
EEE582 Homework Problems 

HW1 

1. Write a state-space realization of the linearized model for the cruise control system around speeds 

𝑣 = 40 (Section 0.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use MATLAB commands to find 

its transfer function.  

2. Write a state-space realization of the linearized model for the inverted pendulum around the unstable 

equilibrium  (Section 0.5, http://tsakalis.faculty.asu.edu/notes/models.pdf).  Use MATLAB commands to 

find its transfer function.  

3. Write a state-space realization of the linearized model for the inverted pendulum on a cart system 

around the unstable equilibrium  (Section 0.6, http://tsakalis.faculty.asu.edu/notes/models.pdf).  Use 

MATLAB commands to find its transfer function.  

4. Write a state-space realization of the linearized model for the notch filter 

(http://tsakalis.faculty.asu.edu/notes/notch.pdf).  Use MATLAB commands to find its transfer function. 

Discretize the model using finite differences ( 𝑦̇ ≃ (𝑦(𝑡𝑘+1) − 𝑦(𝑡𝑘))/(𝑡𝑘+1 − 𝑡𝑘)) for different 

sampling times 𝑇 = 𝑡𝑘+1 − 𝑡𝑘. Select three different values of 𝑇 and use MATLAB commands to 

compare the frequency response of the continuous-time model with the discrete one.  

 

HW2 

5.  Find all solutions of 

[
𝟏 𝟐 𝟐    𝟐
𝟎    𝟏    𝟎    𝟏

] 𝒙 = [
𝟏
𝟏
], where 𝒙 ∈ 𝑹𝟒 

Which is the minimum norm one?  

6.  Find all minimizers of the 2-norm of 

[

𝟏
𝟐
𝟑
𝟒

𝟎
𝟏
𝟐
𝟑

]𝒙 − [

𝟏
𝟏
𝟏
𝟏

], where 𝒙 ∈ 𝑹𝟐 

7.  Compute the Jordan Canonical Form and 𝐴10 and the matrix exponential 𝒆𝑨𝒕 for 

𝑨 = [
𝟏 𝟎 𝟏
𝟎 𝟏 −𝟏
𝟎 𝟎 −𝟏

]  

(Note: You do not need to compute the eigenvector matrix, just J. Also, you are free to use any approach 

to compute the matrix exponential.) 

http://tsakalis.faculty.asu.edu/notes/models.pdf
http://tsakalis.faculty.asu.edu/notes/models.pdf
http://tsakalis.faculty.asu.edu/notes/models.pdf
http://tsakalis.faculty.asu.edu/notes/notch.pdf


8.  If A is symmetric, what is the relationship between its eigenvalues and singular values? 

9.  For 𝑎, 𝑏 ∈ 𝑹𝑛, show that det(𝐼 + 𝑎𝑏𝑇) = 1 + 𝑎𝑇𝑏. 

 

 

HW3 

10.  Compute the matrix exponential using Laplace transform, Cayley-Hamilton, Jordan form, for 

𝑨 = [
𝟎 𝟏

−𝟏 −𝟐
] 

11.  Find the step response of the system   

𝒙̇ = [
𝟎 𝟏

−𝟏 −𝟐
]𝒙 + [

𝟎
𝟏
]𝒖,   𝒚 = [𝟏  𝟏]𝒙 + [𝟎]𝒖 

by finding its transfer function, the Laplace transform of the output, and inverting it; and by using the 

general solution of the state equations with the matrix exponential.  

12. Consider the system  𝒙̇ = 𝑨𝒙 + 𝑩𝒖,   𝒚 = 𝑪𝒙 + 𝑫𝒖. Write state-space realizations for the feedback 

system with 𝒖 = 𝑲𝒙 + 𝑮𝒓 and for the inverse system 𝒚 ↦ 𝒖, specifying any conditions necessary for 

their existence. 

13. Consider the SISO system  𝒙̇ = 𝑨𝒙 + 𝑩𝒖,   𝒚 = 𝑪𝒙 + 𝑫𝒖 and define the “relative degree r” as the 

difference between the degrees of denominator and numerator. Show that when r > 0, 𝑪𝑨𝒓−𝟏𝑩 ≠

𝟎, 𝑪𝑨𝒊𝑩 = 𝟎, 𝒊 = 𝟎, 𝟏, 𝟐, … , 𝒓 − 𝟐,𝑫 = 𝟎. 

14. Transform a time-invariant [𝑨, 𝑩, 𝑪] into [𝟎, 𝑩̃(𝒕), 𝑪̃(𝒕)] by a time varying equivalence 

transformation. When is it a Lyapunov transformation? 

15. Verify that a the solution of  𝑿̇ = 𝑨𝑿 + 𝑿𝑩, 𝑿(𝟎) = 𝑪 is  𝑿(𝒕) = 𝒆𝑨𝒕𝑪𝒆𝑩𝒕 

16. Show that  
𝝏𝚽(𝒕𝟎,𝒕)

𝝏𝒕
= −𝚽(𝒕𝟎, 𝒕)𝑨(𝒕) 

17. Use Lyapunov theory to determine the stability of the following four systems and verify by 

computing their eigenvalues 

𝒙̇ = [
𝟎 𝟏

−𝟐 −𝟐
]𝒙,      𝒙̇ = [

𝟎 −𝟏
−𝟐 −𝟐

]𝒙,        𝒙𝒌+𝟏 = [
𝟎 𝟏

−𝟐 −𝟐
]𝒙𝒌,        𝒙𝒌+𝟏 = [

𝟎 𝟎. 𝟏
−𝟏 −𝟏

] 𝒙𝒌 

18.  Show that the eigenvalues of A have real parts less than –𝝁 < 0 iff there exists a positive definite 

solution M to 𝑨𝑻𝑴 + 𝑴𝑨 + 𝟐𝝁𝑴 = −𝑰.  Similarly, show that the eigenvalues of A have magnitude less 

than 𝝁 < 1 iff there exists a positive definite solution M to 𝝁𝟐𝑴 − 𝑨𝑻𝑴𝑨 = 𝝁𝟐𝑰. 
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19. Determine whether the following state-space realizations are c.c. and c.o.: 

𝒙̇ = [
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

−𝟏 −𝟑 −𝟑
]𝒙 + [

𝟏
𝟎
𝟎
]𝒖,   𝒚 = [𝟏 𝟐 𝟏]𝒙 + [𝟎]𝒖 

   

𝒙̇ = [
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏
𝟎 𝟐 −𝟏

]𝒙 + [
𝟎 𝟏
𝟏 𝟎
𝟎 𝟎

]𝒖,   𝒚 = [𝟏 𝟎 𝟏]𝒙 + [𝟎]𝒖 

20. Show that the state equation  

𝒙̇ = [
𝑨𝟏𝟏 𝑨𝟏𝟐

𝑨𝟐𝟏 𝑨𝟐𝟐
] 𝒙 + [

𝑩𝟏

𝟎
]𝒖 

is controllable only if the pair (𝑨𝟐𝟐, 𝑨𝟐𝟏) is controllable. 

21. When is the state-space realization with complex eigenvalues  

𝒙̇ = [
𝒂𝟏 𝒅𝟏

−𝒅𝟏 𝒂𝟏
] 𝒙 + [

𝒃𝟏

𝒃𝟐
] 𝒖 

completely controllable? 

22. Check the controllability and observability of  

𝒙̇ = [
𝟎 𝟏
𝟎 𝒕

] 𝒙 + [
𝟎
𝟏
]𝒖,   𝒚 = [𝟎   𝟏]𝒙 

23. Realize  

𝑮(𝒔) =
𝒔 + 𝟏

(𝒔 + 𝟏)(𝒔 + 𝟐)
 

1. as a completely controllable system. 

2. as a completely observable system. 

24. Show that controllability is invariant under state feedback, that is  𝒙̇ = 𝑨𝒙 + 𝑩𝒖  is c.c. iff  𝒙̇ = (𝑨 +

𝑩𝑲)𝒙 + 𝑩𝒖 is c.c. 
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25. Show that if the system [𝐴, 𝐵, 𝐶, 𝐷] realizes 𝐻(𝑠) =
𝑠+2

𝑠2+2𝑠+1
 and det(𝑠𝐼 − 𝐴) = 𝑠2 + 2𝑠 + 1, then 

[𝐴, 𝐵] must be controllable and [𝐴, 𝐶] must be observable. 

26. Consider 𝐻(𝑠) =
𝑠2+𝑠−2

𝑠4+3𝑠3+𝑠2−3𝑠−2
 and its realization in the controller canonical form with dim(A)=4. Is 

this realization observable? Give a minimal realization of H(s). 

27. Given the system 𝑃 = [𝐴, 𝐵, 𝐶, 𝐷], determine a realization of the feedback system  𝑟 ↦ 𝑦: 𝑦 =

𝑃[𝑢], 𝑢 = 𝑟 − 𝑦. Use two approaches: 

1. Consider the closed-loop system with transfer function (𝐼 + 𝑃)−1𝑃, realize each term separately 

(use Problem 27) and then write the realization of the cascade combination of the two terms. 

2. Directly from the realization of P by using the definition of the feedback interconnections (the 

dimension of the feedback is the same as the dimension of P). 

Comment on the minimality of the two realizations 

28. Given the systems 𝑃 = [𝐴, 𝐵, 𝐶, 𝐷], 𝐾 =  [𝐹, 𝐺, 𝐻, 𝐽] determine a state-space realization of the 

feedback system where 𝑦 = 𝑃[𝑢], 𝑢 = 𝑟 − 𝐾[𝑦]. 

29. Consider the system with transfer function 

𝑯(𝒔) =
𝟏

𝒔𝟐 + 𝟐𝒔 + 𝟒
 

and its state-space realization in the controllable canonical form.  Write three other zero-state 

equivalent realizations such that 

• they have the same dimension 

• none is topologically equivalent with the canonical form 

• only two are topologically equivalent among them 

30. Consider the system with transfer function matrix 

𝐻(𝑠) =

[
 
 
 
 
−3𝑠2 − 6𝑠 − 2

(𝑠 + 1)2

𝑠3 − 3𝑠 − 1

(𝑠 − 2)(𝑠 + 1)3

−2

(𝑠 + 1)2(𝑠 − 2)

𝑠

𝑠 + 1

3𝑠2

(𝑠 + 1)3

−6𝑠

(𝑠 + 1)2(𝑠 − 2)]
 
 
 
 

 

1. Determine a state-space realization by appending the realizations of each individual term. 

2. Compute the observability, controllability and Hankel matrices and determine the order of a 

minimal representation of the system. 

3. Compute a minimal realization of the system using the Kalman transformations. (Use MATLAB 

for the necessary computations but do not use “mineral()” directly.) 



31. Compute the balanced realization for the system (Use MATLAB for the necessary computations 

but do not use “obalral()” directly.) 

  𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 + 𝐷𝑢;  𝐴 = [
−1 −3
1 0

], 𝐵 = [
1
0
], 𝐶 = [1 0], 𝐷 = 0. 

32. Consider the Discrete Time system 𝐻(𝑧) =
𝑧

(𝑧−0.2)(𝑧−0.5)
. Compute its impulse response analytically 

and then apply Theorem 7.M7 to find a state-space realization. (Use r = 10 for the Hankel matrix.)  
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33. Consider the system: 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 + 𝐷𝑢;  𝐴 = [
1 1 −2
0 1 1
0 0 1

], 𝐵 = [
1
0
1
], 𝐶 = [2  0  0], 𝐷 = 0. 

 Design a state feedback controller 𝑢 = 𝑝𝑟 − 𝐾𝑥 such that the closed loop eigenvalues are placed at 

(−1 ± 𝑗) and it tracks asymptotically any step reference input r. 

34. Consider the discrete-time system:  

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), 𝑦(𝑘) = 𝐶𝑥(𝑘);  𝐴 = [
1 1 −2
0 1 1
0 0 1

], 𝐵 = [
1
0
1
], 𝐶 = [2  0  0] 

Design a state feedback controller to place the closed-loop eigenvalues at (0,0,0). Show that for any 

initial state the closed-loop zero-state response becomes identically zero for  𝑘 ≥ 3. (Dead-beat 

response). 

35. Consider the system:  

𝑥̇ = [

2 1
2

−1
−1

]𝑥 + [

0
1
1
1

]𝑢 

Is it possible to design a state feedback controller to place the closed loop eigenvalues at (-2, -2, -1, -1)? 

Is it possible to design a state feedback controller to place the closed loop eigenvalues at (-2, -2, -2, -1)? 

Is it possible to design a state feedback controller to place the closed loop eigenvalues at (-2, -2, -2, -2)? 

36. Consider the double integrator system: 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 + 𝐷𝑢;  𝐴 = [
0 1
0 0

], 𝐵 = [
0
1
], 𝐶 = [1  0], 𝐷 = 0. 



 Design a state feedback controller 𝑢 = −𝐾𝑥 to place the closed loop eigenvalues at (-1, -1). Describe 

the properties of the closed-loop input disturbance sensitivity 𝑑 ↦ (𝑑 − 𝐾𝑥) =  [𝐴 − 𝐵𝐾, 𝐵,−𝐾, 𝐼]. 

Repeat for the closed-loop eigenvalues (-10,-10). 

37. Consider the double integrator system: 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 + 𝐷𝑢;  𝐴 = [
0 1
0 0

], 𝐵 = [
0
1
], 𝐶 = [1  0], 𝐷 = 0. 

 Design an observer-based controller to stabilize the system and compute the transfer function of the 

corresponding controller K(s). Use (-1,-1) as closed loop poles for the state feedback (-1, -1) as the 

observer poles. Repeat for observer poles (-10,-10). Describe the properties of the closed-loop input 

disturbance sensitivity (𝐼 − 𝐾(𝑠)𝑃(𝑠))
−1

 and compare it with the sensitivity of the state-feedback 

solution of Problem 36.  

38. Consider the double integrator system of Problem (37): 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 + 𝐷𝑢;  𝐴 = [
0 1
0 0

], 𝐵 = [
0
1
], 𝐶 = [1  0], 𝐷 = 0. 

 Design an LQG controller to stabilize the system and compute the transfer function of the 

corresponding controller K(s). Choose the control/observer weights such that the control loop has 

sensitivity bandwidth 1 and the observer loop has bandwidth 1. Repeat for an observer bandwidth of 10. 

Describe the properties of the closed-loop input disturbance sensitivity (𝐼 − 𝐾(𝑠)𝑃(𝑠))
−1

 and output 

noise sensitivity (𝐼 − 𝑃(𝑠)𝐾(𝑠))
−1

𝑃(𝑠)𝐾(𝑠). Compare with the sensitivity of the state-feedback 

solution of Problem 36. 

39. A well-known difficult problem from classical feedback control is the stabilization of a transfer 

function with interlaced poles and zeros in the right-half plane. In this homework, we will investigate the 

solution of this problem using state feedback/observer methods.  Consider the system with transfer 

function  𝐺(𝑠) =
𝑠−2

(𝑠−1)(𝑠−3)
 

1. Write a state-space realization for G(s). 

2. Design a stabilizing state feedback and an observer for your realization.  

3. Compute the corresponding transfer function of the dynamic output controller K(s) (y -> u) and 

examine the root locus of GK(s). 

For your designs consider two cases: 

1. State feedback eigenvalues at −1 ± 𝑗, Observer eigenvalues −0.2,−10 

2. State feedback eigenvalues at −1 ± 𝑗, Observer eigenvalues −1 ± 𝑗 

 


