EEE 304 – Lab 1

Basic Speech Processing using LabVIEW
1. Introduction
This lab introduces some fundamental concepts in National Instruments LabVIEW, through a simple programming example. LabVIEW stands for Laboratory Virtual Instrument Engineering Workbench. It is a graphical programming language and has the ability to interface with a wide range of external devices. LabVIEW programs are called Virtual Instruments (VIs). Each VI has three main parts: the block diagram, the front panel and the icon/connector. Each VI in turn can contain sub VIs and other structures. Controls and indicators on the front panel allow the user to input data into or extract data from a running virtual environment. The objective of this lab exercise is to explore some of the basics in speech processing using in-built functions in LabVIEW. This exercise also enables the student to
· Gain familiarity with the LabVIEW environment and programming fundamentals.

· Learn to create and debug VI files.

· Build intuitive Front Panel to view the results.

2. Basic Concepts

2.1 LabVIEW terms
Each VI contains three main parts

· Front Panel – Determines how the user interacts with the UI.

· Block Diagram – Code that controls the program.

· Icon/Connector – Means of connecting a VI to other VIs.
	[image: image1.emf]FRONT PANEL

BLOCK DIAGRAM

COMPONENT

CONTROL

INDICATOR

CONTROLS

INDICATOR

ICON / CONNECOR

	Figure 1. Illustration of components of a VI.

The Front Panel is used for user interaction when the program is running. Users can control the program, change inputs and see data updated in real-time. Controls are used as inputs and Indicators are used as outputs. Block diagram is the accompanying program for the front panel. A block diagram is created by wiring the LabVIEW components together. When a VI runs, values from controls flow through the block diagram, where they are used in the functions on the diagram, and the results are passed into other functions or indicators.
An example of a VI is shown in Figure 1. We will begin with a very simple LabVIEW program to gain some familiarity.

2.2 A Simple LabVIEW Program
· Open LabVIEW
· Open a Blank VI.
· You should be able to see two windows open. a) Front Panel and b) Block Diagram. You can switch between the two windows by using the shortcut CTRL+E.

· In the Front Panel, when you right click, you should be able to see the Controls menu.
· To create a numeric control, from the Controls menu click on Modern >> Numeric >> Numeric Control and place it on the Front Panel. In this exercise, place two numeric controls.

[image: image2.emf]

In case you do not see the option Modern, then you need to click on the down arrow to expand the menu.

[image: image3.emf]

· Similarly, click on Modern >> Numeric >> Numeric Indicator and place a numeric indicator on the Front Panel.

· Right click on either of the components and click on properties. Change their labels to X and Y for Numeric Controls and Z for Numeric Indicator respectively. It can also be changed by double clicking on the label and entering the new label.
The Numeric Controls are the components through which the inputs are provided and Numeric Indicators are the components that display or provide the outputs.

When an object/component is created on the front panel, a terminal will be created on the block diagram. These terminals give access to the front panel objects from the block diagram code. Each terminal contains useful information about the front panel object. For example, the color and symbols provide the data type (the default data type is of orange color which specifies that the component is of type double). Figure 3 illustrates the some of the different data types supported.
	[image: image4.emf]INTEGER

DOUBLE

BOOLEAN (T/F)

	Figure 3. Illustration of examples of terminals.

Hence, it is obvious that orange terminals should wire to orange terminals, green to green and so on. Type-casting can be done similar to the ‘C’ language. Controls have an arrow on the right side and a thick border. Indicators have an arrow on the left and a thin border. The blocks are connected by wiring the output terminal of one block to the input terminal of the other block. For a brief description of the functions, place the desired function in the block diagram workspace and select Help>>Show Context Help. When you move the mouse over the function, the description appears in the Context Help window.
	[image: image5.emf]

	Figure 4. Using the Context Help.

· Go to the Block Diagram window where you will see the three orange components, X, Y and Z. In the Block Diagram right click and select Mathematics >> Numeric >> Add to the Block Diagram as shown in figure 5.
· Right click on the component Y, and select Change to Constant (the component Y in the front panel will become invisible, but that does not create any problems). The default value of Y is 0. Change the value to 5.

· Connect all the components as shown in the Figure 6.

(When you right click on component X, and uncheck view as icon option, the component X looks like the way it is seen in the Figure 6. Henceforth, most of the components in this Lab Report will be seen in similar format. The function of the component does not change by selecting/de-selecting this option.)

[image: image6.emf]

Figure 5. Placing the Add component in the Block Diagram.
[image: image7.png]
Figure 6. Block Diagram for adding two numbers.
· Right click on the component X and Choose the Properties. Click on the Data Entry tab. Uncheck Use Default Limits and set the following values.
· Min : -10

· Max : 10

· Increment : 0.1
· Save the VI and go to the Front Panel. Enter a value in the X component and click on Run button [image: image8.emf]

 which is located at the top of the screen as shown below.
[image: image9.emf]

· Every time the value of X is changed, click on the Run button to observe the result in Z.

· To observe a real time output i.e. every time the input is changed, the output changes, without having to click on the run button, a while loop can be created. To do this switch to Block Diagram, right click and choose Express >> Execution Control >> While Loop (Figure 7) and place the loop around the components as shown in Figure 8.
[image: image10.emf]

Figure 7. Placing a While Loop in the Block Diagram.
	 [image: image11.png]

	Figure 8. Updated Block Diagram with a While Loop.

· In the Front Panel you will see a Stop button. Now when the Run button is clicked, the simulation will be running continuously until the Stop button is clicked. When the value of X is changed, the result of Z gets updated correspondingly
When the created VI is not executable due to errors or missing components, a broken arrow is displayed in the Run button in the status bar. Clicking on the broken arrow, will list the errors. The bad object can be located by clicking on the error message.
The Controls Palette can be used to place controls and indicators on the Front Panel. Go to the Front Panel and select View>> Controls Palette or right-click the front panel workspace to display the palette. Similarly, the Functions Palette can be used to build the block diagram. It contains the LabVIEW’s native components listed under different categories. Go to the block diagram and select View>>Functions Palette or right-click on the block diagram workspace to display the palette. Tools palette contains the set of tools that can be used to edit and build the block diagram. If automatic tool selection is enabled and we move the cursor over the objects on the front panel or block diagram, LabVIEW automatically selects the corresponding tool from the palette. The VI can be executed by clicking the Run button in the status toolbar.

	[image: image12.emf]
	[image: image13.emf]

	Figure 9(a) Controls Palette
	Figure 9(b) Functions Palette

	[image: image14.emf]
	[image: image15.emf]RUN

RUN

CONTINOUSLY

	Figure 9(c) Tools Palette
	Figure 9(d) Status Toolbar

ASSIGNMENT 1

1. Provide steps for the following: Create two string controls and change their caption to Username and Password respectively. Change the display style of the second control to Password.
2. Set the constant a) Y = 6 and b) Y = 6.4 in the example in Figure 6. Provide the screen shot of the VI of the Block Diagram for both the cases in the above example, performing addition of components of type double.
3. Now change the output component Z to type long integer (I32). (To do this, right click on the control Z and choose Representation >> I32. This should change the color of the Z component in the Block Diagram to blue). Run the simulations again. What do you observe? Give reasons.
4. Now change X to type I32 and Z to type Double, and run the simulation again. What do you observe?

3. Speech Processing
The exercise involves building a VI to load and display real-time speech data frame-by-frame. In addition, the program will filter the input speech using a low pass filter, whose cut-off frequency can be dynamically varied. The signal length (in samples) and the frame count (depends on the frame size) will also displayed in the Front Panel. An option to playback the filtered speech will also be provided. The guidelines to build the front panel and the block diagram are provided in this section. The layout of the block diagram (code) to perform the tasks specified is provided in Figure 11.
3.1 Build a VI

· Run National Instruments LabVIEW in your system.

· Select File>>New VI to open a new Front Panel.

· Save the VI in your current working directory as Exercise.vi
· Select Window>>Show Block Diagram or press CTRL+E to switch to the Block Diagram workspace.

[image: image16.emf]
Figure 10. Reading the sound file

· You will now create a message box to be displayed when the VI is executed. Right-click on the workspace and choose the Dialog & User Interface section under the category Programming. Select the Express VI under this section, Display Message to User, which will allow you to do this.

· Click the selected function again to place it in your block diagram.

· In the dialog that pops up, type the message “This is my first Speech Processing Exercise” and also select the option Display Second Button. Click OK to accept the change and save the VI.

· Switch to the Front Panel (CTRL+E) and click the Run button in the status bar.

3.2 Acquire Sound

· Place the Sound File Read Simple function in your block diagram. This function reads data from a .wav file into an array of waveforms. This block opens, reads and closes the .wav file automatically. It is very important to note that, this is not a single array of scalars but an array of waveforms. To use this data for array processing like finding length of the data, you need to convert the 1D-array of waveforms into a double array. This function can be found under the category Programming>>Graphics & Sound>>Sound>>Files>>Input.

[image: image17.emf]
· Right-click on the input terminal path and choose Create>>Control. This creates a control on the Front Panel using which you can specify the path of the speech file (.wav)
· Create a waveform graph in the Front Panel by right-clicking and choosing Modern>>Graph>>Waveform Graph from the Controls Palette. Go back to the block diagram, connect the output terminal data of the function to the waveform graph. This will display the input speech acquired from the user.
· Change the label of the graph to Input Speech, by double clicking on the label (either in the Front Panel or the Block Diagram). The data that is passed by this function is an 1D array of waveforms.
· In the block diagram, place a Flat sequence around the functions as shown in Figure 10 (Express>>Exec Control>>Flat Sequence Structure). This is used to execute the program sequentially. Connect the Boolean output OK from the Display Message to User function to the flat sequence (once you draw a connection and drag it to the flat sequence structure, a terminal will be created automatically). This is done in order to ensure that this sequence will be executed only after the use chooses OK from the message dialog that gets displayed.
· We need to convert the data obtained into an array of scalars to perform basic array processing. We first convert the data to a cluster using the function Array to Cluster. This can be found under Programming>>Array. This function converts a 1D array to a cluster of elements of the same type as the array elements. Right-click on the function and select the option Cluster Size from the shortcut-menu. Type the value ‘1’ for the number of elements in the cluster.

[image: image18.emf]
· Place the function Unbundle from Programming>>Cluster. Pass the cluster obtained in the previous step to the Unbundle function and split the cluster into its individual components. This function splits a cluster into each of its individual elements.
[image: image19.emf]
· Finally convert it to a double array by connecting the cluster component to the function Get Waveform Components, which can be found under Programming>>Waveform. The output of this function Y can be directly used with all general array processing functions. This function returns the analog waveform of the sound file you specify.

[image: image20.emf]
3.3 Filter the speech data

· As explained earlier, in this exercise we intend to change the cut-off frequency of the low pass filter. To achieve that, we will perform all the processing on the input speech inside a While Loop.

· Create a While Loop (Express>>Exec Control) in your block diagram. You will observe that a Boolean control Stop is automatically created (corresponding to a Stop button in the Front Panel). This indicates that the execution will stop, when the Stop button is pressed by the user. The size of the while loop can be adjusted using the mouse.
· Place the Filter function in your block diagram. This can be found in the functions palette under the section Express>>Signal Analysis. This function processes signals through filters and windows. In this exercise, we are interested in building a low pass filter. A low-pass filter is a filter that passes low-frequency signals but attenuates the signals with frequencies higher than the cutoff frequency. The actual amount of attenuation for each frequency varies from filter to filter. For the given sampling frequency fs (8000 Hz), the cut-off frequency of the low pass filter needs to be in the range
[image: image21.wmf]0/2

c

ffs

<£

. The cut-off frequency of the filter is allowed to change dynamically in this exercise through a numeric control. The parameters that need to be provided in the Configure Dialog are as follows

· Filter Type : Lowpass

· IIR/FIR : Finite Impulse Response (FIR) filter

· Taps : 11

As described, the numeric control that is used to control the cut-off frequency can run from 10Hz to a maximum of 4000 Hz.

[image: image22.png]
· Connect the Data terminal of the Sound File Read Simple function to the input terminal Signal of the Filter block.
· To change the cut-off frequency dynamically, you need to create a numeric control in your program. Numeric controls can be created either from the block diagram or the Front Panel (Creating in one of them automatically reflects in the other).
· Switch to the Front Panel (Ctrl+E) to create the control. Right-click to open the Controls Palette and choose Modern>>Numeric>>Vertical Point Slide.
· Right-click on the control and select Properties to configure it. In the Appearance tab, change the Label to ‘Cut-Off (Hz)’. Modify the scale range that appears on the control (Scale tab) to have the values 10 and 4000 for Minimum and Maximum respectively.
· To plot the filtered speech, right-click on the output terminal Filtered Signal of the Filter function and select Create>>Graph Indicator from the shortcut-menu.

3.4 Playback Filtered Speech

· The express VI Play Waveform is used to play back the filtered speech data. This function plays the sound output device using finite sampling. This express VI automatically configures an output task and clears the task after the output completes. This can be found in the functions palette under the section Express>>Output.
[image: image23.png]
· Since, the VI is continuously running, you need to control the playback using a Play button (i.e. Play only when desired).
· This can be achieved using a Case Structure in LabVIEW (Express>>Exec Control). Place a Case structure with a Boolean control as the case selector. The control can be created by right-clicking on the input terminal Case Selector and choosing Create>>Control from the dropdown menu.
· Under the case True of the case structure, place the function Play Waveform. The output of the Filter function is connected to the input terminal Data of Play Waveform.

3.5 Frame-by-Frame processing of input speech

· In this section you will build a sub VI to display the speech data frame by frame in addition to displaying the Frame Count and the Signal Length (samples). Construct the part of the VI as shown in Figure 11.

· Create numeric controls for Frame Index (Knob control) and Frame Size in the Front Panel.. The Minimum and Maximum values of the control Frame Size are fixed at 64 and 256 respectively. For the control Frame Index, the minimum is fixed at 1 while the maximum will be adjusted dynamically.
· Connect the speech data from the function Get Waveform Components to the function Array Size. This function returns the number of elements in each dimension of the array. This can be found in the functions palette under the section Programming>>Array.

[image: image24.png]
· The array size gives the length of the speech signal and dividing it by the Frame Size computes the Frame Count. The Divide function can be found under Mathematics>>Numeric.
· To dynamically modify the Maximum range of the numeric control, Frame Index (based on the Frame Count), make use of the property nodes in LabVIEW. To create a property node, right-click on the control and choose Create>>Property Node and select the desired property from the list.

· To fix the maximum range, place the following two property nodes

· Data Entry Limits>>Maximum

· Scale>>Range>>Maximum

Right-click on the property nodes and select Change to Write. Connect the Frame count computed to both these property nodes.

· Build the array subset, for the Frame index specified using the Array Subset function. This function returns a portion of the array starting at index and containing length number of elements. This can be found in the functions palette under the section Programming>>Array. Connect Frame Index to index and Frame Size to length.
[image: image25.png]
· Finally, pass the array subset computed to the Dynamic Data converter. Convert to Dynamic Data function converts numeric, Boolean, waveform and array data types to the dynamic data type for use with the Express VIs. This can be found in the functions palette under the section Express>>Signal Manipulation.
[image: image26.png]
	[image: image27.emf]ARRAY SIZE

ARRAY SUBSET

MULTIPLY

DECREMENT

DIVIDE

FRAME

SIZE

FRAME

INDEX

PROPERTY

NODES

TO LONG INTEGER

	Figure 11. Block Diagram (with sub VI also expanded)

· Pass the dynamic data to the Spectral Measurements function. This can be found in the functions palette under the section Express>>Signal Analysis. This function performs FFT-based spectral measurements, such as the averaged magnitude spectrum, power spectrum, and phase spectrum of a signal. We choose the Magnitude (peak) measurement in this exercise. This measures the spectrum and displays the results in terms of peak amplitude. You typically use this measurement with more advanced measurements that require magnitude and phase information. The magnitude of the spectrum is measured in peak values. For example, a sine tone of amplitude A yields a magnitude spectral value of A at the sine tone frequency.

[image: image28.png]
For this block, choose the following options

· Spectral Measurement : Magnitude (Peak)

· Result : dB

· Window : Hamming

· Create a waveform graph, as done previously, to display the result from the output terminal FFT – (Peak).
· The final step of the exercise is to create a subVI for the processing steps created in this section. Figure 12 demonstrates the creation of a subVI. Select the following section of code shown in the figure and select the function Create SubVI from the Edit menu.

· This replaces the selected unit of code with a subVI. Double-click on the newly created subVI, change the control and indicator labels to make the connections understandable. Finally, save the subVI as Frame_Processing.vi
ASSIGNMENT 2

1. Submit the VIs for the exercise along with a small description of the steps you followed. The Front Panel Layout for this program is shown in Figure 8.

2. Set the cut-off frequency to 2000 Hz and display the Frequency Spectrum of the Original and Filtered speech signals. (The FFT plot of the entire frame, not frame by frame)
3. Create another VI by replacing the low pass in the exercise using a high pass filter and submit the screenshots of the VI. The screenshots should display the original and filtered spectrum of the speech signals at cut-off frequency of 2500 Hz.
	[image: image29.emf]

	Figure 12. Creating a SubVI

	[image: image30.emf]FILTERED SIGNALDYNAMICALLY CHANGE

CUT-OFF FREQUENCY OF

FILTER

PLAYBACK

FILTERED SPEECH

DATA FROM INPUT SPEECH

FILE

FRAME-BY-FRAME DISPLAY

OF INPUT SPEECH

FFT OF INPUT SPEECH

CHOOSE PATH FOR

THE SPEECH FILE

	Figure 13. Front Panel Layout

PAGE
13

_1263157359.unknown

