EEE 582, TEST 4

SOLUTIONS NAME:

Fall 2014, 30min, 4 Problems, Equal Credit, Closed-book, Closed-notes, calculator and 1 sheet of formulae allowed

Problem 1. Show that $\dot{x} = Ax$; y = Cx being completely observable is equivalent to $\dot{x} = Ax + Ly;$ y = Cx being completely observable.

Let (A, C) be c.o. Then, for any set of complex conjugate eigenvalues, there exists L_0 such that the eigenvalues of $A + L_o C$ are at the desired locations. Choose $L_1 = L_o - L$. Then, the eigenvalues of $(A + LC) + L_1C = A + L_0C$ are at the desired locations. Hence, (A+LC, C) is c.o. Similarly for the converse.

Problem 2. Determine whether the following state-space realization is c.c. and c.o.:

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u, \quad y = \begin{bmatrix} 0 & 2 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

We compute the controllability and observability matrices:

 $Q_c = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -3 \\ 0 & -3 & 8 \end{bmatrix}$, which has obviously independent columns, or simply its det is -8 (not

zero). Hence, the system is c.c.

 $Q_o = \begin{bmatrix} 0 & 2 & 2 \\ -2 & -6 & -4 \\ 4 & 10 & 6 \end{bmatrix}$, for which the det is 0 (or row1 = -2 row2-row3). Hence the system is not completely observable.

Problem 3. Find conditions for the pair [A,B] to be completely controllable, when

		0			$\begin{bmatrix} b_1 \end{bmatrix}$
<i>A</i> =	0	a_2	0,	B =	b_2
	0	0	a_3	<i>B</i> =	$\lfloor b_3 \rfloor$

We use the test that $[\lambda I - A | B]$ should be full rank for all λ and, in particular, eigenvalues of A. Here, the eigenvalues are simply the diagonal elements, but we have to distinguish cases for multiple eigenvalues.

1. Distinct eigenvalues. Then, for $\lambda = a_1$, we obtain the condition $b_3 - b_1(a_3 - a_1) \neq 0$. For $\lambda = a_2$, we obtain the condition $b_2 \neq 0$. For $\lambda = a_3$, we obtain the condition $b_3 \neq 0$.

2. All eigenvalues identical. Then there is no possible value of B to result in 3 independent columns. In this case, [A, B] is never c.c.

3. $a_1 = a_2$, as in Case 2, [A, B] is not c.c. for any values of A, B.

4. $a_3 = a_2$, as in Case 2, $\lambda = a_2 = a_3$, two columns of $[\lambda I - A | B]$ become zero (after an elementary column operation), so it cannot have rank 3, for any values of A, B. Hence [A, B] is never c.c.

Summarizing, the only possibility for c.c. is that the eigenvalues are distinct and the conditions of Case 1 hold $b_3 - b_1(a_3 - a_1) \neq 0$, $b_2 \neq 0$, $b_3 \neq 0$. (These are not identical to the diagonal case conditions.)