EEE 582 HW # 1 SOLUTIONS

Problem 1.2
Let A\; and p; be the i-th eigenvalue and eigenvector of A, so

Ap; = \ip; W
1.
A?p;, = AAp; = A(\pi) = Aip;
AFp; = AARTYp = A,

Hence the eigenvalues of A* are )\f fori=1,...n.

2. Multiply both sides of (1) by A~! (all eigenvalues are different from zero), then

1
A~ Ap; = A7 \ps = P = A™'p

Hence the eigenvalues of A=! are )\L fori=1,...,n.
3

3. The eigenvalues of AT are given by the roots of
det (AT~ AT) = det (AT~ 4)7] = det [(AT — 4)]T
and for any square matrix X, det(X) = det(X ), finally
det (AT — A") = det (A — A)

Hence the eigenvalues of AT are \; for i =1, ..., n.

4. Let A" = AT (conjugate transpose),
det (\[ — A™) = det (AT — AT) = det (AT — A)

then

det (A — A™) = det (AT — A) = det [(\T — 4)] = det (\I - A)

Hence the eigenvalues of AT are \; fori =1,...,n.

aAp; = a (Ap;) = a\ip;
Hence the eigenvalues of @A are a); for i =1, ...,n.

6. In general the eigenvalues of AT A does not relate nicely with the cigenvalues of A. For the special case
when A = AT (symmetric matrices), the eigenvalues of ATA are \? for i = 1,...,n.

Problem 1.10
Q symmetric (Q" = Q), Q' Q = Q? = eigenvalues of Q* are \? fori = 1,...,n.
HQ” = \/)\Inax (QQ) = m?X |/\z|

From
2" Qx| < |27 Q| |2l = Qx| ||z < QI ll«[l = mgX\MITI



hence ‘xTQx‘ < ||Q] for all unit-norm z. Pick z, as a unit-norm eigenvector of @ corresponding to the
eigenvalue that yields max; |\;| (possibly non-unique). Then

‘mZQxa‘ =z, <m?x |)\Z|) q = max |As]
thus,
max |z' Qz| = [|Q||
llz]=1

Problem 1.15
() symmetric with €1, €5 such that
0<eal<Q <Lel

we know
0 < Amin (@) z"r<2"Qr < Apax () z'x

Pick z as an eigenvalue corresponding to Apin (Q) and Apax (Q) respectively then

€1 S )‘Inin (Q) 7)\max (Q) S €2

Therefore

1 1
)\min Q71 ==

( ) >\max (Q) €2

1 1
)\max = > —

(Q ) >\min (Q) €1

For Q! positive definite
0<I< Q' < 1
€9 €1

Problem 1.16
W (t) — el is symmetric and positive definite V¢, then for any z

T (W(t)—ez>0=2" W)z >z elr
Pick x; be an eigenvector corresponding to an eigenvalue A\; or W(t)
ol W, =Moo' x> ex' x

That is Ay > €. This holds for any eigenvalue of W (¢) and every ¢. Since the determinant is the product of the
eigenvalues then

det (W(t)) >e">0
Problem 1.17

Since A(t) is continuously differentiable and invertible for each ¢, we can write A~*(t) A(t) = I, then taking
the derivative with respect to time on both sides of the equation

d , . _4 _d
o (A (t)A(lj‘)) = !
ATTWOAD) + A7 D) = 0
A=Yt = —ATYHA)ATH(®)
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Problem 2.1

y (1) + an 1 (YT + - ao(D)y(t) = bo()u(t) + bi()uV (2)
Let 2, (t) = y™ Y (t) — by (t)u(t) and z1(t) = y(t) then

() = yt)=az2()

() = §(t) = z3(h)
'i‘”—Q(t) = «rn_l(t)
Tpo1(t) = an 4 bi(t)u(t)

da(t) = y™ () =0 u(t) — by (uD(t)

=S a0y + bo(tyutt) — K (0yu(t)

=0

= D au)ai(t) F @ (8) (wa(t) + b (Ou(t)) + (bo(t) ~ b(1) ) u(t)
i=0

then we can write

I 0| [ 0 1
ao = | ; | e ; |
0 0 1 b1 ()
| ) —ar(t) - —ana(t) ] L bo(t) — 500) + a1 (1) |
cit)y = [1 0 0], D(t)=0
Problem 2.2

Yy (1) 4+ an 1t YY) Fan ot 2y (E) + - art Ty D () + apty(t) = 0
Let x1(t) = t"~y(t), then
1(t) = (1 —n)t~ oy (t) + t~ taa(t)

with zo(t) =t "2y (t), so
is(t) = (2 —n)t " tan(t) +t tas(t)

with z5(t) =t "3y(2 (1), ...
Fn_1(t) = =t ap_1(t) + 0 (t)

with 2, (t) = y™ (), finally
En(t) = —ap_1t ' wp(t) — an_1t 'xu_y — - —art o (t) — agt” xy (1)

and we can write @(t) = ¢t~ Az (t), with

{l—n 1 0 "
0 2—-n --- 0 0
A: . . st . .
0 0 -1 1
—ao —ar . —Qp-2 —ap—1



Problem 2.3

¥ () = —zu(t

with initial conditions »(0) = 0, §(0) = 1 and u(t) = a(t) = sin(3t). We can write sin(3t) = 3sin(t) — 4sin’(t),
then the differential equation is

g(t) +

SRS

sin®(t) — sin(t)

TANS

. 4
§) + 3y’ (0) =
Propose as a solution y(t) = Asin(t), substitute in the differential equation

4
—Asin(t) + §A3 sin®(t) = —sin®(t) —sin(t) = A=1

W

and it also satisfies the initial conditons

y(0) =0 = sin(0)=0
y(0)=1 = cos(0)=1

so y(t) = sin(¢) is a solution to
. 4 1.
i) + 30 = — ()

Let z1 = y(t), T2 = y(t)a

jz{—%ﬂw—@m

The linearization around the nominal solution

_ 9w [ o 1 3 0 1
a = 25 <[k o] e = e o
u*=sin(3t)
o o 2]

Finally

Es(t) = A(b)rs(t) + Bus(t)

ys(t) = [ 1 0 ]as(t)
with @s(t) = 2 (t) — { S;I;((?) },xtg(()) — 2(0) { ) } us(t) = u(t) — sin(3t) and ys(t) = y(t) — sin(t)

Problem 2.8
Identity dc-gain means that for a given @, 3%, such that Az + Bu = 0, CZ = @, this implies that the matrix

A B |. . .
[C’ 0 }15 invertible.

1. If K € R™ ™ is such that (A + BK) is invertible, then C(A + BK)~!'B is invertible.

Since A B is invertible , for any K, A+BK B is invertible, this from
C 0 C 0
A+BK B | | A B I 0
C 0] | C o0 K I
Then

A+BK B[R Ry | [I
C 0 Ry Ry | |0

/]



SO

(A+ BK)Ry +BR; = I
(A+ BK)Ry +BRy = 0 = Ry= —(A+BK) 'BR,
CR, = 0
CRy, = I = -C(A+BK) 'BRy=1
hence C(A + BK)~!B is invertible.
2. We need to show that there exits N such that
0 = (A+BK)Zz+ BNu
u = C%
The first equation gives ¥ = —(A + BK) 'BNi. Thus we need to choose N such that —C(A +

BK)~'BN = ii. From part 1., we take N = [~C(A+ BK)"'B] .

Problem 2.10
For u(t) = @, & is a constant nominal if and only if 0 = (A + Da)Z + bu. This holds if and only if
b € Im[A + Di), that is, if and only if rank(A + D) = rank | A+ Di b |
If A+ D is invertible, then
i=—(A+Du)" "bu

If A is invertible, then by continuity of the determinant det(A + Ba) # 0 for all @ such that |a| is sufficiently
small, equation () defines a corresponding constant nominal. The linerized state equation is

is(t) = (A4 Du)zs(t)+ [b— D(A+ Da) 'bi]us(t)
yg(t) = C.T(s(t)

Problem 3.7
From

taking derivative with respect to time 7(t) = v(t)p(t), and

o) <00+ [ v(odolodds = o1) < v(0)+r(0)
multiplying by v(t) > 0
SO S VOO +oOr(D) = )~ ) < Bl
()

Multiply both sides by exp <— f:o v(7’)d7’),

e o "D uye o T < wypeye o MO
j_t{r(t)e jfi) v('r)d'r] < o(BBit)e f:o v(r)dr

Integrating both sides
t ot o
r(t)e o DT < / w(o)(o)e o O

to



multiplying both sides by exp <[:0 v(T) d7'>

t . “t
T’(t) < (/ ’U ¢(U v(‘r)d‘r ) e‘/to v(T)dr
T‘(t) < / ;U(T)dT

From ¢(t) < ¢(t) + r(t) t
d(t) < () + / U(U)Qﬁ(U)efa U(T)deU

to

Problem 3.12
z(t) = A(t)x(t), x(to) = xo, integrating both sides and taking norms

o(t) — w0 = /t’A(T)x(T)dT

0

(o)l = /t:Amx(T)dwxo
()l < /t:Amx(T)dT + ol

Using Gronwall-Bellman inequality with ¢(t) = ||z(¢)||, ©(t) = ||@oll, v(t) = ||A(E) |,

ot +
@I < ol +||:c0||/ LA ela1 A4 g
to

integrating by parts

t
A d
J (@) < ol — ol + ol el 471

SO .
A(T)|ldT
le(®)] < flaof o'
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Problem 4.6 )
The unique solution for X (t) = X (¢)A(t), X (to) = Xo is

X(t) = oy (Tf, tO)XO
on the other hand, take the transpose system X | = AT X |, this also has a solution
XT(t) =D,7(t, o)Xy = X(t) = Xo® (L, to)

For the second part, let ®4(¢,7), ®(t, 7) be the transition matrices for A, (t) and A (t), respectively. Propose
as a solution

X(t) = ®q(t, t0) XoP2(t, to) + /t<1>1(7f7 o)F(0)®y(t, 0)do

Jtg

taking j—t
X(t) = ©1(t,t0)Xo D2(t, to) + P1(t, t0) XoPa(t, to) +P1(t, t) F(t) Pa(t,t)
Ay (1) X (t) X(t) AT (t) I I
SO

X(t) = A(t)X (1) + X (1) A3 (t) + F(2)

To prove uniqueness, pick “two solutions “ and assume them different

Xi(t) = A(BXi(t) + X1(0)A; (t) + F(t)

Xo(t) = Ai(D)Xa(t) + Xa(t) Az () + F (1)
produce the difference between the two

Z(t) = A () Z(t) + Z()A3 (1), Z(to) = 0
with Z(t) = X1(t) — X2(t). Integrating both sides, taking norms and using Gronwall-Bellman lemma we get
"l Ar(r)+AT ()] dr
1z < 2] elelt O ()
z@) < 0 (2)

the last inequality imply that Z(¢) =0 for all ¢ which in turn implies that X (¢) = X2(¢). Hence there is just
one solution.

Problem 4.8
(<) Assume A(t)A(r) = A(1)A(t) Vt, 7 then

A(t) — A(T) — A(T)A(t) = 0 V¢, T
integrating both sides
/ (A(t)A(o) — A(0)A(t)) do = 0

and since the difference is zero for all ¢, T

A(t) /TTA(O')dO': (/:A(J)da> A(t)

(=) Assume A(t) [T A(o)do = (_fj A(a)da) A(t), then

/ (A(t)A(o) — A(0)A(t)) do = 0



suppose A(t)A(T) = A(T)A(t) is false = A(t) A(1) — A(7)A(t) #0, let ve R™ # 0

vl {/T (A(t)A(o) — A(0)A(t))do| v=0

and can be written as

| / v [A(t)A(0) — A(0)A(t)] vdo = 0

but [A(t)A(o) — A(0)A(t)]v = f(t, 7)Vt, tau. From the “false assumption and continuity we know that there
exists a neighborhood around oq (Jz — gg| < 8) for which f(¢,7) > €. Let 7 < g < 0, then

oco—06 oco+6
N — —

/: f(t,o)da:/jo5f(t,a)da+/Jojéf(t,a)da+/t f(t,0)do
-0 ~

and

o0+6 ogo+6
/ f(t70)d0>/ edo > 2¢6 # 0

0—96 oco—06

by contradiction we are done.

Problem 4.13
Using the fact that %@A(t,r) =A)Pa(t,7), Pa(r,7) =1,

Q(I)A(t,T) _ { Aqi(t)  Apa(t) } [ Oy (t, 1) DPia(t,T)

ot 0 Ax(t) || ®ult,7) ®ut,7)
%@11@,7) = A O)®(t7), Syy(r7) =1

%cbgz(t,r) = Aos(t)Poa(t,7), Poa(r,7) =1

%ng(t,r) = A11(0)P12(t,7) + A1 (O)Pos(t, 7), P12(7,7) =0
%%1 (t,7) = Aoa(t)Pa1(t,7), Po1(7,7) =0 =Py (t,7)=0

S0
o q)ll(t77—) (I)lg(t,’l')
@A(t77—) - 0 (I)Qg(t,’l')
writing the differential equation

Pio(t,7) = A1 () Pra(t,7) + A2 (1) Poa(t, 7)

The solution to the homogenous equation is ®15(¢,7) = ®11(¢,7) and the solution to the differential equation is

t
Dio(t,7) = P11 (¢, 7) Dya(7, 7) +/ D11 (t,0)A12(0)Pas(0, 7)do
N—— T

=0
then .
(I)lg(t,’l') = / @11(15,0’)1412(0’)(1)22(0'77')(10'

Problem 4.25
From the Peano-Baker formula

Ot +o,0)=1+ ./:Jw)(r)dT + i /:Jr‘f A(m) ./:1 A(m) - ~</:kl A(rg)dm - - -dmy

k=2"



From the exponential matrix series representation

MO = [+ A, (o)t + Z —A’f
with A, (o)t = [T A(r)dr. Let R(t,0) = ®(t + 0,0) — (D then ||R(t, 0)|| = Hcp(t to,0)— e?‘dffﬁH

t+o) t+o Th—1
I+/ dT—l—Z/ A(1) / (7'2)/ A(rp)drg - -dmy —

IR0l =

I — A(o)t+ Z —A’“ (o)t*

using the triangle inequality

t+ o — oo tk _ &
ireon < 3 [ namn [T A dnean + 30 5 Ao
k=2"7 k=2
IREo < Y Zabth =223 2 ak2gho2
7 2t T A
=2 o=

changing variables and noting that for k > 2 we get

< ooyt 2)”

o0
1
IR(t,0)] <) —a™™ = a’t’e™
m.

Problem 5.2a-b

1. The characteristic polynomial is given by det(AI — A) = 0, A> +2X +1 = 0 hence A\;» = —1. The
exponential matrix is given by: et = By(t)I + B;(t)A. The functions 3y and (; are given by:
M= Bo+ A6
ter = (1 repeated eigenvalues

so 81 =te P and By = e '+ te”t. Then

ac _ | tHL b
€T 11—t

2. The characteristic polynomial is given by det(A —A) = 0, (A+1)® = 0 hence Ay o3 = —1. The exponential
matrix is given by: et = By (t)I + 1 (t)A + [(t)A%. The functions By, §1 and 3, are given by:

e = Bo+AB+ A6y

te’ = 31 +2B)\ repeated eigenvalues

= 206,

t26At

2 2
s0 By =Le ! Br=te P+ 1%t and fy = e ' +te !+ Le~t. Then



Problem 5.7
Taking derivatives on both sides

d K d

— 1A Aad _ At _ T

dt { /O € U} i ¢ )
AeAt _ AeAt

Assume initial condition ¢ = 0 then

t=0

0
A/ eAadaz(eAt—I)‘ =0=0
0

hence the right side is equal to the left side and viceversa.

Assume A~ exists, i.e., det(A) # 0, then pre-multiply both sides by A~! and post-multiply both sides by

(e -n)”

</0t eA"da) (A -1 = A

from the assumption that A~ exists, it implies that (et* —I) # 0 V¢ and also that —oo < (e! — ) < oo V1,

taking the limit as ¢ — oo
t
lim {/ eA”dU} {lim (eAt—I)] = A1
t—oo |, 0 t—o0
we need that lim;_. (e?!
Under this condition we can write

o0 0
—/ eMdo=A"t = AT = / e do
Jo Joo

Problem 5.14
Since A(t) is diagonal then ®;;(t,7) = exp (f: aii(a)d0>, SO

672U+32- sin 20 0 ¢
(I)(tﬂ')z { 0 e—3a+%sin20 :|
) 1 -2 0
A(t) has period T = 7, then R= 5 In ®(T,0) = 0 —3 and
L sin 2t
_ ~Rt _ | ©° 0
P(t) = <I)(t,0)e b= |: 0 6% sin 2t :|

Problem 5.16

— I) be finite this implies that the eigenvalues of A have negative real part.

From the Floquet decomposition, ® 4(t,7) = P(t)e?*=7)P~1(7) the solution to the differential equation is

z(t) = P(t)e™ =T P~ (7)a(7)
with 2(7) the initial condition, pre-multiplying both sides of () by P~1(¢) and let z(t) =
can write () as
z(t) = eR(t’T)Z(T)
which is the solution to the differential equation

At) = R(t)

where R is a constant matrix and the change of variables is given by x(t) = P(t)z(t).

P=1(t)z(t), then we



Problem 5.17
Since A(t) is T-periodic we can write

®(t, tg) = P71(t)elt=10) P(ty)

where P(t) is continuous, T-periodic and invertible at every t. Let S = P~ !(tq)RP(ty), Q(t,to) = P~1(t)P(ty),
then Q(t,to) is continuous, T-periodic and invertible at every ¢, so Q (t+7,to) = Q(t,to) and R = P(ty) SP~'(to)
(notice that P(tp) is a similarity transformation between R and S

@(f, tO) _ P—l(t)eR(t—to)P(tO) _ P—1(t)P(tO)eS(t—toP—1(t0>P(t0> _ Q(t, to)es(t—to)
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Problem 6.3

1. a(t) = 0, A(t) is constant and its eigenvalues are 0 and —1, hence the system can not be uniformly
exponentially stable.

2. a(t) = —1, A(t) is constant and its eigenvalues are —1; since both of them have negative real part, the
system is uniformly exponentially stable.

3. a(t)=—t

¢
x1(t) = xole_%(t2_tg) —l—/ els 17 (5)ds
to

2o(t) = wo e 710

The first term of 21 (¢) is not boundded uniformly with respect to to (take tg — —o0), therefore the system
is not UES.

4. a(t) = —et
ot = o ([ o)

For 7 = 0 we get
. 1
lim (I)ll(t,O) - -
t—o0 e

This implies that the system is not asymptotically stable.

-1, t<0
5. a(t){ et 1>0

For ¢ty > 0, this case is as in Exercise 4, and hence the system can not be UES.

Problem 6.7

From A(t) = —A'(t), Vt € R, @(t) = A(t)z(t) = —AT(t)x(t). Let ®4(¢,7) be the state transition matrix
of A(t). Then ®}(7,t) is the state transition matrix of —AT(t) (Property 4.5). So, for any xy we have
z(t) = ®a(t,to)ro = ) (to,t)zo. Hence, ®4(t,to) = @} (to,t). Multiplying both sides from the left with
L (t,t9) we get ®a(t,to)®](t,ty) = [®a(t, to)Palto,t)]" = I. So, ®a(t,to) is uniformly bounded and, in fact,
|® (¢, to)|| = 1. This implies that &(¢) = A(¢)x(¢) is uniformly stable.

Next, for P(t) to be a Lyapunov transformation we need that

PO < pr, [PTHO] < p2
Since P(t) = ®4(t,0), we have ||P(t)]] = 1. On the other hand, P~1(t) = ®4(0,¢) and, from the previous

expression, we have again that ||[P~1(¢)|]| = 1. Hence P(t) is a Lyapunov transformation.

Problem 6.8
(=)
Assume & = A(t)z(t) is UES, then 3y, A > 0 such that ||®4(t,7)|| < ve~**~7). The state transition matrix
for 2(t) = AT (—t)z(t) is @ (—7,—t). Then
[@4(=7, =) = [@a(~7,~t)|| < 7y 7" =
[#3r,-n)] < e



and this implies that the linear state equation #(t) = AT (—t)z(t) is UES.

(<)
Assume #(t) = AT (—t) is UES, then 3v, A > 0 such that H(I)AT(_t) (t,7)| < ve*t=7) . But the state transition

matrix for @(t) = A(t)x(t) is ‘I’ZT(_t)(fT, —t). Then

[#3+ (=0 = @4~ < 9e¥=
@ ar oy (=7, =t)]| < 777
and this implies that the linear state equation #(t) = A(t)z(t) is UES.

Problem 6.11
We know that

ool = Jaallexp (5 [ A (4+47))

so if A+ AT < 0 implies that R {\;(4)} < 0 for i = 1,...,n, —n being the dimension of the matrix A— and
the system is UES.

Since F = FT > 0 we can factorize F = F2F% such that Fz = F?
the differential equation becomes

-
>0, let z = F_%a?, then x = F7z and

Next,

Therefore R {\;(FA)} < 0 and the system is UES.

Problem 6.13
#(t) = A(t)x(t) US implies that 3y > 0 such that ||®(¢,7)| < 7.

z(t) = ®(¢,t0)wo + / O(t,7)f(r)dr

Jto

(@) < 19 (t to) | lwoll + intt, @G )| | £(r)] dr
le(®)] < 4 lzoll +7 / 1£(r)] dr

Thus, if
o
Jim [ @)t < < oc
—00 to
then z(t) is bounded.

In general, (arbitrary A, f) this condition is also necessary: Let A(t) be a constant matrix equal to zero and
f(t) having the same sign for all ¢. Then if this condition is violated, x(¢) is unbounded.

Problem 7.1
For US wee need
nl <Q(t) < pl
AT(1)Q() + QAL + Q(t) <0



Pick Q(t) = I, then nI < Q(t) < pI with n=p =1, and

AT+ A1) +0<0

There is not a Q(t) that results in UES. As a counter-example, pick A(t) = 0 that satisfies the hypothesis
but is not UES.

Problem 7.8
For US the set of conditions is derived from

which are

For UES the set of conditions is derived from

al <Q(t) < BI
AT(HQM) + QA +Q(t) < —vI

which are

(07

IN
e

—~

t)<p

1

iy (t)
<

[
—~

IN

ax(t)

(SN

Problem 7.9 For UES the set of conditions is derived from

al <Q(t) <pl
AT(Q() + QAL + Q(t) < —vI

which are

Problem 7.11
We can write the equation as

(AT +pl) Q+ Q(A+pul) = —-M
By Theorem 7.11 we conclude that all eigenvalues of A + pI have negative real part, that is, if

0=det (A — (A+pul)) =det (A—p) I —A)



then R [A\] < 0. Since > 0 = R[\ — p] < —p, that is, all the eigenvalues of A have real parts strictly less than
—u.

Suppose all eigenvalues of A have real parts strictly less than —pu. Then, as above, all eigenvalues of A 4 ul
have negative real part. Then, by Theorem 7.1, given a symmetric positive definite matrix M, there exists a
unique, symmetric, positive definite matrix @) such that (A—r +uI)Q + Q(A+ pI) = —M holds. This implies
that ATQ 4+ QA + 2uQ = —M holds.

Problem 7.12
Substitute @ in ATQ 4+ QA = —M such that

ot ot
ATeATthA75 + eATthAtA + AT / AT MeAdo + {/ A T MeAYdo| A= —M
Jo

JO

eAT o MeA
ATeATthAt + eATthAtA +er MM - M= -M
ATeATthAt + eATthAtA + eATt (_ATQ . QA) At —
AT ATt _ ATty QeAt 4 eATtQ [eAtA _ AeAt] -0

-0 =0
0=0

Problem 7.16
For an arbitrary but fixed ¢ > 0, let x, be such that

A A
lzall =1, [le*aa] =[]
By Theorem 7.11 the unique solution of QA + AT@Q = —M is the symmetric, positive definite matrix
0o
Q= / e “MeAdo
Jo
Then we can write

/ :E;reAT"]V[eA”a?ada < / :E;reAT"]V[eA”xada = 2] Qry < Amax (Q) = ||Q]|
t 0

Making a change of integration variable from o to 7 = o — ¢,

T ATe Ac T AT (t47) A(t+T1) T ATt At At 2 HeAtH2
/ x e’ “Me xadcr:/ T, e Me xadr =z, €” "Qe va)\min(Q)He xaH = 101
Jt Jo
Hence,
e
R 1Rl

and, since ¢ is arbitrary,

max [ < VIQITQT
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Problem 8.6
The solution to the differential equation for any xg, to > 0 is
-t
2(t) = ®ayr(t,to)xo = Pa(t,to)xo + / D 4(t,0)F(0)x(o)do
JTy

since &(t) = A(t)x(t) is UES, there are v > 0, A > 0 such that
¢
()] < ye™ 710 |l | +/t ve M (o) |2 (0)|| do
0

t
Al ()] < e ol +/ TIF@)| e ||z(o)|| do
to

Using Gronwall-Bellman lemma

t
M al0)] <26 leallexp ([ 217 ()]s
to
2] < 710 o]
then
[0 < e o)

with y; = ve?8
Problem 8.7

Since F'(t) is continuous, we can partition the interval [to, {] such that to <1, <tand ||[F(0)[| < £ foro > 1,
and ||F(o)|| < 8 for tg < o < t1. Then

le(®)]| < 1@ a(t, o)l lzo]| + / @ att, )| IF@)] (o) do + / 1®a(t, o) IF(@)]| (o) do

t t
()] < 7e™ =) o | +/t yBe= N7 ||='E(U)||d0'+/t yee M7 |a (o) do
0 1
and using Exercise 8.6
(8| e AP0+

Hence, tlim lz(@®)|l = 0= z(t) — 0.

Problem 8.8 N
Using Theorem 8.7 it follows that the solution of AT (£)Q(t) + Q(t)A(t) = —1 is Q(t) = joo AT (o gAt)o
which is continously-differentiable and satisfies nI < Q(t) < pI, for all ¢, where n and p are positive constants.

Then with F(t) = A(t) - 3@ ()Q(1)
FT(6)Q() + QF(t) +Q(t) = AT()Q(t) + Q()A(t) = I
Thus, using Theorem 7.4, &(t) = F(t)z(t) is UES.

Problem 9.1
The controllability matrix is

2 2a+2
W.=[B AB A’B]=

==



For controllability we need that det(W,) # 0. But det(W.) = —a, hence the system is controllable for all a # 0.
The observability matrix is

0 1 0

0 2 1

W.o— gA 10 a O
o A2 10 2 0
0 o O

0 2 0

notice that rank(W,) = 2 < 3 for all a € IR, hence the system is not observable for any «

Problem 9.4
W(t,ty) = /*t'f ®(t,7)B(r)B" (1)®" (t,7)dr
W(tf,tf) =0
%W(t,tf) =— ./tif (%@(t,r)) B(r)B" (r)® " (t,7)dr — /tf ®(t,7)B(1)BT (1) (%@T(t,r)) dr — B(t)B' (1)

%W(t,tf) =AW (t,ty) + W(t,t;)AT(t) — B(t)BT (t)

Using P~1(t) = —P~(t))P(t)P~'(t), we can write

%W‘l(t, tp) = Wt tp)A(t) — AT ()Wt tp) + Wt t;) B BT ()W (¢, ty)

W(to,tf) = /tf (I)(to,T)B(T)BT(T)(I)T(tO,T)dT

to
Then, for typ <t <ty
.tf

W(to ;) = / CID(tO,T)B(T)BT(T)quL'/ ®(to, ) B(r) BT (r)dr

J g t

W (to,t7) = W(to, t) + ®(to, )W (t,t7)® " (to,1)

Problem 9.7

=) [A, B] controllable < W., = [/ ®4(t,7)BBT® (t,7)dr > 0, but ®4(¢,7) = A7), Since (4)(8I) =
A Jto A
(BI)(A) = ®a_pr)(t,7) = eA=FDE10) then

't

Weampn = / " (A=BD)1-10) g T (AT ~B1)(1-10)
Jto
t

WC(A—ﬁI) = / ! e—QB(t—T)eA(t—T)BBTeAT(t_T)dT
to

The function e~2%(*=7) is bounded above and below for any 7 € [to,t;] by 0 < 7 < e 280"7) < § < o0;
then

0< AW, < W, <6W,, < o0

(A—=BI)

so W,

C(A-BI)

> 0< [(A - BI), B] controllable.



(<) [(A — BI), B] controllable < W, = f:Of e(A=BN(t=to) BRT (AT =BD(t=t) 47 > 0, and

C(A-BI)

%%

CA

tf
:/ eA(t—T)BBTeAT(t—T)dT

to

W,

ca

ty
:/ 28(t-7) A=) g T AT (t=7) g

to

The function e2%(*=7) is bounded above and below for any 7 € [to, ;] such that 0 < x < e?8(=7) < \ < o0;
then
0 < kW,

ca-pn < 0

S WCA S )\WC

(A—BT)

so W., > 0 < [A, B] controllable.

Problem 9.13
From the PBH test, a system is controllable if and only if

T T

A=p A

pT AL
p B=0

then the problem is equivalent to show that N(BT) = N(BBT)

(=) Let (A,B) be controllable then p' B =0 = p =0, for (A, BBT), p" BB" =0 then N(B") CN(BBT).

(<) By contradiction, let p € N(BBT) = BB p = 0, assume B'p # 0 and let m = BTp, then m™m =
p BBTp # 0, which the contradiction, so N(BBT) C N(BT).

The two set inclusions imply N(B") = N(BBT).

Notice that this property is a fundamental one and is not limited to the time-invariant case (the use of PBH
is TI-specific). More generally, we can use the definition to show this equivalence:

e Suppose & = Az + BB Tu is controllable and let u, be the input that transfers the arbitrary initial state
x¢ to the origin. Then the input v, = B"u, applied to the system @ = Az + Bv also transfers the same
initial state to the origin. Since this argument holds for any initial state, # = Ax + Bwv is controllable.

e Suppose © = Ax + Bu is controllable and let u, be the input that transfers the arbitrary initial state xg
to the origin. Then the input v, : BB v, = Bu, applied to the system @ = Az + BB v also transfers
the same initial state to the origin. This input always exists since R(B) = R(BB"), even if BBT is not
invertible (a variation of the proof given above, e.g., using null-range properties). Since this argument
holds for any initial state, & = Az + BB v is controllable.
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Problem 10.3
e Controllable & observable:

0 1
B 0 1 0 Q.= {
x{_l _Q}er{l]u 1
1 0
y=[1 0]z Qo = { 0 1
e Controllable & not observable
[0 1 -2
0 1 0 0 Q.=11 -2 3
t={ -1 -2 0 jz+ |1 |u 1 -3 9 |
y=[1 0 0]z Qo=1| 0 1 0
-1 -2 0 |
e Not controllable & observable
[0 1 -2
0 1 0 0 Q.=11 -2 3
t=1 -1 -2 0 |xz+ |1 |u 10 0 0 |
0 O *3 0 B 1 0 1
y=[10 1]z Q=] 0 1 -3
-1 -2 9
e Not controllable & not observable
[0 1 -2
0 1 0 0 Q=11 -2 3
t={ -1 -2 0 [(z+ |1 |u 0 0 0 |
0 0 -3 0 1 0 17
y=[1 0 0]z Q=] 0 1 0
-1 -2 0 |
Problem 11.3
Let P(t) be a change of variables such that
z(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t)
is equivalent to
2(t) = A(t)2(t) + B(t)u(t)
y(t) = C(t)=(t)
with
A(t) = P71 (P(OA() + P(1))
B(t) =P~ (t)B(t)
C(t) =C(t)P(t)
x(t) = P(t)z(t)
D 4(t,7) = P(O)®alt,7) P (7)

HW # 6 SOLUTIONS

det(Q.) = —4
det(Q,) =0
det(Q.) =0
det(Q,) = 4
det(Q.) =0
det(Q,) =0



We know that for instantaneous controllability

Qe=| Ko(t) Ki(t) - K,_1(t) ], rank(Q.)=n
Ko(t) = B(t)
KJ(t) = 7A(t)Kj*1(t) +Kj*1(t)7.j =1,..,n

For the transformed system

o(t) = B(t)
(1) = =AM K1 (t) + K1 (t),j =1,....m
but
Ko = P(t)B(t) = P(t)Ko
Ky = —AKy + Ko(t) = P(t)K;(t)
Kj(t) = =A@ K1 () + K ;1 () = P(£) K (t),

Hence Q. = P(t)Q., and since P(t) is invertible it follows that rank (Q.) = n
Similarly for the observability case.

Problem 12.5

On the other hand, for any § > 0, lim; ., W(t — é,t) = 0 and, consequently, there does not exist an € > 0 such
that W(t — 6,¢) > 0 for all .

Problem 13.11
For the time invariant case
plA=p'\, p"B=0=p=0

Then
p (A+BK)=p'\, p'B=0=p=0

and, therefore, controllability of the open-loop state equation implies controllability of the closed-loop state
equation.

In the time-varying case, suppose the open-loop state equation is controllable on [to,t¢]. Then given z(t) =
Zq, Jug(t) such that the solution :Ea(t)|tf = 0. Next, the closed-loop equation

() = [A(t) + BO)K ()] 2(1) + B(t)v(t)

with initial state z(tg) = z, and input v, (t) = u,(t) — K(t)z,(t) has the solution z(t) = x,(t). Thus, z(t;) =0.
Since the argument is valid for any zg, the closed-loop state equation is controllable on [to,ty].

(See also Pr. 9.13 in HW 5.)
Problem 14.7

Using the hint,



Also, for the controller canonical form

det(A\] — A —bK) = X" + (an_1 4+ kn_ )N 1 4+ - + (ap + ko)

So, given p(\) = k = [ —co+ay —c1+ar -+ —Cp_1+apn_1 ], and p(A) = A" +c,, A"+ i A+teol,
then

—[1 0]0012[7000 0]

— 1 0 ]ClA = [ 0 —C1 0 ]

—[1 0 -+ 0]cA"'=[0 0 -+ —cpq |

_[1 0 --- O]A":[ao a; - anil]

SOkZ—[l o --- O]p(A):[aofCO ap—cp - an,lfcnfl]
For the general case, using a similarity transformation (2 = Tz), it is possible to express the system

@ = Az + bu in controllable canonical form 2z = A.z + bou, with A, = TAT ™, b. =Tb, k. = kT~ Q.. =TQ.,
and T=Qe.Q.', Qe, = [ b Ab -~ A" b |, Q.. = [ be Acbe -+ A" b, | then

k=kT=-[10 - 0]pA)T=~[1 0 -+ 0]|Tp(A)T'T
k=—=[1 0 - 0]Q.Q.'p(A)

0 1
but Q.. = /! hence
1 *

k;:—[l 0 ... O]Q;IP(A)Z—[l 0 --- 0][() Ab “'Anilb]_lp(A)
Problem 15.2

v(t) = Cx(t) + CLz(t)
u(t) = Mz(t)+ NCx(t) + NCLz(t)

@(t) = (A+ BNC)z(t) + (BM + BNCL)x(t)
#(t) = GCx(t) + (F + GCL)z(t)
Multiply 2(t) by L, add to &(t) and simplify
() + Lz(t) = (A— HC)(z(t) + Lz(t))
Let w(t) = x(t) + Lz(¢); then the closed-loop system is

38]- (432 211281

The eigenvalues of the system are given by the eigenvalues of the diagonal elements.
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Problem 1.
Show that controllability is invariant under similarity transformations and under state feedback.

The first of these basic properties states that if [A;, B,] and [A,, B,] are related by a similarity
transformation then controllability of one is equivalent to controllability of the other.

The second property concerns a system [A, B] to which the feedback u = Kx + v is applied. The new
system, from v to x, is [A+BK, B]. Again controllability of one is equivalent to controllability of the other.

Problem 2.

Consider the system with transfer function G(s) = 1/(10s+1)(0.2s+1). We would like to design a state-
feedback-plus-observer type controller to achieve closed-loop bandwidth around 5 (e.g., closed-loop poles
with magnitude 5).

1. Design the controller using pole-placement techniques to compute the state-feedback and observer gains.
2. Design the controller using linear quadratic regulator techniques to compute the state feedback and
observer gains. (You will need to try different weights to achieve the desired bandwidth.)

3. Use integrator augmentation to achieve integral action and repeat the designs 1&2.

Problem 3.

In the control of practical systems, the ubiquitous nonlinearities translate in an output offset that depends on
the operating conditions (justify this from the linearization of a nonlinear system). To account for such an
offset, one may design an observer with integral action. For example, suppose that the state equations are

X = Ax+ Bu

y=Cx+Du+v

where v is the offset (constant for a fixed operating point). Design an observer that estimates both the states
x and the offset v. Are the required conditions for observability satisfied?

Problem 4.
In designing an output feedback controller with integral action, it is necessary that the plant has no zeros at
the origin. Otherwise, the controller integrator will cancel the plant zero and cause internal stability
problems. Consider the SISO system (A,b,c,0) for which the control input is defined as follows

Z=r-y

u=kx+k,z
Assume that the state x is available for measurement. Show that if (A,b) is c.c. and c(sl-A)™b has no zero at
s=0, then all the eigenvalues of the closed-loop system can be assigned arbitrarily. (For simplicity, assume
that A is nonsingular.)

Hint: You need to show that the augmented system is c.c., that is

[ o)l

is a c.c. pair. For this, use the PBH test. Notice that the condition that c(sI-A)™b has no zero at the origin
means that cA™b is non-zero.
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HW # Minimal Realization, Solutions

1. The minimal realization has dimension 4.

2. The Gramians of the balanced realization are diagonals with entries
9.5135e-001 1.5584e-001 8.9122e-002 1.4599e-002

We can, therefore, eliminate the last balanced state with additive error at most
2%1.4599e-002 = 0.029

and the last two states with additive error at most

2%(8.9122e-002 + 1.4599e-002) = 0.207

Let H be the original system, Hm the minimal realization, Hb the balanced realization, Hb2 the
balanced truncation with two states and Hb3 the balanced truncation with three states. The
maximum singular value of the difference transfer function is the induced L-2 norm of the
difference (error) system. We can plot the singular values in MATLAB using sigma.

Hb2=ss(a(1:2,1:2),b(1:2,:),c(:,1:2), d), Hb3=ss(a(1:3,1:3),b(1:3,:),c(:,1:3),d)
sigma(H-Hm,Hm-Hb,Hb-Hb2,Hb-Hb3)

The first two are numerically the same so the singular values of the difference are numerically
zero. Hb and Hb3 are different only in one state so only one singular value is essentially different
from zero. Zooming in, we observe that the peak sigma (Hb-Hb2) is -15dB ~ 0.178 (<=0.207) and
the peak sigma (Hb-Hb3) is -30.5dB ~ 0.029 (<=0.029), as expected.
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EEE 582 HW # SVD

% SVD application in the modeling of a noisy oscillatory signal
yA as the output of an autoregressive model:
) y@=[y@-1),y(@-2),...1*q

% Define the signals

t=(0:.01:10); % time

n=rand(size(t))-.5; % noise
y=sin(2*t+1)+sin(10*t+1)+.02*n/2; % measurement
NO=10:1length(t); % fitting window

F=tf£(.01,[1 -.99],.01);y=1sim(F,y); % Optional Filtering for frequency-weighted fit

% Form the regressor by taking lags of the output

W=[y(NO-1),y(NO-2) ,y(NO-3) ,y(NO-4) ,y(NO-5) ,y(NO-6) ,y(NO-7) ,y(NO-8) ,y(NO-9)];
NN=0.02* [n(NO-1) ,n(NO-2) ,n(N0O-3) ,n(NO-4) ,n(N0O-5) ,n(NO-6) ,n(NO-7) ,n(NO-8) ,n(N0-9)];
g=W\(y(NO)), % least squares fit

plot(t,y,t(NO0),Wxq,t(NO) ,Wxq-y(NO)); pause % check the fit

% Autoregressive transfer function: resonance at the oscillation frequency

g=tf(1,[1 -q’],.01), bode(g) % check the t.f.
% Model order: How many columns of W do you need?

s=svd (W) % svd of regressor

s2=svd (W’ W) % svd of gramian

% Questions:

% 1. What is the relationship between s and s27 How many lags do you need
% in the model?

% 2. The singular values of W appear to reach a floor related to the noise.
% Derive this value analytically and verify with an example.

% 3. What is ithe effect of the noise amplitude?

% 4. What happens when the signal is composed of two frequencies, say 10

% and 27

Answers

1. s = \/s2; we need at least two lags (2nd order difference equation) to describe a sinusoidal solution.

2. Letting W be the deterministic component and n be the noise, W = Wy+n, WIW = (Wo+n)T (Wy+n) =
WEWy + nT'n since n L W (noise uncorrelated with signal). Furthermore, since each sample of the noise is
independent, n”n = NpI, where p is the noise variance and N is the number of points. For the uniform
distribution in the interval [a,b], with mean n = (a + b)/2, var(n) = fab(n —n)%dn = (b—a)?/12. In our
case the distribution is symmetric, zero mean. Let r denote the maximum amplitude. Then, p = 72/3. In the
program, r = 0.01, N = 1001, so rho = 0.033. The small eigenvalues of s2 range in 0.0355 to 0.0316, which
agrees with the theoretical value.

3. Increasing the noise amplitude increases the singular values of W and introduces a bias. Denoting by ’f’
the left inverse (LS solution), we have

g =Wy = (Wo+n)*(yo + nir1) = (WEWo + pI) 7 W yo

The higher the p, the more the solution deviates from the nominal one (W W)Wy For example, we find
by trial and error that when the noise amplitude is 0.45, the resonance is smeared and is bearly recognizable.

4. When two frequencies are present, the identification is more difficult. With noise amplitude 0.01, the
frequency 2 is not recognized (because it does not possess enough energy-cycles in the data interval). Reducing
the noise amplitude by more than a factor of 50 allows for the second peak to appear in the fitted model.
Alternatively, introducing a low-pass filter to pre-process the data has a similar effect since it attenuates the
noise at high frequencies and effectively reduces the variance entering the regressor matrix.



	582HWsolutions.pdf
	582hw1
	582Hw2SOL
	582HW3SOL
	582HW4SOL
	582HW5SOL
	582HW6Sol
	582HWMinReal
	582hwSVD


