has BW = 3.2rad/s. Performing the design, we find
0.266s + 0.81 0.112s% 4+ 1.23s + 3.36
Cl(s) = S H Cz(S) = .
It turns out that this controller istoo slow and not comparable with the Z-N. Instead, we can match the Z-
N bandwidth with a crossover at 12x BW:

Ci(s) =

S
The step responses with these controllers are shown in the following figures. (Bode plot of 1oop-tf, step
responses. Fbk-ZN: blue, OL-ZN: green, PM-tuned: red -cyan is the slow one). We see that both ZN yield
good and similar responses, even though the damping is lower than the 45deg. phase margin controller.

2.83s%2+4 21.2s + 40




For the second system the Fbk-ZN method and yields similar results to the Phase margin tuning but the
OL-ZN does not produce a stahilizing controller. The plant does not attenuate the high frequencies
enough and the OL-ZN method yields a very optimistic estimate of the controller gain that fails drop
below unity.




Problem 3.

1. Design aPID controller to achieve a bandwidth of 1Hz, 50deg phase margin, and to be

discretized with a sampling frequency of 10Hz for the system with transfer function
—0.1s+1
P(s) = ———

. AT Y e
2. Compare the results with adesign in discrete time directly, where the plant is discretized and the

parameters of adiscrete-time PID are cal culated to achieve the same specifications.

We design continuous controller with an additional PM corresponding to the ZOH half-sample delay
Tw_c/2 =12 deg. We also select the sample time as 0.05s, anticipating the Tustin transformation, to yield
the PID polesat 0 and 1. The angle required by the two PID zerosis 138deg and the final controller is

; 4.52s*+ 14.0s + 10.9

() = 0.05s2 + s
Using the Tustin transformation, we obtain the discrete-time controller
52.5z2— 89.9z + 385
Cd (Z) = Zz —

This controller yields a Phase Margin of 50 deg, at ~4.1 rad/s, as requested. Note that this tuning is near
the limits of what can be achieved with PIDs and sampling rate becomes important since the differentiator
pole and the ZOH contribute a substantial -24 deg phase lag at crossover, while the crossover islessthan
one decade below Nyquist frequency.

Next, we consider an entirely discrete time design. We compute the ZOH-equivalent of the plant
—0.00383z + 0.0121

_ _ P = T 657 % 0670
And consider the discrete PID
K (z — a)?
Cq(z) = T2_ 5

(For consistency, we maintain the same PID poles in the two cases.)
We compute the angle of the plant and the PID poles at crossover:
>> [m,p]=bode(P1d*dp,4.2)

p-360 =
-2.9425e+02
For 50 deg phase margin, this requires an angle contribution from each zero of 82.1 deg.
) sin {) 82,120 7.23c0s0.42 —sin0.42 0.857
: —— = 82. >a= =0.
@ an_cosQ -a (_1 7.23
We then compute the gain K so that the crossover is at
4.2 rad/s (0.42 rad/sample), K = 1/ 1.8999e-02. The final . . st esprse
controller is
52.6 z2 — 90.2z + 38.7
Cd (Z) = 2

zZ° — Z

Obviously, both methods yield very similar controllers
and responses. (Any differences are expected to appear
much closer to the Nyquist frequency.)

Amplitude

-0.4
0

L L L L L L
1 2 3 4 El B
Time (seconds)



EEE 481 Homework 5

Problem 1.
1. DesignaPID controller to achieve a bandwidth of 1Hz, 50deg phase margin, and to be
discretized with a sampling frequency of 10Hz for the system with transfer function

P,(s) = —0.1s+1
= 245+ 2
2. An additive disturbance enters the plant output with transfer function P,(s) = IR Design a

feedforward component for the PID controller, also discretized at 10Hz, to reduce the effect of
the disturbance on the output.

Problem 2.
The read arm on a computer disk drive has transfer function

1000
H(s) =

1. Design an analog PID controller to achieve abandwidth of approx. 100Hz with 45deg. phase
margin.
2. Design adiscrete PID for the same bandwidth and phase margin, with a sampling frequency 1kHz
and simulate the closed loop step response.
3. What is the maximum bandwidth that can be achieved with a PID having 45deg phase margin and
1kHz sampling?
4. Design aprefilter to achieve overshoot to step reference changes under 5%.
Hint: You need a complete PID for this problem (2-zeros). Use a filter for the pseudo-differentiator with
T = 0.001, consistent with the 1ms sampling time.

Problem 3.
Design aPID controller for the flexible inverted pendulum with transfer function
{1.478} {0.000332s% + 0.3785s + 177.5}

{s2+ 0.0635s —19.54} * {s2+ 15.52s + 64750}
For this problem, the PID should be augmented by alow-passfilter to increase roll-off beyond bandwidth
and avoid the excessive excitation of the flexible modes. The sampling frequency is 1000Hz and the
choice of closed-loop bandwidth isleft as a design parameter. Use a 3™ order low-pass filter, with
bandwidth roughly at 2x or 3x of the crossover frequency. In your design, include a prefilter to maintain
overshoot to step reference changes under 5%. Verify the stability of your controller with simulations.




EEE 481, Homework 5, Solutions

Problem 1.

1. DesignaPID controller to achieve a bandwidth of 1Hz, 50deg phase margin, and to be
discretized with a sampling frequency of 10Hz for the system with transfer function
—0.1s+1

Pl(s)_sz+4s+2 )

2. An additive disturbance enters the plant output with transfer function P,(s) = IR Design a
feedforward component for the PID controller, also discretized at 10Hz, to reduce the effect of
the disturbance on the output.

1. Weallow for 12deg extra phase margin to deal with the ZOH. The continuous PID is
cpid =

4521 "2+ 14.01 s+ 10.86

0.05s"2+s
Thediscretized PID (Tustin) is
dpid =

52.497"2 - 89.89 z + 38.48

"2-z
Sampletime: 0.1 seconds

2. For the prefilter, we can work either in continuous time (but that requires the redesign of the PID
without the ZOH to obtain the equivalent continuous time closed loop system) or in discrete time (but
here the factorization function operate in continuous time so a Tustin transform is necessary). Other than
that, we follow the stable projection algorithm described in the notes.

As alternatives, we note the approximation of the Plant-inverse by the inverse of its outer part (i.e., the
invertible part, where the RHP zeros are replaced by their mirror images (for C-T systems, or their
inverses for D-T systems). This approximation has the correct magnitude but its phase is approximately
correct only for low frequencies. Similarly, one can also use the DC of the plant as an approximation so
the FFissimply (P(0)™1) * Q.

A code implementing the solution is given below.

L a2 T L B  a
%EEE 481, HW 5, Problem 1

a=-.1

P=tf([a 1].[1 4 2])

Q=tf(1,[-1 1D
[pidl,cpid]=pidpmtune(6.28,P, .05,50+12)
dpid=c2d(cpid, -1, "tustin®)

Pd=c2d(P, .1)

Qd=c2d(Q, -1)

% step(fbk(Pd*dpid,1));pause



% bode(fbk(Pd*dpid,1));pause
% margin(Pd*dpid) ;pause

Sd=feedback(l,Pd*dpid); SPd=feedback(Pd,dpid); SQd=Sd*Qd;
W=1,r=1e-6,W=c2d(tf([-1 1],[1 le-4]), .1, tustin");
Gd=[W*SPd;r]; WTd=([W*SQd;0]);
[SPi,SPip,SPo]=iofr(ss(d2c(Gd, "tustin®))); Stil=inv([SPi,SPip]);
R=minreal (Stil*d2c(WTd, "tustin®));
X2=stabproj(R-R.d)+R.d; H2o=minreal(inv(SPo)*[1 0]*X2);
eig(H20)

cut=[];

while isempty(cut), cut=input(“cut "),end
[H2s,H2F]=slowfast(H20-H20.d, cut) ;H2F=H2Ff+H20.d;
Hd=c2d(H2f, .1, "Tustin®); % H2 optimal design

[Hi,Hip,Ho]=1ofr(ss(d2c(Pd, "tustin®)));Hd alt=c2d(inv(Ho)*Q, .1, "Tustin®);
% Outer Approximation
Hd_dc=inv(dcgain(Pd))*Qd; % DC-gain Approximation

step(Sd*Qd, SPd*Hd,SPd*Hd_alt,SPd*Hd_dc) ; pause

sigma(Sd*Qd, Sd*Qd-SPd*Hd, Sd*Qd-SPd*Hd_alt,Sd*Qd-SPd*Hd_dc)

disp("Error system Norms:*)

disp(® No-FF, H2-optimal, Outer app, DC-gain®)

disp([norm(W*(Sd*Qd)) , norm(W*(Sd*Qd-SPd*Hd)), ...
norm(W*(Sd*Qd-SPd*Hd_alt)),norm(W*(Sd*Qd-SPd*Hd_dc))])

T S o

function [pid,cpid]=pidpmtune(bw,g,tau,pm,n)
v [pid,cpid]=pidpmtune(bw,g,tau,pm)

% bw = bandwidth

% g = system

% tau = derivative TC

% pm = phase margin

% n = PI/PID order (forced)

=4

nargin<3,tau=.01; end
isempty(tau),tau=.01;end
nargin<4;pm=50;end
isempty(pm);pm=50;end
nargin<5;n=[];end

S

gc=bw/1.5;

cpid=tf(1,[1,0]);
[m,p]=bode(g*cpid,gc);
p=mod(p,360);
if p>0;p=p-360;end
th=(-180-p+pm)
if isempty(n)

if abs(th)>75; n=2;else;n=1;end
end

if n==1;cpid=tf(1,[1 0]);else;cpid=tf(1,[tau,1,0]);end
[m,p]=bode(g*cpid,gc);

p=mod(p,360);

if p>0;p=p-360;end

th=(-180-p+pm) ;



a=gc/tan(abs(th)/n*pi/180)

it n==2;cpid=tf([1 2*a a*a],[tau,1,0]);else;cpid=tF([1 a],[1,0]);end
[m,p]=bode(g*cpid,gc);

cpid=cpid*(1/m);

[nu,de]=tfdata(cpid, "Vv");

if length(nu)<3;nu=[0,nu];end
pid=[nu(2)-nu(3)*tau,nu(3),nu(l)-tau*(hu(2)-nu(3)*tau)];

++++++++++

Asametric of the success of the design, we compute the error system norms, which describe the
amplification of the variance of the disturbance signal. We observe that the Outer approximation
produces the lowest error at low frequencies but the highest variance amplification. Also notice
that the proximity of the RHP zero to the bandwidth resultsin a small performance improvement
over the no-feedforward case.

Error system Norms:
No-FF, H2-optimal, Outer appr, DC-gain
0.1792 0.1643 0.2190 0.1883

(The Ad hoc solution of the outer approximation is actually worse than no feedforward, in terms of
variance to white noise disturbance!)

Singular Yalues Singular Yalues

Singular Yalues (dB)
Singular Walues (dB)

10" 10° 10’ 107 10° 10’

Frequency (rad/s) Frequency (rads)

Theresults are qualitatively similar for un-weighted approximations (right figure, W=1; blue = no FF,
green, H2-optimal FF, red: Outer Approximation FF, cyan: DC Gain Approximation) but the step
responses and error frequency responses are not very appealing. (The optimal solutions are sometimes
unexpected, especially if one does not carefully define what is the abjective.)

Error system Norms:
No-FF, H2-optimal, Outer app, DC-gain
0.9880 0.8818 1.4504 1.0196

For the record, the transfer function of the H2-optimal prefilter with the low-pass weighting function is
(but further reduction is likely to be feasible):



2.05 z"5 + 15.45 z™4 - 68.59 z"3 + 91.54 z"2 - 49.82 z + 9.059

z"5 - 1.019 z™ + 0.3452 z”"3 - 0.03893 z"2 + 4.708e-07 z - 5.219e-08

The prefilter with no weighting is:
-36.75 z™M + 52.35 z"3 - 47.17 z"2 + 31.11 z - 6.915

z™ - 0.6853 z"3 + 0.1168 z"2 - 8.636e-09 z + 1.174e-09
Sample time: 0.1 seconds

The DC-approximation, in both cases, 1is

1.264
z - 0.3679

Problem 2.

Theread arm on a computer disk drive has transfer function
1000

H(s) =
1. Design an analog PID controller to achieve abandwidth of approx. 100Hz with 45deg. phase
margin.

2. Design adiscrete PID for the same bandwidth and phase margin, with a sampling frequency 1kHz
and simulate the closed loop step response.
3. What isthe maximum bandwidth that can be achieved with a PID having 45deg phase margin and
1kHz sampling?
4. Design aprefilter to achieve overshoot to step reference changes under 5%.
Hint: You need a complete PID for this problem (2-zeros). Use a filter for the pseudo-differentiator with
T = 0.001, consistent with the 1ms sampling time.

The continuous-time design is following the standard procedure, with 45 deg. phase margin and 628rad/s
asintended closed loop bandwidth. The resulting closed |oop has the correct phase margin and slightly
larger bandwidth (718 rad/s, no iteration is necessary here).

>> [pid1,cpid]=pidpmtune(628,P,.001,45)

cpid =

436.9 "2 + 7.205€04 s + 2.97e06

0.001s*2+s



Bode Diagram

Gm = -18.8 dB (51 80.3 racis) , Pm = 45 deg (at 418 radis) Bode Disgram
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Next, the discrete-time design will be computed by discretizing the continuous controller but with an
adjusted phase margin to compensate for the ZOH. Thisangle isWZ—T = % X Oozi (rad) = 12°

>> [pid2,cpidd]=pidpmtune(628,P,.001,45+12)
cpidd =
450.2 "2 + 3.392e04 s + 6.389e05

0.001s*2+s
And the discrete pid is found as its Tustin-equival ent:
>> dpid=c2d(cpidd,.001,'tustin’)
dpid =

3.116e05 z*2 - 6.001e05 z + 2.89e05

z"2-1.333z+0.3333
Sample time: 0.001 seconds

The discrete time loop has phase margin 44.8 deg. and 808rad/s bandwidth.

Bole Diagram

Step Response
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The frequency and step responses of the closed-loop systems are fairly close to each other.



The phase margin equation for this systemiis
180 —90 t i i 180
- —-90 — - X
7000~ 2000 " @
Where a isthe PID zero; this yields the constraint

w
+ 2 atanz = —180 + 45

w 180
<45

w
<
_180:atan1000+2000>< - S

2 atan— = 135 + atan—— + — x
amany = 27000 T 2000 " x

We plot the |eft-hand side as a function of w to find that the maximum possible crossover frequency is
550 rad/s corresponding to BW ~ 825 rad/s or 131 Hz.
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Of course, for areasonable integral action, the PID zero should not contribute more than 75-80 degrees,
bringing the practically feasible crossover below 300 rad/s or BW ~ 450 rad/s (= 71 Hz). Our design calls
for ahigher bandwidth, and the effect of the slow zero can be seen in the slow residual convergence of the
step response. (The C-T design has an extra 12 degrees of room in the angle equation and it does not
exhibit this problem.)

4. For aprefilter, we can use the genera procedure of an additive signal at the plant input, asin the
previous problem. Alternatively, asimpler design isto use alow-passfilter or a 2-DOF implementation

of the PID with the slow zeros in the feedback path. We will only discuss the last

two options here. el

A simplefirst order low-pass set-point filter can be designed approximately e el
based on the frequency response of the closed-loop transfer function. We can |
then iterate on the filter pole to meet the specification: g |

>> p=170; step(c2d(tf([1/500 1],[1/p 1]),.001, Tustin)*fbk(c2d(P,.001)* dpid,1)) I

The alternative is to move the PID zeros to the feedback path and iterate on the 2
zeros of the cascade part (2-DOF implementation). Unfortunately, whileitis
straightforward to obtain a non-overshooting design, complex zeros are required , Supramaras
to maintain the speed of the response. The figure shows the effect of the cascade

filter zerosfrom 0.8 to 0.95.

>> p=-.953,F=tf(conv([1,p],[1,p]),num,.001),F=F/dcgain(F),
>> step(fbk(c2d(P,.001)* dpid* F,inv(F)),'r)

Trtoe [econads)



Problem 3.
Design aPID controller for the flexible inverted pendulum with transfer function
{1.478} {0.000332s% + 0.3785s + 177.5}

{s2+ 0.0635s — 19.54} * {s2+ 15.52s + 64750}
For this problem, the PID should be augmented by alow-passfilter to increase roll-off beyond bandwidth
and avoid the excessive excitation of the flexible modes. The sampling frequency is 1000Hz and the
choice of closed-loop bandwidth isleft as a design parameter. Use a 3™ order low-pass filter, with
bandwidth roughly at 2x or 3x of the crossover frequency. In your design, include a prefilter to maintain
overshoot to step reference changes under 5%. Verify the stability of your controller with simulations.

Thefilter is needed to attenuate the resonance peak of the flexible mode so that it does not cause the loop
magnitude with the PID to exceed unity. At that frequency, the PID will beinits high frequency gain that
is expected to be large, since considerable phase lead is required to stabilize the plant. On the other hand,
the crossover frequency should be higher than the instability (4.4 rad/s). So we need to determine a
sensible filter F to allow usto iterate on crossover/phase margin.

Roughly, the design equationis2P + £F + 2C = —180 + PM. We expect that the PID zeros do not
contribute more than 150 deg and since we are looking at a crossover around 10 rad/s, the ZOH will have
aminimal effect. So we can iterate very quickly 2P + 2F = —200° (or +160°) and adjust the pole of F
so that thisinequality holds for some frequencies above 5 rad/s. We arrive at a value of 40 for the filter
pole. We then set-up an iteration to compute a reasonable PID tuning:

%EEE 481, HW 5, Problem 3

P=tf(1.478,[1 0.0635 -19.54])+tf([0.000332 0.3785 177.5],[1 15.52
64750]);

T=0.001;

we=[];

while isempty(wc), wc=input(“crossover "),end

F=tf(1,[1/40,1]);F=F*F*F;
zoh = T/2*wc*180/pi;

[pidl,cpid]=pidpmtune(wc*1.5,P*F, .001,35+z0oh)
dpid=c2d(cpid, .001, " tustin®)

Pd=c2d(P*F, .001);

step(fbk(Pd*dpid, 1)) ;pause

bode (fbk(Pd*dpid, 1)) ;pause

margin(Pd*dpid) ;pause

After comparing the responses of afew controllers with different wc and PM, we select PM = 35 and wc
=7 asthebest one. Thefina controller (C-T, D-T) is:

cpid =

75722+ 23.44s+18.14

0.001"2 +s
dpid =

5056 22 - 1.01e04 z + 5040




z"2-1.333z+0.3333
Sample time: 0.001 seconds

It yields the following step and frequency responses:

Step Responise Bode Disgram
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Thelarge overshoot is due to the proximity of the RHP pole of the plant to the closed-loop bandwidth. It

does necessitate the use of a prefilter.We use asimplified prefilter OSSSiJlrl and try different values of a to

get the overshoot below 5%, arriving at the value a = 1.7. The response is not great (significant
undershoot) but for the reduced complexity prefilter, it is adequate.

>> step((tf([.05 1],[1.7 1]))*fbk(P*cpid,1))
The discretized prefilter is

0.0297 z - 0.02911

Sample time: 0.001 seconds

(Note: The discrete simulation

>> step(c2d(tf([.05 1],[1.7 1]),.001, 'tustin’)* fbk(Pd* dpid, 1))

diverges due to numerical sensitivity issues. To obtain a correct result P, F, and cpid should al be
converted to state-space from the beginning

)

Sten Responsze
T

Amplitude




EEE 481 Homework 6

Problem 1.

Consider the pendulum model with input the torque applied at the pivot point and output the angle of the
pendulum. (Assume that the pendulum is arigid rod of length 0.5m, mass 200g evenly distributed, and its
rotation around the pivot point isfrictionless.)

1. Design astate observer to estimate the angle and angular velocity from noisy angle
measurements.

2. Collect 20s of simulation data at 100Hz with random 10Hz excitation around the stable
equilibrium such that the amplitude of oscillation does not exceed 6degrees. Implement a 12-bit
guanti zation on the angle measurement for the 360degree range and a 10-bit quantization on the
torque for the range[-1, 1]. Formulate the parameter estimation problem and use the batch |east-
squares algorithm to estimate the parameters of the corresponding transfer function.

[llustrate your findings with afew well-chosen simulations.



EEE 481, Homework 6 SOLUTIONS

Problem 1.

Consider the pendulum model with input the torque applied at the pivot point and output the angle of the
pendulum. (Assume that the pendulum is arigid rod of length 0.5m, mass 200g evenly distributed, and its
rotation around the pivot point isfrictionless.)

1. Design astate observer to estimate the angle and angular velocity from noisy angle
measurements.

2. Collect 20s of simulation data at 100Hz with random 10Hz excitation around the stable
equilibrium such that the amplitude of oscillation does not exceed 6degrees. Implement a 12-bit
guanti zation on the angle measurement for the 360degree range and a 10-bit quantization on the
torque for the range[-1, 1]. Formulate the parameter estimation problem and use the batch |east-
squares algorithm to estimate the parameters of the corresponding transfer function.

[llustrate your findings with afew well-chosen simulations.

We start with the pendulum model
mglL
) 2
Where misthe mass, L isthelength, | = % istheinertia, and e isthefriction coefficient for the
pendulum, and [T, 8] isthe I/O pair. The torque T is proportional to the current driving the pendulum
motor, but since we have no further data, we will assume a proportionality constant of 1. Linearizing the
model around the stable equilibrium [0, 0], we obtain the transfer function
60
P(s) =

s? +29.43
And the state-space realization in terms of angle and angular velocity

. 1 0 1 0
= 5043 of**le0o®
y=[1 0]x
For the discrete-time model, to be used for state estimation, we find the ZOH equival ent:

J6=T— sin9—69|9|

—0.1471 0.9995 _,70.2999
—29.42 —0.1471])xk +1072| 59.97 | Y
Ye =[1 0]xg

teer = (141072

For this we define the state observer

Xpy1 = AX + Buy + Ly — Vi),

Vi = Cxy,

where L isthe observer gain which can computed using a variety of approaches. One, particularly
attractive method is by using the Kalman Filter equations in their steady-state solution, given by the
discrete Riccati equation L = AZCT[CECT + R]7™1, 2 = AZAT + GQGT — AxCT[CECT + R]~ICzAT.
While this equation, taken as arecursion, will converge to the steady-state solution, MATLAB aso
implements efficient numerical methodsto solve it:
>> L =dlge(A,G,C,Q,R)
Here, G,Q aretheinput and intensity (covariance) matrices for the state noise and R isthe intensity of the
output noise. Since we do not have any additional information to model the noise, or optimize specific
aspects of the Kalman Filter response, we will ssimply choose, G =1, Q = BB’, and R = asmall scdar, to
be iterated until a“reasonable” speed of convergence is obtained. For example,
>> Hd = c2d(H,0.01)
>> L=dlge(Hd.a,eye(2,2),Hd.c,Hd.b* Hd.b',0.01),abs(eig(Hd.a-L* Hd.c))
Thisyieds
L =[0.2865, 4.823]



and magnitude of the observer error system eigenvalues 0.873; the latter implies convergence of the error
system in 20 samples, or 0.2 sec, which is areasonable time from afeedback control perspective. (Ina
quick design, the crossover of the feedback system would be selected around 10-20 rad/s, afactor of 2-4
above the bandwidth of the system poles, both for the stable and the unstable equilibrium case.)

Finally, for implementation purposes, it is often agood ideato use a controller to stabilize the system so
that its response stays bounded for any possible test condition. (Especially, for system identification
applications.) Omitting the details, here we design a PID to provide 50deg phase margin at 13rad/s:

[Kp, Ki, Kd] =[1.3429e+000 2.6944e+000 1.6398e-001]

Next, we construct a simulation model to solve the nonlinear pendulum equation, and connect the
observer to the system |/O.

Clack

O— | = ]

To Workspace To Workspace 1

-}@ P et erance
oul_1 _..ED_

To Worspaced

z

To Worspacae?

P cutput rs
PID
| | plant Mux
Pul=e
Ganeratorl
Auantizer Uniform Randem Gain2
rF Yy Mumber!
) iz
Uniform Random — Gaind Y1
=
Number To Workspaced
Muxd
>
e
-
> Gaind angle
Pt
Pendulum Subsystem:
{1 Jwelocihy
F 3
b > +
1 1
Gain3 > > = > » 2 )
+ - angle
Integratord Integrator Quantizer
Sum Sum
-
*
< Jul
Saturationz Gain Froduct bs
ﬂ: sin |

Quantizer2

F 3

L 1 Jocontrol

Trigonometric
Function



Observer Subsystem:

contral
.1 Ib L +
1 |z
B #o —l =
z
- - o Unit Delay
Sum
q :: |<2 ]
A
Sumz
+ out
7 EFu _ : | I
L C
L slaw

This simulation model alows the study of observer and
identification problems under a variety of conditions. We list
some below:

Convergence for different initial conditions (defined
in the Pendulum mask)

Convergence with and without the PID controller,
with and without random excitation, with and
without output noise

Use of different observer gains, obtained with
different output noise weights (R) in the Riccati
equation

Stable and unstable equilibrium (requires adjustment
of the observer model).

Example: Uncontrolled system (for the unstable equilibrium

such tests can be performed only for short time intervals),

starting with I.C. [0.1, 0]. Here, the angle output is noisy but the
velocity isnot. Their estimates present a*“ smoothed” version of the
angle, but the velocity estimate is noisy. For a20sinterval, the two
traces overlap. With azoom-in during theinitial transient, we can
observe the convergence, which takes roughly 0.2s as predicted
from the eigenvalues of the observer error subsystem.
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For the identification experiment, we connect the excitation at the pendulum input. With zero I.C., and
after sometrial-and-error we find a gain for the excitation (0.02) which causes the angle deviations to be
below 6 degrees. (Thisis necessary to keep the system near the linearization point wheresin 8 = 6.)

input-output data for the pendulurn identification problem
D15 T T T T T T T T T

at1r

0.05 -

005

We collect the data (U,Y) and form aregressor for a second order system. For a generdization, we define
thefilter F (e.g., adelay) and then write the regressor
w = [Fy,FFy, Fu, FFu]
(for ageneral case of regressor congtruction, see a system identification text). Then, the LS approximation
problem has a solution
q=w\y=w'w)"'w'y
From which the identified system can be expressed as

q(3)F + q(4)FF
"~ 1—-q(1)F — q(2)FF
The MATLAB implementation of this algorithm is shown below
>> F=c2d(tf(1,[.1 1]),.01)
>>w=[ldm(F,Y (:,2)),Issm(F*F,Y (;,2),lsm(F,U),Ism(F*F,U)];q=w\Y (;,2)
>> Hd=minrea ((q(3)* F+q(4)* F* F)/(1-q(1)* F-q(2)* F*F)), H=d2c(Hd)
Then

0.001572 z + 0.004358 —0.1394 s + 59.33
Ha@ = 5597, 7 00995 )= 30020075 + 2936
Notice that the model coefficients are fairly “close” to the true linearization (P). However, the
identification of the resonanceis usually a difficult task and some “smearing” of the peak occurs. A
similar result is obtained with the controller in feedback, but now the excitation must be increased by an
order of magnitude to achieve the same range of output variation. Otherwise, the output noise causes the
signal to noiseratio (SNR) to decrease and the accuracy of the identification deteriorates.

Finaly, identification with the pure ARX regressor (delay, F = tf(1,[1 0],.01)) is unsuccessful for this
case, because it puts too much emphasis on the high frequencies.
—0.006659 z + 0.02488
Hy(z) =

z? — 0.6264z — 0.3609
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EEE 481 HW 3

P.1
1000

s?
1. Design an analog PID controller to achieve a bandwidth of approx. 100Hz with 50deg phase margin.
2. Design a digital PID with a sampling rate 1kHz and simulate the closed loop step response.
3. Keeping the same coefficients of the digital PID, perform a simulation study to determine approximate
high/low limits of the sampling rate for which the closed loop is stable.

The read arm on a computer disk drive has transfer function H(s) =

P.2
Consider the system x(k +1) = 0.9x(k) + 0.2u(k) , where the multiplications and the addition are

quantized to 0.01. Use simulation to assess the mean, worst-case amplitude, and variance of the error due
to quantization (compared to non-quantized operation). Apply various inputs u(k), e.g., random, sinusoid,
quantized to 0.01. Compare your results with the theoretical bounds computed from the corresponding
transfer functions.

1. mean(x_n) = G(1)mean(n)

2. max|x_n(k)| <= sum|g(k)|max|n(k)|, (g = Z*{G})

3. var{x_n(k)} <= |G(e"jQ)|,>var{n(k)}

4. RMS bound: var{x}~RMS*{x} <= maxq|G(e"jQ)|" RMS*{n}

5. Use MATLAB’s “linmod” command to generate the desired transfer functions directly from Simulink
models.

P.3
Ziegler-Nichols Tuning: Apply the two Z-N methods to tune a PID for the plants
(-0.1s+1) (-0.55+1)

RG)=F—""7 RO =F—7F7—1.
S°+4s+1 s°+0.5s+1
Compare the results with a PID designed for a comparable gain crossover frequency and 50deg. phase
margin.
Hint: Define P as a transfer function object and use step(P) to get an estimate of R,L for the first Z-N
tuning. Then iterate k on step(feedback(k*P,1)) until the system is marginally stable (slowly increasing or
slowly decreasing response). Then estimate Ku,Pu for the second Z-N tuning. Define the compensators
and compare step responses and bode plots for the transfer functions command-to-output and input
disturbance-to-output



EEE 481 Homework 1

Problem 1.
Suppose that we measure a signal 0-5V with a n-bit A/D. What should be the value of n so that
1. The maximum error is less than 1mV?
2. The maximum error is less than 1%?
3. Assuming that the clock used in the A/D conversion is 1MHz, find the maximum conversion time
for a successive approximation converter.

For min/max values at the ends of the range, the A/D will have 2™ distinct values dividing the interval.
Thus, the resolution is % (If the values are arranged to divide the interval to 2™ — 1, then the resolution

is an__ol). For a truncating A/D the maximum error is the same, 1 LSB, and for a rounding A/D the

maximum error is % LSB. Considering the first case and computing the maximum error for different n,
we find that we need 13 bits to have error less than 1mV.

The relative error (%) near zero approaches infinity because the quantized conversion is zero but the
actual value is positive. This question is not well-posed for the entire interval, but could be more
meaningful, if constrained to an interval that does not contain 0.

A successive approximation converter will use roughly 1 clock cycle per bit (since DAC’s are much faster
than that) and with a bisection algorithm that requires n-steps, so the conversion time is 13us.

Problem 2.
Consider the system y(k + 1) — %y(k) = %x(k), where the multiplications and the addition are
guantized to 0.01. Use simulation to assess the mean, worst-case amplitude, and variance of the error due
to quantization (compared to non-quantized operation). Apply various inputs x(k), e.g., random, sinusoid,
quantized to 0.01. Compare your results with the theoretical bounds computed from the corresponding
transfer functions.

1. mean(x,) = G(1)mean(n)

2. max|x,(K)| < (Xlgk))max|n(k)|, (g = Z7'{G})

3. var{x,(k)} < |G(em)|ivar{n(k)}

4. var{x} ~ RMS?{x} < max? |G(¢/*)| RMS?{n}

For a round-off quantization, whose mean is 0 LSB, max(|n|) = % LSB = 0.005 and var = 1/3(%2 LSB)?
=8.33e-6. RMS(n) = (var{n})'/* = 0.0029.
Realizing the transfer function in terms of delays of the output and input (as shown in the figure below)

There are 3 quantization blocks, each one contributing % LSB uncorrelated noise to the same summation

node. The transfer function from each one is G(2) = — for which, G(1) = 1.143,}|g (k)| =
zZ

1
8

1.143, max|G (/)| = 1.143, |G|, = 1.008. Evaluating the above estimates (with x_n denoting the
error due to quantization)
1. mean(x,) = G(1)mean(n) = 1.143 * 3 * 0 = 0 (deterministic noise 1.143*3*0.005 = 0.017)
2. max|x,(k)| £ Clgk)Imax|n(k)|, (g = Z7{G}) = 1.143 * 3 x 0.005 = 0.017
3. var(x, ()} < 3  |G(e/?)|-var{n(k)} = 3+ 1.008% x 8.33¢ — 6 = 2.54¢ — 5
4. var{x} = RMS?{x} < (3 * max |G(e/?)| RMS{n})? < (3 * 1.143% 0.0029)%? = 9.9¢ — 5

Next, we simulate the quantized system, the ideal system, and the system with the noise model of
guantizations and tabulate the results as follows:.

| Rand[-1,1] | Const.=0.073 | Rand noise model | Theoretical Estimate |




Var 1.72e-5 4.47e-5 2.54e-5 2.54e-5 [RMS: 9.9¢e-5]

Mean | 2.27e-5 -0.0067 -1.08e-5 0 [deterministic 0.017]

Max 0.011 0.0067 0.015 0.017 [deterministic 0.017]

Notice that the stochastic variance estimate (using the 2-norm of G) is closer to the observed variance and
that the random noise model is fairly representative of the actual errors (for this selection of external
inputs). The conservative variance estimate using the RMS deterministic bound (in brackets) is much
higher, while the estimate of the maximum amplitude is only conservative by 50%. (This is also because
of the specific properties of the system for which sum(|g(k)|) = max|G(e”jw)|.) The deterministic
estimates become more accurate for deterministic inputs that expose the worst case. Here a constant 0.073
produced RMS error that was larger than the stochastic estimate. Also note that for the simulation of the
random noise model the random number generators must be initialized with different and appropriate
seeds so that they produce uncorrelated outputs.

»
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Problem 3.

In a laboratory data acquisition application we would like to use the Diamond MM board to sample
several signals at 2kHz and transmit the results to a nearby computer over the RS-232 serial port. How
many channels can sample under reasonable assumptions.

The MM has a 12-bit A/D so, without special compression, it will use 2 Bytes per channel. That is, a total
of 2*N Bytes per sample time (N = # of channels), or 20*N Bits (assuming one start, one stop, 8-data;
other valid protocols are also acceptable). For the transmission to occur under 0.5msec, the rate should be
greater than 40N kBaud. Standard rates in that vicinity are 38400, 57600, 115200. So N=1 for 57600 and
N=2 for 115200, assuming that the length of transmission is fairly short. The standard has 50 ft for speed
19200 Baud. (The number of channels could go up by 1 if the assumptions are relaxed somewhat, e.g.,
sue 7 data bits.)
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Problem 1.
Compute the z-transforms of the following sequences (here u(.) denotes the unit step)

u(k +2), sin (1101( +1),  (2-e 00 Dh@),  09kuk— 1)

Z3
(z—-1)
. R . ™ T .
For a single-sided transform, (k>=0), Z {sm(ﬁ k) cos1 + cos (E k) sin 1} =

Z{u(k + 2)} = z22Z{u(k)} =

. T
zsin—cos1
10

F3
z2-2zcos—+1
10
T .
(zz—z cos—) sin1
10

T .
z2-2zcos—+1
10

Z{{Z _ e—o.1(k+1)}u(k)} _ 2z ze

(z-1) (z-e~01)

7Z{0.9%u(k — 1)} = 0.92{0.9* *u(k — 1)} = 0.9z71

—-0.1

Z _ 0.9
(z—0.9) ~ (z—0.9)

Problem 2.
Solve the difference equation y(k + 2) — %y(k +1)+ %y(k) = x(k) — %x(k — 1) with the initial
conditions y(0) = 1, y(-1) = 0 and x(k) = u(k).

One approach is to rewrite the ODE so that the correct initial conditions appear for the shifted outputs.
The ODE, shifted by one, now becomes y(k + 1) — %y(k) + %y(k -1)=xk-1) - %x(k - 2).
Taking transforms and applying the initial condition property, we get

3 1 1
zY(z) — zy(0) — ZY(Z) + ZZ Y(2) + Zy(—l)

1 1 1
=z71X(2) + x(-1) — gZ_ZX(Z) — gz_lx(—l) — gx(—Z)
Substituting the IC and X(z2),

z 1 [22 —EZ +1] Y(z) =z72 (z —1) z
47 " 4 B 5/z—1
After PFE,
vy = 28, —0.8 . —0.8
= 1T 7 =0375+0331) ' z— 0375 — 0331/
Hence,

—0.8
= 1.6u(k — 1) + 2R Z‘l{ }
y(k) = L6ulk — 1) + 2ReZ™ \ ——( === 0.331)

= 1.6u(k — 1) — 1.6Re{(0.375 — 0.331))* Lu(k — 1)}
y(k) = 1.6u(k — 1) — 1.6Re{(0.375 — 0.331)* TJu(k — 1)

~0.331
0.375 )(k - }”(k -

y(k) = 1.6u(k — 1) — 1.6(0.5)* 1c0s{0.723(k — 1)}u(k — 1)

y(k) = 1.6u(k — 1) — 1.6(0.5)* 1Re exp {j atan(

Problem 3.
Consider the system

-02 1 0
X = AX, + BU where A= 0 03 le

=Cx
=% C=[01 2]



Determine whether the system is stable or not

Determine whether the system is controllable and/or observable
Compurte its transfer function

Compute the first three samples of its unit-step response.

el NS>

1. The eigenvalues of A are -0.2 and 0.3, they are inside the unit circle, hence the system is stable.

2. The controllability matrix [B,AB] has rank 2, so the system is completely controllable. The
observability matrix [C;CA] has rank 2, so the system is completely observable. In MATLAB, the
relevant commands are:

>> G=ss(a,b,c,d,1);

>> Qc=ctrb(G), Qo=0bsv(G);

2z+0.5

3. The transfer function is C(zI — A)™'B + D = ———— tf(G)
z“—0.1z-0.06

4. \We compute the recursion for the states, starting with x(0)=0 and u(k)=1 for k>=0. Then,

y(0)=0
y(1) =2
y(2) = 2.7
y(3) = 2.89

etc. (y = step(G) or y =step(G,0:10))

Problem 4.

Write the differential equation describing the motion of a pendulum with input the torque applied at the
pivot point and output the angle of the pendulum. Derive the linearized model around the stable and the
unstable equilibria and compute the corresponding transfer functions. Assume that the pendulum is a rigid
rod of length 0.5m, with evenly distributed mass 50g, and has a small 100g ball attached to the free end.
Its rotation around the pivot point is frictionless.

2

Newton’s law yields,]% = —g(m% + ML) sin 6 + u, where | = gmL2 + ML?. Hence, substituting the
2

pendulum parameters, % = —9.8117ssin9 + %u = —21.0sin6 + 34.3 u.

The linearized system around the stable equilibrium has sin6 =~ cos06,,6, = 65 = uy, = 0,
PO _ 510, + 343 OL(s) __ 343
dtz ok L u,(s) s2+21.0

The linearized system around the unstable equilibrium has sin6 =~ cosmw 6,0, = w, 6y = uy = 0,
PO _ 2106, + 343 Ou(s) _ 343
atz — "k L u,(s) s2+21.0
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Problem 1.
Consider the continuous time system with transfer function G(s) = ﬂfﬁ'
1. Realize G(s) in state-space and use Forward Euler to compute its discretization, using sampling
time T = 0.1. Find the transfer function of the corresponding discrete-time system.
2. Use Forward Euler directly on the transfer function G(s) and compute the corresponding discrete-
time transfer function. Realize the discrete-time system in state-space.
3. Compute the first five terms of the discrete-time system impulse response using state-space
formulae. Compare with the result of MATLAB’s impulse(.) function.

1. %=Ax+Bu,y=Cx+Du [AB,CD]= {[‘29 _02] , [(2)] [1.5 0], [0]}, is one possible

realization. The FE discretization is found by %(T) = #*12% = x, | = (I + TA)x; + TBu,
Yr = Cxj + Duy. The transfer function for the discrete time system becomes

Gy(z) = C(zl = [I + TA)"Y[TB] + D
This transfer function can be computed by hand, or by the following MATLAB commands

>> G=tf([3],[1,9,4])
>> Gs=s5(G)
>> T=.1;Gd=ss(eye(size(Gs.a))+Gs.a*T,Gs.b*T,Gs.c,Gs.d, T);tf(Gd)

ans =

"2-11z+0.14
Sample time: 0.1 seconds

Notice that the transfer function does not depend on the choice of realization of the continuous transfer
function. The above procedure can therefore be used to find the FE discretization of a continuous time
system.

2. Performing the substitution s = Z;—l we find exactly the same discrete transfer function as in Part 1. A
state space realization is

Xprq = Ax;, + Buy, v = Cx;, + Dy, [A,B,C,D] = { 8; _(1)'2],[0(')2] ,[1.5 0], [0]},

which does not need to be (and is not) the same as the one in Part 1.

3. We can easily compute the recursion xj,, = Ax) + Buy, Vi = Cxj + Duy, with IC = 0 and
u,=1fork =0,0oth.

>>x =1[0;0];

>> y=C*X, X=a*Xx+b;
>> y=C*X, X=a*X;
>> y=C*X, X=a*X;
Etc.

We find the values fory: 0, 0.3000, 0.0300, -0.0090, -0.0141, -0.01425
We also find the same values with h = impulse(Gd).



Problem 2.

The first-principles model of a temperature control system is Y =—0.2(Y —273)+Q, where Y is the
Temperature (Kelvin) and Q is the supplied heat (Watts).

Y (tk+1) -Y (tk )
corresponding discrete time state-space model for a sampling time of 1sec.

2. What is the discrete-time transfer function of the system?
3. What are the limitations (if any) of this discretization method.

1. Use the Forward Euler approximation of derivative Y(tk) = to write a

1. Yk+1 - Yk - —OZYk + 546 + Qk
Y(z) _ 1

2. From Q to Y, the discrete transfer function is —= = .
Q(2) z—0.8

the output can be interpreted as the incremental output over the equilibrium solution Y = 54.6 for Q = 0.)
3. The stability constraint for the discrete model is |1 — 0.2Tg| < 1 = T, < 10. Of course, for a sensible
approximation, the sampling time should be much less that this bound. E.g., one-half the value will
produce a discretized system with pole at the origin, i.e., the entire dynamic response is modeled by a
single delay.

(54.6 can be viewed as an external input, or

Problem 3.
1

An analog filter with the transfer function is to be replaced by a computer.

(10s+1)(0.01s +1)

Determine an appropriate sampling time and the transfer function of the discretized filter. You may use
any discretization method you like but you should justify all choices.

A reasonable choice for the sampling time would be related to the system bandwidth (0.0985rad/s ~=
0.1). One may choose different rules of thumb.
e 6 samples/rise time: tr = 2/BW = 20s; T = 20/6 = 3.33s or f = 0.3Hz. (Measuring tr from a step
response simulation we find 22.3s which is reasonably close).
e Nyquist =10 x BW = 1rad/s = 0.16Hz => f = 2*Nyquist = 0.32Hz, T = 3.13s. (This is similar to
the above since tr = 2/BW (BW in rad/s) => T = 1/(3BW) = 1/(6piBW) (BW in Hz) => f = 19BW
(BW in Hz).)
e ZOH adds 6deg phase lag at BW (a feedback-related spec), wT/2 = 0.1 => T = (0.2/BW)/0.1 = 2s.

Since we are trying to replace an analog filter and have a discretization with similar filtering properties, a
Tustin discretization is the more reasonable choice. Thus, for T = 3.33s (not a unique choice), the

discretized transfer function is
0.1419 z%2 + 0.2838z + 0.1419

_ Ha@D = 027352 = 0.7060
One potential drawback of this solution is that it is bi-proper (y_k requires u_K)

However, for a Forward Euler discretization, the sample time is constrained by the fastest sampling

constant (0.01). Here, choosing T = 0.01 will transform this term to 0.01 (z;? +1=2zl.e.,itis

approximated by a single delay. Since the system response is dominated by the slower mode (10s+1),
such an approximation is acceptable (assuming of course that such an oversampling is possible).
For this case,

0.001

Ha(?) = S "05999
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Problem 1.
-s+3

(s+0.1)(s+2)

Consider the following system with transfer function P(S) =

1. Design a PID so that the closed loop crossover is at 0.7rad/s and the phase margin is 50°.
2. Select a method and the sampling frequency and discretize the PID.

For a discrete design we should first select the sample time so that the ZOH contributes, say, -3deg phase
at crossover, i.e., w_cT /2=0.105/2 or T = 0.15 sec. The phase of P alone at 7 rad/s is -114 deg, so we
may be able to use a Pl to control it. We define:
K(t,s+1

c(sy < KG@s + D
To achieve 50 degrees phase margin with the discrete controller, we should compute the PI zero to
provide 50+3 deg phase margin. Here, however, the problem asks for 50 degrees PM:
tan"17,0.7 —90° — 114 = —130° = tan~ ' 0.77, = 74 deg. (Pl is really marginal here.) Then, we

compute 7, = % = 5.0. Substituting back to the gain equation |P(j0.7)C(j0.7)| = 1 = K = 0.093.
Computing the margins for PC we verify the design.

The sampling frequency is now 1/T = 6.7 Hz and the preferred method of discretization of the PID is
Tustin, for which we expect a phase margin of 47 deg., since we did not pre-compensate for the ZOH.
The controller has the transfer function

0.475z - 0.461

Ca(z) = z—1)

If we evaluate its margins, it provides a 46.8 degree PM, very close to the expected value. The step and
frequency responses are also very close to the continuous time versions.

In Matlab: step(fbk(P*C,1),fbk(c2d(P,.15)*c2d(C,.15,'tustin’),1))

Problem 2.
1. Ziegler-Nichols Tuning: Apply the two Z-N methods from the notes to tune a PID for the plants:
Pi(s) = —0.4s +2 P()_lm—mu+2)
= 2 ras+3 2 T 255420

2. Compare the results with a PID designed for a gain crossover frequency of open-loop bandwidth
and 45deg. phase margin.
Hint: Define P as a transfer function object and use step(P) to get an estimate of R,L for the first Z-N
tuning. Then iterate k on step(feedback(k*P,1)) until the system is marginally stable (slowly increasing or
slowly decreasing response). Then estimate Ku,Pu for the second Z-N tuning. Define the compensators
and compare step responses and bode plots for the transfer functions command-to-output and input
disturbance-to-output

We compute the approximate slopes from the step responses as
R1=0.39, L1=0.36, R2=2.76, L2=0.28. The corresponding controllers are

1352+ 85s + 12. 0.18s%+ 1.6s +2.8
C1(5) = S CZ(S) =

S



For the second method, we try closing the loop with
different gains, until oscillatory response is observed. For
the first system we find
Kul =10, Pul = 1.3 and for the second Ku2 = 1.25, Pul =
0.93.
The corresponding controllers are

0.98s%+ 6s + 9.2

Ci(s) = S
0.087s% + 0.75s + 1.6
Cy(s) = S

Note that while these gain values happened to produce an
exact oscillatory response (due to the round numbers in the
system transfer functions), this does not need to be the case

in general; for practical applications, sufficient
approximation can be obtained by gains that
produce decaying oscillations with low damping.

Finally, we design a controller for crossovers at the
open-loop bandwidth: The first system has BW =
0.93rad/s and the second has BW = 7.4rad/s.
Performing the design, we find

091s + 1.8

Ci1(s) = f’

0.17s*>+ 0.82s + 0.97

Amplitude

Cy(s) = S
It turns out that the first controller is too slow and
not comparable with the Z-N. Instead, we can match
the Z-N bandwidth with a crossover at 3x BW:
1.1s°+ 53s + 6.4
Ci(s) =

S

The step responses with these controllers are shown
in the following figures. (Bode plot of loop-tf, step
responses. Fbk-ZN: green, OL-ZN: blue, PM-tuned:
red). We see that both ZN yield good and similar
responses, even though the damping is lower than
the 45deg. phase margin controller. They also show
more inverse response because their bandwidth is a
bit higher.

For the second system the three methods produce
different controllers. The PM method is very similar
to the CL-ZN if the crossover is taken at 67% of the
open-loop BW. But none of the responses is
particularly good, showing the difficulty of PID’s to
manage underdamped systems. The OL-ZN method
has a closed loop system whose frequency response
stays above 1 without rolling off, so it is a
coincidence that the loop is stable. This is an

artificial problem since our plant rolls off with only -20dB/dec and we use the ideal improper transfer
function for the PID. But even if we add a high frequency roll-off, the difficulty of PID tuning would still

remain.
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Problem 3.
1. Design a PID controller to achieve a bandwidth of 0.5Hz, 50deg phase margin, and to be
discretized with a sampling frequency of 10Hz for the system with transfer function
p _ —04s+2
)= 213
2. Compare the results with a design in discrete time directly, where the plant is discretized and the
parameters of a discrete-time PID are calculated to achieve the same specifications.

We design continuous controller with an additional PM corresponding to the ZOH half-sample delay
Tw_c/2. In a first approximation, w_c = BW but a better guess would be w_c = BW/1.5. Selecting the
latter, angle(ZOH) = 0.1*(0.5Hz * 6.28/1.5)/2 = 0.1 rad = 6deg. We also select the PID pseudo derivative
time constant as 0.05s, anticipating the Tustin transformation, to yield the PID poles at 0 and 1. This is
not necessary, but would simplify the derivations of the second part.

The angle required by the two PID zeros is found by
£P(jw,) + 2tan" 1,00, — 90 — 6 —tan~1 0.05 x 2.1 = —130
=>2tan"'1,w, = -130+122+90+ 6+ 6 =94 => 1, = 0.51
The final controller is
c 1.0s>+ 39s + 3.9
(s) = 0.05s%2 + s

Using the Tustin transformation, we obtain the discrete-time controller

12.1z2—- 1992z + 8.2

Ca(2) = -

This controller yields a Phase Margin of 50 deg, at ~2.1 rad/s, as requested.

Next, we consider an entirely discrete time design. We compute the ZOH-equivalent of the plant
—0.024 z + 0.0405

Pa?) = 7765, 7 0670
And consider the discrete PID
K (z — a)?
CaD)=—3——

(For consistency, we maintain the same PID poles in the two cases.)

We compute the angle of the plant and the PID poles (dp = tf(1,[1 -1 0],0.1)) at crossover:

>> [m,p]=bode(Pd*dp,2.1), from which p = 124 = -236. (Notice that Matlab requires the continuous
frequency as the bode input. The discrete frequency is 2.1*0.1 = 0.21 samples/sec)

For 50 deg phase margin, this requires an angle

contribution from each zero of 106/2 = 53 deg. Step Response
- sinQ 530 & g = 1.327 X 0.978 — 0.2085 1.2 : ; - '
waan s —a “= 1.327 1
= 0.821 sl
We then compute the gain K so that the crossover is at 2.1 '
rad/s, K = 1/ 0.083. The final controller is . 08T
12.1z% - 198z + 8.1 E:
Ca(2) = o £ o
z z E 02F
Obviously, both methods yield very similar controllers and 0
responses. (Any differences are expected to appear much
closer to the Nyquist frequency.) h2r
0.4 1 1 I I 1

1
] 05 1 15 2 25 3 35
Time (s8]
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Problem 1.

1. Design a PID controller to achieve a bandwidth of 0.5Hz, 50deg phase margin, and to be
discretized with a sampling frequency of 10Hz for the system with transfer function
p(s) = OIS H1

W)= 2 a5+ 2 )

2. An additive disturbance enters the plant output with transfer function P,(s) = el Design a
feedforward component for the PID controller, also discretized at 10Hz, to reduce the effect of
the disturbance on the output.

1. We start with a first estimate of the crossover frequency w, = 0.5 * 6.28/1.5 = 2.1 rad/s. At that

frequency the plant angle is 242deg = -118deg, the ZOH contribution is “’;T = 0.1+ % = —6deg. In

addition, anticipating a PID controller, the pseudo-differentiator pole contributes tan‘lg w. = —6deg.

Here, we chose the time constant T = T /2, so that after Tustin discretization the discrete denominator will
be z(z - 1).

Collecting the angle contributions at crossover, we have
2tan" 1,0, = —180 4+ 50 + 118 + 6 + 90 + 6 = 90deg
The continuous controller (after the gain computation) becomes
2.04s% + 8.57s +9.02
C(s) =

0.05s2 + s

And its Tustin DT equivalent is
24.9z% + 403z + 16.3
Cp(s) = 22—,
We verify that the last DT controller together with the ZOH equivalent of the plant have PM = 50deg at
2.1rad/s. Its BW is 4.3rad/s which is higher than the initially desired BW (3.14rad/s). If this specification
is strict, we could redesign with a crossover frequency 2.1 * 3.14/4.3.

2. We start by recalling the output contributions due to the disturbance

y = SP,[d] — SPH|[d]
Where H is the feedforward controller and d is the measured disturbance. To design the feedforward
controller we can apply a variety of methods.

A. Feedforward at DC: This will only cancel the effect of the disturbance at DC, and by continuity at low
frequencies. That will be
H = P(0)~'P,(0)

B. H-2 feedforward of plant alone: We consider the minimization
min [|P, — PH|| = min||P, — PR, H|| = min |[P/ P, — P H||
Where P; is the inner (stable all-pass) factor of P, which does not alter the norm. P, is the outer (stable
invertible) factor of P. The optimal solution is
P,H = (P7'P,) => H="P;Y(P7'P,)_
Where (P;1P,) _is the stable projection of (P;*P,). This solution is valid if H is a proper system,
otherwise we need to either multiply with a low-pass filter (an ad-hoc fix) or solve the general problem

outlined in the notes that uses a penalty on the control input. For our problem, we can write directly from
the transfer functions:



_(-0.1s+1) 0.1s+1

PT0as+1 7 0T s24+4s5+2
Strictly speaking, this P, is not outer since it is not biproper. The formal solution would require the

N
approximation of the transfer function by a biproper one, e.g., P + ¢, € < 1, 0or, P (1 + Z) , €K 1,for

some N, and then perform the calculations. But here, we can work analytically and wait until the end for
such an approximation, if needed.

Now,
0.1s+1 1

p7ip,) = : =>
(PP, —01s+1 02s+1
(Pip,) = 1.667 -
LT s45
_ 166752 + 6.667s + 3.333
B 0.1s2+1.5s+5

For which, the Tustin DT equivalent is
10.71z% — 17.69z + 7.156

D1~ T2 09932+ 02

C. The general H-2 FF computation code provided in the past homework solutions performs a similar
minimization but accounts for the weight of the sensitivity S.
mHin [|SP, — SPH]|

This computation is no longer “casy” like the last one because S contains a differentiator for which an all-
pass factor does not exist. A “hack” to get around this problem is to shift the transfer functions so that
they contain no zeros on the jw-axis (for CT) or Unit Circle (for DT) but that becomes too complicated to
perform without a computational tool.

$EEE 481, HW 5, Problem 1

a=-.1

P=tf([a 1],[1 4 2])

O=tf(1,[.1 11)

[pid, cpid,dpid]=pidpmtune (3.14,P, .05,50+6,2,.1)
Pd=c2d (P, .1)

Qd=c2d(Q, .1)

Sd=feedback (1, Pd*dpid); SPd=feedback (Pd,dpid); SQd=Sd*Qd;
W=1,r=le-6,W=c2d(tf([.1 11,[1 1le-41),.1, ' 'tustin');
Gd=[W*SPd;r]; WTd=([W*SQd;0]);

[SPi,SPip, SPol=iofr(ss(d2c(Gd, "tustin'))); Stil=inv ([SPi,SPip]);
R=minreal (Stil*d2c (WTd, 'tustin'));

X2=stabproj (R-R.d)+R.d; H2o=minreal (inv (SPo)*[1 0]*X2);
eig (H20)

cut=[1];

while isempty(cut), cut=input('cut '),end
[H2s,H2f]=slowfast (H20-H20.d, cut) ;H2f=H2f+H20.d;

HD=c2d (H2f, .1, 'Tustin'); % H2 optimal design

Evaluating the response of the system with the three different types of Feedforward (DC and H-2plant, H-
2), we find that the DC Feedforward does better only in the very low frequencies and then becomes
similar (slightly worse) than the No-Feedforward solution. The Feedforward based on the H-2
approximation of the plant (part B) is slightly better in all but the high frequencies (after 10rad/s where
the all-pass factor becomes effective). These FF improvements are not very large, because the RHP zero
shows up relatively close to the Sensitivity bandwidth where the feedback controller attenuates the
disturbance already. On the other hand, the general H-2 optimal solution offers a significant improvement
in the mid-range frequencies but it is worse in the high frequencies. In the step responses it shows a much



better behavior over all others by correctly accounting for the contribution of all terms in the optimization
problem.

Bode Diagram Step Response
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Problem 2.
The read arm on a computer disk drive has transfer function

1000
H(s) =

1. Design an analog PID controller to achieve a bandwidth of approx. 70Hz with 50deg. phase
margin.
2. Design a discrete PID for the same bandwidth and phase margin, with a sampling frequency 1kHz
and simulate the closed loop step response.
3. What is the maximum bandwidth that can be achieved with a PID having 50deg phase margin and
1kHz sampling?
4. Design a prefilter to achieve overshoot to step reference changes under 5%.
Hint: You need a complete PID for this problem (2-zeros). Use a filter for the pseudo-differentiator with
T = 0.001, consistent with the 1ms sampling time.

1. Following our standard design procedure,

P=tf(1000,[1 0 0])
[pid1,cpidl,dpidl]=pidpmtune(70*2*pi,P,.001,50,2)
margin(P*cpidl)

bodemag(feedback(P*cpidl,1))

The controller provides the correct phase margin and slightly larger Bandwidth (465 instead of 440rad/s).
Its transfer function is

Transfer function:
0.2927 s"2 + 35.95s + 1104

0.001s"2 +s

440

2. For the discrete-time design, we adjust the phase margin by the ZOH phase lag chT = s

M( ad) = 0.147rad = 8.4°



[pid2,cpid2,dpid2]=pidpmtune(70*2*pi,P,.001,50+8.4,2,.001)
margin(c2d(P,0.001)*dpid2)
bodemag(feedback(c2d(P,0.001)*dpid2,1))

Buode Diagram

The controller provides the correct phase margin and
somewhat larger Bandwidth (553 instead of 440rad/s). Its
transfer function is

w
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Meagnitude (HB)
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Transfer function:
208.1z"2 -400.1z+ 192.3 a0

-a0

z"2 -1.333 z + 0.3333 80

Zra b

Phase (deg)

The system responses are similar but not quite the same.
Looking at the Loop transfer function Bode plot reveals that
the reason for this, is the somewhat different behavior of the 450
phase around the crossover, even though the margins are Fresuency (radisec)
identical.

360 -

3. The phase margin equation for this system is

180 — 90 — atan—¢ We x180+2 t = —180+ 50
aNT000 2000 " g oA 0e T

Where 7, is the PID zeros time-constant. At the extreme, the PID zeros are located at the origin, so their
time-constant is infinity and this term contributes 2x90=180 deg. Graphical evaluation yields that the
maximum possible crossover frequency is 488 rad/s corresponding to BW ~ 732 rad/s or 117 Hz. With a
more realistic 160 deg max contribution from the zeros the maximum Bandwidth is limited to only 60Hz.

4. A simple first order low-pass set-point filter can be designed approximately based on the frequency
response of the closed-loop transfer function. We can then iterate on the filter pole to meet the
specification. After a few iterations, the pole of the filter that meets the specs is found to be -115rad/s.

>> p=115; step(c2d(tf([1/500 1],[1/p 1]),.001, Tustin")*feedback(c2d(P,.001)*dpid2,1))

Problem 3.
Design a PID controller for the flexible inverted pendulum with transfer function
{1.478} {0.000332 s? + 0.3785s + 177.5}
{s2+ 0.0635s — 19.54} {s?+ 15.52s + 64750}

For this problem, the PID should be augmented by a low-pass filter to increase roll-off beyond bandwidth
and avoid the excessive excitation of the flexible modes. The sampling frequency is 1000Hz and the
choice of closed-loop bandwidth is left as a design parameter. Use a 3" order low-pass filter, with
bandwidth roughly at 2x or 3x of the crossover frequency. In your design, include a prefilter to maintain
overshoot to step reference changes under 5%. Verify the stability of your controller with simulations.

The filter is needed to attenuate the resonance peak of the flexible mode so that it does not cause the loop
magnitude with the PID to exceed unity. At that frequency, the PID will be in its high frequency gain that
is expected to be large, since considerable phase lead is required to stabilize the plant. On the other hand,
the crossover frequency should be higher than the instability (4.4 rad/s). So we need to determine a
sensible filter F to allow us to iterate on crossover/phase margin.

Roughly, the design equation is 2P + 2F + £C = —180 + PM. We expect that the PID zeros do not
contribute more than 150 deg and since we are looking at a crossover around 10 rad/s, the ZOH will have
a minimal effect. So we can iterate very quickly 2P + 2F > —200° (or +160°) and adjust the pole of F



so that this inequality holds for some frequencies above 5 rad/s. We arrive at a value of 40 for the filter
pole. We then set-up an iteration to compute a reasonable PID tuning:

SEEE 481, HW 5, Problem 3

P=tf(1.478,[1 0.0635 -19.54]1)+tf([0.000332 0.3785 177.51,[1 15.52
64750]) ;

T=0.001;

we=[];

while isempty(wc), wc=input ('crossover '),end

F=tf(1,[1/40,1]);F=F*F*F;
zoh = T/2*wc*180/pi;

[pidl, cpid]=pidpmtune (wc*1.5,P*F, .001,35+z0oh)
dpid=c2d(cpid, .001, "tustin')
Pd=c2d (P*F, .001) ;

step (fbk (Pd*dpid, 1)) ;pause
bode (fbk (Pd*dpid, 1)) ;pause
margin (Pd*dpid) ;pause

After comparing the responses of a few controllers with different wc and PM, we select PM = 35 and wc
=7 as the best one. The final controller (C-T, D-T) is:

cpid =
7.572s"2 +23.44s+18.14

0.001s"2 +s

dpid =
5056 z/*2 - 1.01e04 z + 5040
272-13337+0.3333
Sample time: 0.001 seconds

It yields the following step and frequency responses:
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The large overshoot is due to the proximity of the RHP pole of the plant to the closed-loop bandwidth. It

does necessitate the use of a prefilter.We use a simplified prefilter O;):Jlrl and try different values of a to

get the overshoot below 5%, arriving at the value a = 1.7. The response is not great (significant
undershoot) but for the reduced complexity prefilter, it is adequate.

>> step((tf([.05 1],[1.7 1]))*fbk(P*cpid, 1))

The discretized prefilter is

Step Response

0.0297 z - 0.02911

Sample time: 0.001 seconds

Amplituce

(Note: The discrete simulation

>> step(c2d(tf([.05 1],[1.7 1]),.001, tustin’)*fbk(Pd*dpid,1))

diverges due to numerical sensitivity issues. To obtain a correct result
P, F, and cpid should all be converted to state-space from the
beginning)

EEE 481 Homework 6

Problem 1.

Consider the pendulum model with input the torque applied at the pivot point and output the angle of the
pendulum. (Assume that the pendulum is a rigid rod of length 0.5m, mass 275¢g evenly distributed, and its
rotation around the pivot point is frictionless.)

1. Design a state observer to estimate the angle and angular velocity from noisy angle
measurements.

2. Collect 20s of simulation data at 100Hz with random 10Hz excitation around the stable
equilibrium such that the amplitude of oscillation does not exceed 6degrees. Implement a 12-bit
guantization on the angle measurement for the 360degree range and a 10-bit quantization on the
torque for the range [-1, 1]. Formulate the parameter estimation problem and use the batch least-
squares algorithm to estimate the parameters of the corresponding transfer function.

Illustrate your findings with a few well-chosen simulations.

We start with the pendulum model

. mgL
jg=T-"9

sinf — 69|9|

2
Where m is the mass, L is the length, J = % is the inertia, and e is the friction coefficient for the

pendulum, and [T, 6] is the 1/O pair. The torque T is proportional to the current driving the pendulum
motor, but since we have no further data, we will assume a proportionality constant of 1. Linearizing the
model around the stable equilibrium [0, 0], we obtain the transfer function
43.6
P(s) = ——
o =570
And the state-space realization in terms of angle and angular velocity



=[a 75 1=+ [glw
y=1[0 2.727]x

For the discrete-time model, to be used for state estimation, we find the ZOH equivalent:

_ (109985 —0.0735 —2[ 3.998
tien = ( 0.03998  0.9985 )i+ 10 [0.07998] Y
Ve =10 2.727]x;
For this we define the state observer
K41 = A%y + Buy + L(yx — i),
Ve = CXy,
where L is the observer gain which can computed using a variety of approaches. One, particularly
attractive method is by using the Kalman Filter equations in their steady-state solution, given by the
discrete Riccati equation L = AXCT[CECT + R]™1,% = AZAT + GQGT — AZCT[CZCT + R]1C2AT.
While this equation, taken as a recursion, will converge to the steady-state solution, MATLAB also
implements efficient numerical methods to solve it:
>> L =dlge(A,G,C,Q,R)
Here, G,Q are the input and intensity (covariance) matrices for the state noise and R is the intensity of the
output noise. Since we do not have any additional information to model the noise, or optimize specific
aspects of the Kalman Filter response, we will simply choose, G=1, Q = BB’, and R = a small scalar, to
be iterated until a “reasonable” speed of convergence is obtained. For example,
>> Hd = c2d(H,0.0025)
>> L=dlge(Hd.a,eye(2,2),Hd.c,Hd.b*Hd.b',0.01),abs(eig(Hd.a-L*Hd.c))
This yieds
L =[0.4542; 0.1064]
and magnitude of the observer error system eigenvalues 0.872; the latter implies convergence of the error
system in 20 samples, or 0.2 sec, which is a reasonable time from a feedback control perspective. (In a
quick design, the crossover of the feedback system would be selected around 10-20 rad/s, a factor of 2-4
above the bandwidth of the system poles, both for the stable and the unstable equilibrium case.)

Finally, for implementation purposes, it is often a good idea to use a controller to stabilize the system so
that its response stays bounded for any possible test condition. (Especially, for system identification
applications.) Omitting the details, here we design a PID to provide 50deg phase margin at 13rad/s:

[Kp, Ki, Kd] = [1.7044e+000 3.3016e+000 2.1153e-001]

Next, we construct a simulation model to solve the nonlinear pendulum equation, and connect the
observer to the system 1/0.
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This simulation model allows the study of observer and identification

problems under a variety of conditions. We list some below:
- Convergence for different initial conditions (defined in the

Pendulum mask)

- Convergence with and without the PID controller, with and

without random excitation, with and without output noise
- Use of different observer gains, obtained with different output
noise weights (R) in the Riccati equation

- Stable and unstable equilibrium (requires adjustment of the

observer model).

Example: Uncontrolled system (for the unstable equilibrium such tests
can be performed only for short time intervals), starting with I.C. [1, 0].
Here, the angle output is noisy but the velocity is not. Their estimates
present a “smoothed” version of the angle, but the velocity estimate is
noisy. For a 20s interval, the two traces overlap. With a zoom-in during
the initial transient, we can observe the convergence, which takes

roughly 0.3s as predicted from the eigenvalues of the observer error

subsystem.

Angle and Angular velocity fram pendulum and observer
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For the identification experiment, we connect the excitation at the pendulum input. With zero I.C., and
after some trial-and-error we find a gain for the excitation (0.02) which causes the angle deviations to be
below 6 degrees. (This is necessary to keep the system near the linearization point where sin 6 =~ 6.)

I/0 data for the pendulum identification
D15 T T T T T T T T T

01y

0.05 f

005

0151 .

_D2 1 1
0

We collect the data (U,Y) and form a regressor for a second order system. For a generalization, we define
the filter F (e.g., a delay) and then write the regressor
w = [Fy, FFy, Fu, FFu]
(for a general case of regressor construction, see a system identification text). Then, the LS approximation
problem has a solution
qg=w\y=ww)"'wly
From which the identified system can be expressed as

qB3)F + q(4)FF
1-q(1)F — q(2)FF
The MATLAB implementation of this algorithm is shown below
>> F=c2d(tf(1,[.1 1]),.01)
>> w=[lsim(F,Y(:,2)),Isim(F*F,Y(:,2)),Isim(F,U),Isim(F*F,U)];g=w\Y(;,2)
>> Hd=minreal((q(3)*F+q(4)*F*F)/(1-q(1)*F-q(2)*F*F)), H=d2c(Hd)
Then

—0.00214z + 0.006692 —0.4417 s + 45.52

Ha@ == 597, +1  HO= 5036215 + 2957
Notice that, even though the identified model is unstable, its coefficients are fairly “close” to the true
linearization (P), implying that a controller designed for the identified system will also work for the actual
system. (The theory behind this statement is “coprime factor perturbations”, “gap metric” is discussed in
graduate courses.) However, the identification of the resonance is usually a difficult task and some
“smearing” of the peak occurs. A similar result is obtained with the controller in feedback, but now the
excitation must be increased by an order of magnitude to achieve the same range of output variation.
Otherwise, the output noise causes the signal to noise ratio (SNR) to decrease and the accuracy of the
identification deteriorates. Finally, identification with the pure ARX regressor (delay, F = tf(1,[1 0],.01))
is unsuccessful for this case, because it puts too much emphasis on the high frequencies.




EEE 481 Test1l Name: _ SOLUTIONS

Problem 1:
0.1

(z-0.5)(z-0.7)

Find a state-space realization of

. Then, using the difference equation yj,, — 1.2y, + 0.35y, = 0.1u, we write the state

1
1.2

Define x;, = [yﬁl]

update equations x,,, = [_0935 ]xk + [0(.)1] U, Vi = [1 0]x) + Ouy

Problem 2:
0.1

(z-0.5)(z-0.7) ’

What is the steady-state value of the step response of

The step response reaches a limit because the transfer function has poles inside the unit circle and the system is

. . s _ T _ 0.1 z _
stable. From the final value theorem limy._,o, vy, = lim,_;(z — 1)Y(2) =lim,_,(z — 1) GoomGo
0.1 1 2

(05)(03) 15 -3

Problem 2:
Choose the range and number of bits for an A/D converter that will measure a signal with range [-2V, +5V] with
3mV accuracy.

5V—(=5V)

A standard A/D range for this signal is +/- 5V. Then the accuracy of the conversion is —n < 0.003V, where N
is the number of bits. Hence, 2V > 3333.3 => N > Mg&%a =11.7 => N = 12 bits.
Problem 3:
1
An analog filter with the transfer function is to be replaced by a computer. Determine an
(2s+1)(0.01s +1)

appropriate sampling time and the transfer function of the discretized filter. You may use any discretization method
you like but you should justify all choices.

The filter bandwidth is 0.5rad/s (approx.) so the corresponding Nyquist rate is 1/6.28Hz. A reasonable choice for the
sampling time is an order of magnitude faster, that is, 10/6.28Hz, or, T = 0.628s. This sampling time is too large for
a simple Forward Euler discretization, because the fast pole at 100 rad/s would result in instability. Instead, we
discretize using Backward Euler s = (z-1)/Tz for which the discrete time equivalent is

G(2) = 1 T222 T?22 0.235z2

(2(;—1)+ )(0-01;2—1)“) = (2z-2+T2)(0.012—0.01+Tz) = (2.6282-2)(2.6382—0.01) - (z-0.761)(z—0.0157)
z z

Alternatively, one could choose to use FE for discretization but then the sampling time should be more that an order

of magnitude faster, e.g. T = 0.01. This is a poor choice. In this case, G(z) = —(Z_O(')O;;S)Z :
Problem 4:
Compute the transfer function of the system with state space representation
X Ax, + Bu A 0 1 B 0
= =+ = =
K c “ “ where -05 0.2 1
Y =X
o c=[0 0.1]
_  av-ip z 01 _ [0 17\M[01 _ o1z
We compute G(s) = C(zI —A)~*B = [0 0.1] ([0 Z] [_0_5 0.2 ) [1] TPy



EEE 481, Test 1. Name: __SOLUTIONS __
75’, Closed-book, Closed-Notes. Calculators and One 8 1/5 x 11 sheet (2pages) of notes and formulae allowed.

Problem 1:
Provide brief answers to the following questions:
1. Data from a 0-5V A/D Converter indicate that its resolution (minimum difference between
measurements) is approximately 0.3mV. How many bits does this A/D use?
2. How long does it take to transmit 10 integers, 2-bytes each, at 9600 Baud?
3. Whatis a ZOH equivalent DT system?
4. List three types of quantization errors.

1. 5/2”N (or 2AN-1) should be approximately 0.3e03. Solving, N = 14bits. Notice that if N=15bits, the
resolution should have been ~0.15mV.

2. 10x2x(8+2)/9600 = 20.8ms.

3. A discrete time system which produces the same output as the continuous time system at the sample
instants, when the input is piecewise constant (switching only at the sample instants). Equivalently, the
step response of the ZOH equivalent is the same as the sampled continuous time systems.

4. Type 1: Signal quantization in A/D. Type 2: Addition/multiplication quantization. Type 3: Coefficient
quantization in memory.

Problem 2:
An continuous time system is composed of two cascade subsystems, with transfer functions 1/(8 + 1)

and 1/(S + 2) . Using a sampling rate of 0.1 sec, determine the transfer functions of:

1. the discrete-time ZOH equivalent system.

2. the discrete-time system obtained by the forward Euler approximation of the derivative (
dx (t ) ~ X(tk+1) - X(tk)
—(t,) =

dt T

).

1. First, we compute the step response of the system
! _ 05 D0 (t) = 0.5¢72 — =t + 0.5 (t > 0)
(s+D(s+2)s s+2 s+1 s Ysit) = B¢ ¢ T

We sample with T=0.1

ys(n) = 0.5e72T — e~ 4+ 0.5
Then take the Z-transform

0.5z z 0.5z
V() = z—e 02 z_g 01 ;1
Finally, multiply with (z-1)/z
05(z-1) (z-1) 0.004528 z + 0.004097
Hp(z) = ~0z2 o1 T Vo =7
zZ—e zZ—e z¢ — 1.724 z + 0.7408

2.We use the bilinear transformation s =(z-1)/0.1 to find

. 0.01
»() = 09z =08)




Problem 3:
Consider the discrete-time system with state space representation

21 -108] _ [2
);M_:C':Xk_'-Bukwhere B 1 0 B 0
o C=[05 —0.6]

1. Determine its transfer function.
2. Determine whether the system is controllable and observable (hence minimal), and stable.
3. Determine the first 5 samples of its step response, starting with zero initial conditions.

1.
_ z—1.2
Hp() = a1, 7 108
R L P
A PR 1045 -054

The controllability matrix is full rank, therefore the system is controllable, the observability matrix has
rank 1 so the system is not observable. Hence the system is not minimal. The eigenvalues of the matrix A
are 1.2 and 0.9 so the system is not stable.

3. From the recursion, y(0) =0, y(1) = 1, y(2) = 1.9, y(3) = 2.71, y(4) = 3.44, y(5) = 4.10.
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EEE 481 Test 2 NAME SOLUTIONS
Open Book, Closed Notes, 45’

Problem 1

When G(s) = (si_l) write the closed loop response for the feedback system, sampled at kT. Find the
maximum T for which the system is stable. How is that value related to the Phase Margin of G(s)?

) N G(s)

T

v

A 4

Pl
<

The sampled output response to the reference has the form Y (z) = 1sz"th(z) where Gzoh(z) is the ZOH

equivalent of G(s):
z ] _ 2(1-e"")

Gzoh(z) = 2 2 {1 E 2l = 2 2ukn) — e Gy = 2 [ - ] = 20

T
The closed loop transfer function is Gel(z) = % = %

The maximum T for stability can be found by setting conditions for the poles of the closed loop transfer function to
be inside the unitcircle |2 —3e | < 1=2e T > é: T < log (i) =11

To relate this result to the phase margin of G, we can use the approximation of ZOH as a half-sample delay,
contributing - w¢-T/2 phase at crossover. From this, T < f—M is an estimate of the largest sampling time. Here, the
GC

crossover frequency is |G(jwgc)| = 1= wGC = /3 = 1.73 and the phase margin is PM = 180 + arg {G (jwgc) =

180 — tan"'+/3 = 2.1(rad). So T < — = 2.5. The estimate has significant error because the approximation of the
ZOH with a delay deteriorates for hlgh frequenmes (relative to the delay).

Problem 2
For the system G(s) = de5|gn a discrete-time PI controller

-138

Bode Diagram

so that the crossover frequency is 0.1 rad/sec and the Phase
Margin is 50 deg. Select the discretization time so that the Zero
Order Hold contributes 5 deg phase lag at crossover. (For
simplicity, you may discretize by any convenient method. Transfer
function data may be obtained graphically from the attached Bode

plot)

1B e
0

To design the PI, we first compute the phase from the phase margin
condition: PM = 180+arg(GC) at crossover. Here, arg(G (jwgc)) =
—90 — tan™1(0.1) and arg(C(jwgc)) = —90 + tan™*(wgc) and we

need to add -5 deg for the contribution of the ZOH. Hence,

requenc: I ISec t 62 1 1
Frequency aksc) = @ne21) _ 4q Then, K = — 26 __ = 47¢ - 3.
0.1 I6Gwao)l v (Twge)?+1

The PI controller is now C(s) = K =X To discretize, we select T so that the ZOH angle is -5 deg (approx), i.e.,
M (both Tustin and Euler produce similar

T=-215%= 1.7(sec). The discrete controlleris Cd(z) =
wge 180
coefficients).



EEE 481 Test?2

1
1. Design and compare a Pl and a PID controller to achieve a crossover of 0.02Hz, 50deg phase

margin, and discretized with a sampling rate of 0.2Hz for the system with transfer function
2.2
P =
)= s DT+ 225+ D)
2. Comment on closed-loop bandwidth, disturbance attenuation at 0.002Hz, overshoot and overall
set-point tracking capabilities of the two controllers.

Note: For the PID, use a pseudo-derivative time constant T/2 (half-sample time).



EEE 481 Test2 NAME:

75’, Closed-book, Closed-Notes, Calculators and One 8 1/5 x 11 sheet (2pages) of notes and formulae allowed.

1. Design aPID controller to achieve a crossover of 0.1 rad/s,
50deg phase margin, for the plant with transfer function (also
shown in the adjacent plot)

2(—=s+1)

PO = G Dt r6s 10
For asuitable differentiator time constant, we ask for a phase
lag of 0.1 rad at crossover. Hence, T = 1. ThePID is
0.418s* + 0.636s + 0.242
s+ s
2. Select a suitable sample time and discretize the controller.
Comment on the phase margin of the discrete time closed loop
System.
For a suitable sampling time, we ask for a ZOH phase lag of
0.1 rad at crossover. Hence, T = 2. UsingaTustin
transform, the discretized PID is
0.648 z2 — 0.176 z + 0.012
z2-
The discretized closed loop will have phase margin
approximately 0.1 rad less than the continuous time loop,
i.e., ~44deg. (Note: For this problem, a Pl controller would
be sufficient.)

Magnitude (dB)

Phase (deg)

Bode Diagram

] .
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0f--1-

Enf--a-

-100
SE0

2T0 -

=
jul
[=]

90 |--4-

107 107 10" 10 10°
Fregquency (radfzec)

3. Do you expect that a prefilter will be needed to avoid overshootsin the step response? Briefly describe

the design of such a prefilter.

Even though the PID zeros are at 0.76 and are faster than the crossover frequency, the closed-loop will
exhibit some overshoot due to the reduced phase margin (less than 60deg). A prefilter can take the form
of alow passfilter (or its discrete version), where the zero should be outside the system bandwidth and the

1s+1
pole roughly around the crossover ot

by trial-and-error. For implementation, and to deal with possible
saturating actuator constraints, the filter can be moved inside the
loop in a2-DOF controller configuration.

4. Use Ziegler-Nicholsrules to design a PID for a system with the
step response shown in the adjacent plot.

From the plot, we approximate slope and delay by
R=(0.3-0.05)/(8.5-3), L=2, for which the PID is
11s?+ 1325 + 3.3

S

3. A system is tested in feedback with a proportional controller with
gain 1. Use Ziegler-Nicholsrules to design a PID controller if the
closed-loop step responseis as shown in the adjacent plot.

From the plot, we approximate ultimate period by
Pu=(12-5), Ku=1 (as given), for which the PID is
0.53s% + 0.6s + 0.17

S

Further refinement can be

Amplitude

Amplitude

Y I
0

Step Response
o0& T T T T T T T T

i i
4 10 15 20 25 30 35 40 45
Time (=ec)

Step Response

Time (sec)
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1. Design a PID controller to achieve a crossover of 2 rad/s, 50deg
phase margin, for the plant with transfer function (also shown in the

adjacent plot)
2(-02s+1)

PO = Zei Dz 165 + 0
Angle at 2rad/s = 162deg = -198deg =>
24(tjw +1) = —-180+ 50+ 198+ 90 + 6 = 164 =>
7,0 = 7.1 =>1, =356 (D-filterat T = 1/20)
Next, we compute the gain of the plant with the controller (so far) at

2rad/s = M = 0.33
j2(0.05j2+1)
o) - 3(3.565 + 1) _ 38.0s% + 21.4s + 3
8 = 50055+ 1) s(0.055 + 1)

2. Select a suitable sample time and discretize the controller. What
will be the phase margin of the discrete time closed loop system?

The Tustin discretization at 1/20s or 20Hz is
521z2-1027 z + 506.5
Cp(z) =

) 22-1.333 2 +0.3333 . . L
This sampling time is consistent with the D-filter selection, it will add

only -3deg lag at crossover but is a little more conservative than the
6-samples-per-rise-time rule (actual BW for this is 5rad/s so this rule
would yield T = 1/15sec).

Tustin preserves the phase very well (below 1/3™ of Nyquist) and the
ZOH is effectively Y2 sample time delay at crossover, implying that the
DT PM is 50-3 = 47deg.

3. Do you expect that a prefilter will be needed to avoid overshoots
in the step response? Briefly describe the design of such a
prefilter.

We expect a significant overshoot because the crossover is well above
the open loop BW and a much slower pair of zeros is used in the
controller. We should select a lowpass filter to reduce the peaking of the
closed loop transfer function. For example, we can start with F(s) =

%j:i) where the zero is roughly at closed loop BW and the pole is near

the compensator zeros, and iterate until the overshoot is satisfactory.

4. Use Ziegler-Nichols rules to design a PID for a system with the
step response shown in the adjacent plot.
We estimate the slope as R = (0.18-0.05)/(5.85-2.15)=0.035 and the
delay L = 1.1. Then, the ZN rules yield

1452+ 31s + 14

C(s) =

S

3. A system is tested in feedback with a proportional controller
with gain 35 1. Use Ziegler-Nichols rules to design a PID
controller if the closed-loop step response is as shown in the
adjacent plot.
We estimate the Ult. Period as Pu = 7.45-2.75 = 4.7 and the Ku = 35
(from the plot title). Then, the ZN rules yield

12524 21s + 9

S

C(s) =

Amplitude

Amplitude

Bode Diagram

S0~

Magnitude (dE)

A0 F---

-1a0
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- 027/RL? 0.6/RL? | Ki - 0.54Ku/Pu  12Ku/Pu

B B os/R | Ed - - 0.075KuPu
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Problem 1. Provide brief answers to the following questions:
1. What is the resolution of a 10bit A/D converter?
2. What is the Baud rate in serial communications?
3. WhatisaZOH

1. 10bits means 2710 levels of conversion, or 1:1024 of the full range.

2. Bits per second.

3. Zero-order Hold, it is a D/A conversion method by which the conversion value is kept constant for
one sample period (piece-wise constant, or staircase conversion).

Problem 2:

S
An analog band-pass filter with the transfer function is to be replaced by a computer.

(s+1D(s+100)

Determine an appropriate sampling time and the transfer function of the discretized filter using any
suitable method.

The frequency response should be approximated at least up to 100rad/s to recover the band-pass
properties of the filter. We can choose T corresponding to a couple of orders of magnitude above the
filter bandwidth (100rad/s), but this choice must also take into account the frequency content of the
signals to be filtered. For example, choosing T = 0.001, (6.2kHz) we get, after Euler discretization s = (z-
n/,
0.001(z- 1)

Ha@ = 27899, + 08991

which has approximately the same frequency response up to 1000rad/s.

Note that, for low sampling rates, the low-pass character of the filter is constrained by the Nyquist
frequency; if we choose T=0.01s (620rad/s), and with Euler discretization, the fast pole becomes a
delay, i.e., the high-frequency pole is trivialized and the filter becomes just a high pass.

Problem 3:
Consider the discrete-time system with state space representation

0 1 0
X1 = A%, + Bu, A= B=
where -05 01 2

Vi = O C=[-01 2|
1. Determine its transfer function.
2. Determine whether the system is controllable, observable, and stable.
3. Determine the first 5 samples of its step response, starting with zero initial conditions.

_ 47-02
1.H(z) = C(zl — A)7B = ————

2. Rank([B,AB]) = 2 (det not zero) => the system is completely controllable.

Rank([C;CA]) = 2 (det not zero) => the system is completely observable

Eig(A) =roots (z*2 - 0.1z+0.5) = 0.5 4+ /- 0.705j which are inside the unit circle (magnitude
~0.71) => the system is stable.

3. Xg = 0:>y0 :0, X1 :AXO+B1 :B,y1 = Cxl =CB :4,XZ :AB+B,y2 = CXZ :4.2,y3 =
2.22,y, = 1.922, y_5 = 2.882
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1. Design aPID controller to achieve a crossover of 0.1 rad/s,
50deg phase margin, for the plant with transfer function (also
shown in the adjacent plot)

2(—=s+1)

PO = G Dt r6s 10
For asuitable differentiator time constant, we ask for a phase
lag of 0.1 rad at crossover. Hence, T = 1. ThePID is
0.418s* + 0.636s + 0.242
s+ s
2. Select a suitable sample time and discretize the controller.
Comment on the phase margin of the discrete time closed loop
System.
For a suitable sampling time, we ask for a ZOH phase lag of
0.1 rad at crossover. Hence, T = 2. UsingaTustin
transform, the discretized PID is
0.648 z2 — 0.176 z + 0.012
z2-
The discretized closed loop will have phase margin
approximately 0.1 rad less than the continuous time loop,
i.e., ~44deg. (Note: For this problem, a Pl controller would
be sufficient.)

Magnitude (dB)

Phase (deg)

Bode Diagram

] .
anf--1-
0f--1-

Enf--a-

-100
SE0

2T0 -

=
jul
[=]

90 |--4-

107 107 10" 10 10°
Fregquency (radfzec)

3. Do you expect that a prefilter will be needed to avoid overshootsin the step response? Briefly describe

the design of such a prefilter.

Even though the PID zeros are at 0.76 and are faster than the crossover frequency, the closed-loop will
exhibit some overshoot due to the reduced phase margin (less than 60deg). A prefilter can take the form
of alow passfilter (or its discrete version), where the zero should be outside the system bandwidth and the

1s+1
pole roughly around the crossover ot

by trial-and-error. For implementation, and to deal with possible
saturating actuator constraints, the filter can be moved inside the
loop in a2-DOF controller configuration.

4. Use Ziegler-Nicholsrules to design a PID for a system with the
step response shown in the adjacent plot.

From the plot, we approximate slope and delay by
R=(0.3-0.05)/(8.5-3), L=2, for which the PID is
11s?+ 1325 + 3.3

S

3. A system is tested in feedback with a proportional controller with
gain 1. Use Ziegler-Nicholsrules to design a PID controller if the
closed-loop step responseis as shown in the adjacent plot.

From the plot, we approximate ultimate period by
Pu=(12-5), Ku=1 (as given), for which the PID is
0.53s% + 0.6s + 0.17

S

Further refinement can be
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