EEE 582, Test 2

NAME: SOLUTIONS

Fall 2014, 30min, Closed-book, Closed-notes, calculator and 1 sheet of formulae allowed

Problem (Questions from linear algebra):

1. Given the data points $(x_i, y_i) = [(0, 0.1), (1, 0.9), (2, 2.2), (3.2, 3)]$, find the optimum line fit y = ax + b in the least-squares sense

We solve the LS problem min
$$||Ax - y||$$
, where $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3.2 & 1 \end{bmatrix}$, $x = \begin{bmatrix} a \\ b \end{bmatrix}$, $y = \begin{bmatrix} 0.1 \\ 0.9 \\ 2.2 \\ 3 \end{bmatrix}$
A is full column rank so we can apply the formula $x_{LS} = (A^T A)^{-1} A^T y = \begin{bmatrix} 0.94 \\ 0.094 \end{bmatrix}$

3. Find the minimum norm solution of $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, where x in \mathbf{R}^4

Both equations are consistent, so it is sufficient to solve the MN problem $\min ||x||$, s.t. $\begin{bmatrix} 1 & 0 & 2 & 0 \end{bmatrix} x = \begin{bmatrix} 1 \end{bmatrix}$

A is full row rank so we can apply the formula $x_{MN} = A^T (AA^T)^{-1}b = \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix} \begin{pmatrix} \frac{1}{5} \end{pmatrix}$

- 2. Characterize the least squares solutions of
- $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \text{ where x in } \mathbf{R}^4$

Using elementary analysis, we observe that for all x both rows of Ax will be equal, so the solution will be such that min $\| \begin{bmatrix} 1 \\ 1 \end{bmatrix} z - \begin{bmatrix} 1 \\ 2 \end{bmatrix} \|$. (Alternatively, we can take the linearly independent columns of A to find the LS solutions and set the remaining elements of x to zero.) We may now apply the formula so a particular LS solution is $z_{LS} = \frac{3}{2}$. Now, all the LS solutions will be such that $\begin{bmatrix} 1 & 0 & 2 & 0 \end{bmatrix} x = z_{LS} = \frac{3}{2}$, or $x_{LS} = \begin{bmatrix} \frac{3}{2} \\ 2 \end{bmatrix} (0; 0; 0] + Null(\begin{bmatrix} 1 & 0 & 2 & 0 \end{bmatrix})$

4. For the triangular matrix A below, determine its Jordan form

r1	0	1	ך 0	
0	1	0	1	
0	0	1	0	
L0	0	0	3]	
	1 0 0 0	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$

The eigenvalues of A are $\{1,1,1,3\}$ so the only question is how many blocks correspond to the eigenvalue 1. We compute the null space dimension of (1I-A) = 2, so there are two Jordan blocks. Hence, modulo a permutation, the Jordan form is

J =	[1	0	0	ך 0	
	0	1	1	0	
	0	0	1	0	
	L0	0	0	3	