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1 Introduction

The following set of experiments aims to supplement the EEE 480 classroom instruction by providing a more
detailed and hands-on experience on the analysis and design of control systems. All the experiments are
simulation-based because of the °exibility, speed, and convenience o®ered by the modern computer software
and hardware tools.

1.1 General Guidelines

² Study the background material before performing each experiment. Do not expect or rely on detailed
step-by-step instructions.

² Simulations are very convenient and cheap as instruction/analysis/design tools. However, to extract
the maximum bene¯t you should treat the simulator as an actual system. Be prepared and perform
carefully planned experiments. Study the results of every simulation before attempting the next one.
Be critical even for the ones that seem to work and pay attention to the details.

² Practical designs of feedback systems often involve a multitude of design parameters so that brute-force
trial-and-error is prohibitive, if at all feasible. A quick analysis is often su±cient to reduce the number
of experiments to a reasonable level.

² Keep a log of the experiments that you perform with any notes and computations that will allow you
to recover the information contained in the results.

² When you need to ask a question, be speci¯c but keep in mind that the person you ask may not be
familiar with the details of your problem. Describe brie°y what you try to do and the problem you
encountered. Then ask the question. \I am working on Lab 3 and it doesn't come out." is not a
speci¯c question. \Should a1 be 1 or 0?" is too speci¯c. \I am working on the pendulum stabilization
problem with a lead compensator. I tried several values for the gain but the closed-loop seems to be
unstable. Should I change the pole or the zero of the compensator?" may be more suitable.

1.2 Lab report

After completing each lab exercise, you will need to submit a report. A template and an example of a report
for Lab 1 is available at the course web page. Be concise but include all pertinent information. The limit is
6 pages for each report with 2 additional pages as an Appendix (optional).

Do not panic! You will be graded on the results and their justi¯cation. You will not be graded on
presentation style or grammar. The report template should be used so that you present the results in a
logical sequence. There is no lower limit on the size of the report; half a page is just as good as long as it
contains all the necessary information.

The general structure of reports is outlined below. In general, there is considerable freedom in the section
titles and the presentation of the material but the overall picture should be preserved.
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Title, name, date Self-explanatory

Abstract A few general sentences to describe the experiment and the main results.

Introduction Introduce the reader to the problem you study. Write for an audience that is educated on
the general subject but possibly unfamiliar with the speci¯c details. At the end of this section provide
a brief description of your work, results and the structure of the document.

Background or Problem formulation The speci¯c theory you need in your analysis. Be brief and cite
references for theory available in the literature. This section may also contain the formulation of a
general problem in a speci¯c mathematical framework.

Analysis or Experimental Setup Present the analytical steps that lead to the solution of the problem.
Describe the simulation setup or experimental apparatus. You may include some carefully chosen
block diagrams, if needed. Include any new algorithms or ideas that are important and cannot be
easily deduced from the analysis.1

Results Describe the results that support the claims stated in the abstract, introduction and analysis.
Include all pertinent details so that the results can be duplicated (simulation parameters, controller
gains, initial conditions). Provide a brief discussion and logical arguments showing the agreement of
the results with the theory and expectations. Point out any ¯ndings that seem important but are not
explained directly from the theory. However, if your results contradict the theory and expectations,
you will need to revisit the theory and make any adjustments necessary.

Discussion Any additional discussion of the results at a higher level. Issues that may require further
attention but extend beyond the scope of this work. Depending on its size and importance, this
section may be grouped with the Results or the Conclusions section.

Conclusions A short section to reiterate the main results and the ¯ndings.

References Complete citations according to standard formats.

Appendix Any useful additional details.

Other remarks:

² Do not pad the report to increase its volume. This has been made easy -and tempting- by today's
technology but it dilutes the information you try to convey.

² Invest some time before writing the ¯nal document to decide what are the main points and what is
the best way to present them. If you discover that you need an additional plot, get it.

² High-level Simulink blocks may be included in the main body -usually Background or Experimental
setup- to aid the presentation, if necessary. The results should contain an adequate discussion of
your observations and claims, supported by plots and ¯gures. Do not include all the ¯gures you have
generated in the lab. Treat the report as a document that tries to convince the audience of your claims
and not as a proof of work.

² Certain script ¯les (programs) may be included in the the appendix if necessary. That is if they contain
useful, nontrivial information. Keep in mind that you may be always be asked to supply additional
information (programs/models) if needed. So save your work.

² Figures should be su±ciently clear, labeled, and unambiguous. Discuss the results shown in the ¯gures.
Statements of the form \The simulated responses are shown in Fig. 1" is usually unacceptable. Do not
leave the interpretation up to the reader unless it is clear from the context. Instead you should write
something like \The simulated responses of the system with controller gains 5,6,7 are shown in Fig. 1.
These results illustrate that higher controller gains improve the performance in terms of disturbance
attenuation at steady-state, at the expense of higher overshoots."

1This depends on the intended audience. Also, try to avoid footnotes!
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² Remember that these are only general guidelines and you should exercise common sense. Your reports
may not and need not be perfect immediately. However, by the end of the semester you should be used
to writing in a brief, precise, and informative technical style.

2 LAB 1

2.1 Scope

The objective of this Lab is to familiarize the student with the use of MATLAB/SIMULINK as a general
and versatile platform for analysis and design of control systems. (See Lab 1 sample report for details.)

2.2 Assignment

1. Using help: Certainly the most useful command. help command_name displays the syntax, usage,
and brief comments about the command command_name. Use it for plot, title, ylabel, bode, step, series,
feedback, ss, tf, roots, eig, residue, and any other command you encounter.

2. Vectors, Matrices and Plots: Plot the function y(t) = t+0:01t3+ cos t in the interval [-10,10] and
compute the best least-squares, straight-line ¯t in the same interval. Compare the original function
with its straight-line approximation.

3. Working with Figures: Present the results of Experiment 2 in one ¯gure containing two plots with
titles and axis labels. The plots should be side-by-side and one should show the function and its
approximation and the other should show the di®erence. Copy and paste the ¯gure in a Word or
Powerpoint document.

4. System Responses: Use the bode and step commands to generate the frequency and step responses
of the systems with transfer functions

G1(s) =
1

5s+ 1
; G2(s) =

1

s2 + 0:3s+ 1

5. System responses with Simulink: Use Simulink to generate the step responses of the systems
de¯ned in Experiment 4.

6. Composite Systems: Compute the step response of cascade (series) connection of the systems de¯ned
in Experiment 4. Also compute the step response of the feedback system

y(s) = G2(s)G1(s)e; e = r ¡ y

7. State-space representations: Generate state-space representations of the systems de¯ned in Exper-
iments 4 and 6.

8. Roots of polynomials, matrix eigenvalues, and partial fraction expansion Find the roots
of the denominators of the two systems in Experiment 6. Compute the corresponding eigenvalues of
the system matrices (A). And compute the partial fraction expansion for G2(s)G1(s). The pertinent
commands are roots, eig, residue. (Note that the same results can also be obtained by using other
properties of the system data structures.) The \residue" function should not be used with transfer
functions that have multiple poles.

9. Nonlinear di®erential equations with Simulink: Use Simulink to compute the unit step response
of the system described by the nonlinear di®erential equation:

Äy(t) = (1¡ y2(t)) _y(t)¡ sat[¡1;1][y(t)] + 0:6u(t); y(0) = _y(0) = 0

where sat[a;b][x] is the saturation of x in the interval [a; b], i.e., it is a if x ∙ a, b if x ¸ b and x if
a < x < b.
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10. Explore the use of a new command and a new Simulink block: Use the on-line help to ¯nd a
new command, possibly related to the ones you have already used, and apply it in a suitable way. Do
the same with a new block in the Simulink library.

3 LAB 2

3.1 Scope

The objective of this Lab is to study the time and frequency responses of simple systems and obtain insight
on the key response indicators.

3.2 Assignment

1. Normalization: In this type of study, it is convenient to normalize the system transfer functions and
eliminate the degrees of freedom that have an easily understood e®ect on the system response. Such
normalizations are output scaling and time scaling that correspond to changes in the units of the
output and time.

#1: Show that after normalization, the transfer function of a stable ¯rst-order system can be written
as:

K
s+ b

s+ a
¡! ¿zs+ 1

s+ 1
; or

s+ z

s+ 1

The ¯rst is applicable to systems that have non-zero DC-gain, and the second to systems that have
non-zero direct throughput.

#2: Similarly, stable second-order systems with no direct throughput can be written as

K
s+ b

s2 + a1s+ a0
¡! ¿zs+ 1

s2 + 2³s+ 1
; or

s+ z

s2 + 2³s+ 1

2. First-order systems have particularly simple responses. Stable and minimum-phase systems can ex-
hibit lead or lag response depending on the sign of the phase of the frequency response. Non-minimum-
phase systems (with RHP zeros) exhibit inverse response. Study the e®ect of the transfer function zero
(1=¿z) on the frequency response and step response of the system.

#3: Plot the step repsonses, frequency response magnitudes and phases for three representative cases
of ¿z that illustrate the di®erent types of response.

Remarks:
1. Critical points for ¿z are 0 and 1.
2. The step response may be discontinuous at 0.
3. The limit values of the step response at 0+;1 can be computed using the Laplace limit theorems.

3. Second-order systems may exhibit overdamped or underdamped response depending on the value of
the damping ratio ³. The overshoot of the step response and the peak-magnitude in the frequency
response are ampli¯ed by zeros near the system bandwidth. Non-minimum-phase zeros result in inverse
response. Study the e®ect of the transfer function zero (1=¿z) and the damping ratio ³ on the frequency
response and step response of the system.

While there are many useful ways to view the results, here we focus on bandwidth and overshoot:

#4: Let ³ = 0:5 and ¿z range in the interval [-10 , 10] and plot the percent-overshoot and bandwidth
as functions of ¿z (use a numerical computation of these quantities).

#5: Repeat for ³ = 1.

Remark: It is convenient to write a script ¯le to perform the computations. This type of plots is
useful in controller design where the selection of the dominant pole-pair should be adjusted to re°ect
the e®ect of the zero.
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4. Third-order systems may exhibit even more complicated behavior. Here, we are interested in systems
that can be written as a cascade of a complex conjugate pole-pair and a ¯rst order lead or lag transfer
function. Such systems arise often in simple compensator design problems where the dominant closed-
loop dynamics are second order with the addition of a pole and a zero near each other and within the
bandwidth of the dominant pair.

In such cases the system response is primarily dictated by the dominant pole-pair with a relatively small
perturbation caused In general, ¯rst order lead elements amplify the overshoot of the step response and
the peak-magnitude in the frequency response; on the other hand, ¯rst order lag elements attenuate
both of these measures. The amount of ampli¯cation or attenuation depends on the distance between
the pole and the zero and their relative location with respect to the dominant pair. Study the e®ect
of the pole and zero of thr ¯rst-order element and the dominant pair damping ratio on the frequency
response and step response of the system.

Again, there are many useful ways to view the results. One possibility is to ¯x ³ and ¿z and plot the
overshoot (or any other measure of interest) as a function of the \distance" between the pole and the
zero.

#6: For ³ = 0:5 generate a plot showing the overshoot as a function of ¿p=¿z, for a di®erent values of
¿z. Select a few values of ¿z in the interval [0:2; 10] and ¿p=¿z in the interval [0:7; 1:4].

#7: Based on this study, determine the pole locations p such that the transfer function

s+ 0:3

(s+ p)(s2 + 0:894s+ 0:8)

exhibits less than 20% overshoot. Verify with a simulation.

Sample Matlab Script

% Script file for the study of overshoot of the special

% 3rd order system as a function of the lead/lag element

zeta=0.5;

ip=[.7:.05:1.4];

iz=[.2 .5 1 1.5 2 3 5 7 10];

po=0*ip'*iz;

for iiz=1:length(iz)

tauz=iz(iiz)

for iip=1:length(ip)

taup=tauz*ip(iip);

y=step([tauz 1],conv([1 2*zeta 1],[taup 1]));

poi=max(y)-1;if poi<0;poi=0;end

po(iip,iiz)=poi;

end

end

plot(ip,po);title('Overshoot vs. zero/pole ratio for \zeta = 0.5')

hold on;

for i=1:length(iz)

text(.65,po(1,i),num2str(iz(i)))

end

hold off
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4 LAB 3

4.1 Scope

The objective of this Lab is to study the concepts of system approximation, model order reduction, and
model uncertainty in the context of feedback control.

4.2 Generalities

The basic theoretical framework of system approximation can be found in the class notes. 2 Its main points
are summarized below:

System Gain: The gain of a system provides an important measure of its \size," that is, its distance from the
zero-system. System gains can be de¯ned in terms of the underlying metric that is used to measure signals.3

A particularly useful and important gain is de¯ned by the maximum ampli¯cation of the square-root of the
input signal energy (or RMS-value). It turns out that, for a stable system, this maximum ampli¯cation is equal
to the peak magnitude of the frequency response of the system transfer function: For a stable system with
transfer function G(s),

°2[G] = max
w
jG(jw)j

System Approximation: Using the system gain as a distance, we can quantify the approximation of a system G
by another G0 as the gain of the error system °2[G¡G0].

Model Order Reduction: This is a type of system approximation where the we seek to simplify the system by
reducing its order. The order reduction problem can be viewed as the elimination of terms from the partial frac-
tion expansion that have small contributions. A computational reduction procedure (not necessarily e±cient)
is to rank each PFE term according to their gain and eliminate those below a given threshold.

Uncertainty: In practice, one is often faced with an approximation problem where a single system (usually called
\nominal") is used to approximate all the elements of a set of systems. For example, consider the case where
the model parameters are known within a tolerance, or the system model changes depending on the operating
conditions. In such cases, the term uncertainty is used to signify a modeling error (di®erence between the
actual system and the nominal) that can take di®erent values depending on the system.

The uncertainty is itself a dynamical system but its description (order, parameters) is not known a priori.
One reasonable expectation is that an estimate of its maximum gain is available during the controller design.
Uncertainty estimates can be produced by computing the gains of all possible error systems and taking the
maximum. Experimentally, an estimate can be computed from the spectral properties of the response di®erence.

In this framework, the statement of the design problem should be adjusted accordingly to re°ect the presence
of uncertainty. For example,

Robust Stability problem: Achieve the objectives for the nominal system and maintain stability for all
possible values of the uncertainty within a prescribed maximum gain.

Robust Performance problem: Achieve the objectives for all possible systems with values of the uncer-
tainty within a prescribed maximum gain.

The classical notions of gain and phase margin are special cases of the robust stability problem.

Weighted Approximations: The characterization of the uncertainty or modeling error by a single number is con-
venient and consistent with the theoretical framework. However, it may lead to conservative results if the
modeling error contains additional structure. An important example of this is a modeling error or uncertainty
whose frequency response has a frequency-dependent maximum magnitude. Alternatively, in closed-loop sys-
tems, variations in the loop transfer function have a di®erent e®ect depending on their frequency range. That
is, feedback attenuates certain portions of the system uncertainty while it ampli¯es others.

In an e®ort to reduce the conservatism in the design of a feedback system, a frequency-dependent weight can
be added in the description of the modeling error to re°ect the importance of di®erent frequencies. An example

2`On the notion of the \size" of a system and its applications.'
3These are usually referred to as \induced gains;" more speci¯c terminology is used to distinguish di®erent types of gains,

if not clear from the context. This notion of gain (a distance) should not be confused with the \DC-gain" (G(0), a number) or
the \loop-gain" (G(s)H(s), a transfer function).
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of such an application is the weighted model reduction where the reduced system G0 is chosen to minimize
°2[W (G¡G0)]. For a givenW , this problem can be solved using the PFE of G and ranking each term according
to its weighted gain.

The quantity °2[W (G¡G0)] preserves its distance interpretation between the two systems G and G0, as long
as W is a stable, minimum-phase, invertible system.4 The choice of the weighting function is not arbitrary but
it is dictated by the problem itself. Nevertheless, in practice some simpli¯cations may be necessary to reduce
the computational complexity of the solution.

4.3 Assignment

1. Basic Computations: Compute the gains of the systems with transfer functions

1

s2 + s+ 1
;

2

s+ 100
;

1

s2 + 0:1s+ 100
;

s+ 2

s2 + s+ 1
;

s¡ 2
s2 + s+ 1

Hint: De¯ne the transfer functions in the workspace, use the bode command to generate the frequency response

and then ¯nd the maximum by clicking on the line.

2. Simple Model Reduction: Find a ¯rst order approximation of the second-order heat transfer model
in Section 4 of the class notes Examples of System Models.

Hint: Convert the given state-space description to a transfer function; use the tfdata command to obtain the

numerator and denominator; use the residue command to generate the PFE and then compute the frequency

response of each term.

3. Model Reduction for Feedback Control: Given a heat transfer process model

G(s) =
1000

(s+ 0:1)(s+ 1)(s+ 10)(s+ 50)

we seek a reduced order model that is suitable for the design of a controller such that:

² The closed-loop bandwidth is 2.
² The closed-loop bandwidth is 15.

Hint: Roughly, the robust stability constraint is that the closed-loop bandwidth should be less than gain crossover
frequency of the multiplicative uncertainty/modeling error. A additional safety margin can/should be included as
a quick approach to obtain a form of robust performance. For example, instead of the unity gain crossover, the
bandwidth constraint may be selected as the m-gain crossover frequency of the uncertainty, where m < 1 is a safety
parameter (say, m » 0:3).
To implement this idea:

1. Generate the PFE and rank the terms according to their gain.

2. Group the terms into a nominal transfer function, say G0, and an uncertainty/modeling error, say ¢.

3. Compute the frequency response of the multiplicative uncertainty¢m = ¢=G0 and ¯nd the crossover frequency
(note:0:3 ' ¡10dB).

4. Repeat for di®erent orders of G0 (1,2,3).

4. Justi¯cation of Model Reduction for Controler Design: For the process model of # 3, a PID con-
troller has been designed to achieve approximately a bandwidth of 2 for a second-order nominal system
and have reasonable sensitivity properties. The controller transfer function is

C(s) = 3:27 +
2:67

s
+

1:53s

0:01s+ 1

Investigate the validity of the assumption that the controller can be designed for the nominal (reduced-
order) system and then applied to the full-order system.

4°2[W ] and °2[W¡1] are both ¯nite.
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² Find the closed-loop transfer functions from the reference to the output for:

1. The second-order nominal plant with the PID controller.

2. The full-order plant with the PID controller.

² Compare the two transfer functions by computing the gain of their di®erence.
² Visualize the di®erence by comparing the step and frequency responses of the two closed-loop
transfer functions.

² Verify that their di®erence is small for low frequency reference inputs by computing the gain of
their di®erence weighted by a low-pass weight, e.g., W (s) = (0:1s+ 1)=(2s+ 1).

5. A Di®erent Example: In the design of feedback controllers for mechanical systems, a rigid body
assumption is often employed in the modeling of the system. This assumption essentially amounts to
the reduction of the full-order system by eliminating the °exible modes. For such cases, it is well known
that the controller design will be successful provided that the closed-loop bandwidth is well-below the
bandwidth of the °exible modes.

An example to demonstrate the main issues of this class of problems is the position control of a two
mass system. The two masses are linked with a spring and a damper; a force (control input) is applied
on the ¯rst one. We would like to control the position of either one of the two masses, assuming that
a measurement of that position is available. The ¯rst-principles model of the two mass system is

m1Äx1 = u¡ b1 _x1 + k(x2 ¡ x1) + b( _x2 ¡ _x1)

m2Äx2 = ¡b2 _x2 ¡ k(x2 ¡ x1)¡ b( _x2 ¡ _x1)

where xi are the mass positions, mi are the masses, bi are the friction coe±cients, k is the spring
constant, and b is the damper constant. On the other hand, the rigid body approximation is

(m1 +m2)Äx = u¡ (b1 + b2) _x

The rigid body equation can be used to design a controller for either one of the two positions, as long as
the °exible modes are not excited (su±ciently low bandwidth). If the controller bandwidth is too high
then the closed-loop response can deviate considerably from the nominal one and the loop may even
become unstable. The multiplicative modeling error bounds provide design constraints5 to guarantee
that:

1. the nominal design does not destabilize the full order system;

2. the full order closed-loop response is close to the nominal one.

Notice that it is not necessary that the violation of the constraints will result in an unstable closed-loop
system. However, its behavior is unpredictable from the reduced-order data alone.

Use the following script ¯le to investigate and comment on these statements.

% Script file for the 2-mass system problem

%

% Define the problem parameters

m1=1;b1=.1;

k=10;b=.1;

m2=.5;b2=.1;

w=logspace(-3,2,300);

%

% Define the controllers (tuned for the rigid approx.)

5Here, the resonance creates sharp variations in the frequency response and the simpli¯ed version in terms of the crossover
frequency alone may fail; instead the full robust stability criterion should be used.
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PID1 =[ 6.1954e-001 1.2065e-001 1.4504e-002

1.0000e+000 1.0000e+000 0

1.0615e-001 1.4504e-002 5.1340e-001];

PID2 =[ 1.6442e+000 6.3475e-001 1.9407e-001

4.0000e-001 1.0000e+000 0

5.5712e-001 1.9407e-001 1.4213e+000];

PID3 =[ 3.4173e+000 2.4201e+000 1.4943e+000

2.0000e-001 1.0000e+000 0

2.1212e+000 1.4943e+000 2.9931e+000];

%

% Set up the system in state space and compute transfer functions to positions

A=[0 1 0 0;[-k -b-b1 k b]/m1;0 0 0 1;[k b -k -b-b2]/m2];

B=[0; 1/m1; 0; 0]; C1=[1 0 0 0]; C2=[0 0 1 0]; D=0;

gf1ss=ss(A,B,C1,D); gf2ss=ss(A,B,C2,D); gf1=tf(gf1ss); gf2=tf(gf2ss);

% The rigid body approximation is the same for both

gr=tf(1,[m1+m2 b1+b2 0]);

% Compare the frequency and impulse responses of the two models and

% the rigid body approximation

bode(gr,gf1,gf2)

disp('Freq. response of the two models and the rigid body approximation');pause

impulse(gr,gf1,gf2)

disp('Impulse response of the two models and the rigid body approximation');pause

%

% Generate plots of the inverse multiplicative for each case

% The magnitude is the upper bound for the complementary sensitivity (T)

bode(gr/(gf1-gr),gr/(gf2-gr),w);

disp('Inverse Multiplicative Uncertainty (T constraints)');pause

%

% Evaluate the designs for the control of the first or the second mass displacement

% 1st controller, tuned with the rigid model for a BW ~0.6

gpid=tf(PID1(1,:),PID1(2,:));

bode(gr/(gf1-gr),gr/(gf2-gr),feedback(gpid*gr,1),w);

disp('Low BW controller, constraints and nominal T (plenty of margin)');pause

step(feedback(gpid*gr,1),feedback(gpid*gf1,1),feedback(gpid*gf2,1));

disp('Low BW controller, step responses (very predictable)');pause

%

% 2nd controller, tuned with the rigid model for a BW ~1.7

gpid=tf(PID2(1,:),PID2(2,:));

bode(gr/(gf1-gr),gr/(gf2-gr),feedback(gpid*gr,1),w);

disp('Medium BW controller, constraints and nominal T (virtually no margin)');pause

step(feedback(gpid*gr,1),feedback(gpid*gf1,1),feedback(gpid*gf2,1));

disp('Medium BW controller, step responses (excitation of the flexible modes)');pause

%

% 3rd controller, tuned with the rigid model for a BW ~3.5

gpid=tf(PID3(1,:),PID3(2,:));

bode(gr/(gf1-gr),gr/(gf2-gr),feedback(gpid*gr,1),w);

disp('Hi BW controller, constraints and nominal T (constraints are violated)');pause

t=[0:.01:5]';

step(feedback(gpid*gr,1),feedback(gpid*gf1,1),feedback(gpid*gf2,1),t);

disp('Hi BW controller, step responses (instability of the 2nd mass loop)');
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5 LAB 4

5.1 Scope

The objective of this Lab is to study a simple compensator design problem using Root-Locus techniques.

5.2 Assignment

Consider the car cruise control problem discussed in the class notes Examples of System Models, linearized
around the 55 mph steady-state. Use root-locus techniques to design a compensator for this system that
meets the following speci¯cations:

² Zero steady-state error to constant disturbances.
² Overshoot less than 25%.
² 2%-Settling time less than 15 s.
² Closed-loop bandwidth BW ∙ 1:5 rad/s (constraint due to neglected lags, such as engine dynamics).
² \Small" steady-state error to ramp reference inputs.
Hint: First, convert (or at least interpret) the specs in terms of Root-Locus relevant quantities. The zero steady-state

error to steps implies a compensator pole at the origin. Keeping things simple, consider a PI-type compensator (k(s+a)=s).

Avoid using a double pole at the origin to meet the ramp objective. (Why?) Instead translate the objective in terms of

k; a. Next, decide on the pole locations for the dominant pole pair to satisfy the specs. Here, the entire closed-loop is

only second-order but keep in mind that the compensator will contribute a zero to the closed-loop transfer function. Once

you have a compensator that solves the problem (or at least it is close), you may improve the design by a search over a

reasonably small interval of the compensator parameters.

6 LAB 5

6.1 Scope

The objective of this Lab is to study a simple compensator design problem using frequency-domain (Nyquist/Bode)
techniques.

6.2 Assignment

Consider the car cruise control problem discussed in the class notes Examples of System Models, linearized
around the 55 mph steady-state. Use Nyquist/Bode techniques to design a compensator for this system that
meets the following speci¯cations:

² Zero steady-state error to constant disturbances.
² Phase margin greater than 65 degrees
² Closed-loop bandwidth BW ∙ 1:5 rad/s (constraint due to neglected lags, such as engine dynamics).
² Reasonable settling time and overshoot.
² \Small" speed °uctuations for low frequency disturbances (rolling hills). Provide an estimate of the
speed °uctuations for various reasonable cases.

Hint: First, convert (or at least interpret) the specs in terms of frequency response relevant quantities. The zero

steady-state error to steps implies a compensator pole at the origin (PI compensator (k(s + a)=s). This is not the usual

lag compensator and the standard design procedure needs to be adjusted. Once you have a compensator that solves the

problem (or at least it is close), you may improve the design by a search over a reasonably small interval of the compensator

parameters.
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7 LAB 6

7.1 Scope

The objective of this Lab is to perform a more demanding controller design that combines lead and lag
compensation.

7.2 Assignment

Consider the torque-pendulum control problem discussed in Section 5 of the class notes Examples of System
Models. We would like to design a compensator for the linearized approximation of this system that meets
the following speci¯cations:

² Steady-state attenuation of constant disturbances ∙ ¡40dB. \Good" attenuation of other low fre-
quency disturbances.

² Closed-loop bandwidth BW ∙ 20 rad/s.
² Reasonable Sensitivity and Complementary Sensitivity peaks.
² Reasonable settling time and damping ratio.
² Small step-response overshoot (5-10%).
Remarks: You may use frequency domain or root-locus techniques or a combination of the two. The compensator

may contain an integrator to meet the ¯rst speci¯cation and it must contain a signi¯cant lead element to stabilize the

system. In this problem, the lag element causes a necessary peaking of the complementary sensitivity. A reasonable choice

for crossover is around 5 rad/s, while the S and T peaks should be less than 1.2 and 2, respectively. Also, the dominant

poles should have a fairly high damping ratio (0.7 or more) to account for the lag zero and a reasonable settling time is

around 2 s. Finally, the step response overshoot can be adjusted by a pre¯lter or a suitable cascade-feedback (2-DOF)

decomposition of the basic lead-lag compensator.

8 LAB 7

8.1 Scope

The objective of this Lab is to address more complicated and realistic problems that arise in control systems
design, including the e®ect of control input saturation and the design of cascade control structures.

8.2 Introduction

The ¯rst problem (input saturation) is present in almost every control system and its severity depends on
the type of the plant. When operating beyond the saturation limit, special modi¯cations are required to
avoid the so-called integrator wind-up. This phenomenon occurs when the controller requests a large input
signal to reduce the error but, due to saturation, a much smaller input signal enters the plant. As a result,
the controller sees a smaller-than-expected decrease in the error and increases the requested control input
even more. This \wind-up" of the controller states can lead to undesirable behavior or even instability.
Controllers with integral action or very slow poles are susceptible to wind-up problems. A simple (though
not always successful) remedy for that is to use limited integrators that retard the error integration when
the control input saturates.

The second problem (cascade control systems) appears frequently in industrial and large-scale control
systems where nested loops are often used to maintain system integrity in the case of failures. They also
enable partially manual control of certain variables while others are controlled by local feedback loops. In
general, nested (cascade) loops cause a deterioration in the achievable performance but they allow for simpler
controller tuning strategies.
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8.3 Assignment 1.

Design a compensator for the reduced-order model of the tube temperature system (Section 4 of the class
notes Examples of System Models) that meets the following speci¯cations:

² Good attenuation of low frequency disturbances (below 0.5 rad/min).
² Closed-loop bandwidth around 6 rad/min.
² Reasonable Sensitivity and Complementary Sensitivity peaks (around 1.5).
² Fast settling (in the order of a few minutes).
² Negligible overshoot to ramps (10 deg/min, possibly with a pre¯lter/2-DOF implementation).

The e®ectiveness of the control should be demonstrated on a Simulink model that includes control input
saturation.

Remarks: In contrast to an actual system, many controller tunings will work for the simpli¯ed model. You should design

a controller that, above all else, should obey the bandwidth limitation. You should also simulate such a controller without

any anti-windup modi¯cations to gain an appreciation for the wind-up problem. In practice, to avoid input saturation and

maintain a controlled operation at all times, temperature commands are issued as ramps. Still, saturation occurs during

transients, start-up operations, and with large disturbances. For this reason, the controller should be able to tolerate

control input saturation, possibly for extended time periods.

8.4 Assignment 2.

Design a controller for the cart-pendulum system presented in Section 6 of the class notes Examples of
System Models, to meet the following speci¯cations:

² Asymptotic tracking of step commands at the cart-position.
² Asymptotic convergence of the pendulum angle to the inverted position when the reference input is
constant.

² Reasonably fast settling.
Remarks: This is a fairly hard problem, hence the lack of detailed specs. That should not be interpreted as great °exibility
in the controller design. The controller should have enough bandwidth to stabilize the pendulum while cart movements
should respect the corresponding RHP zero. Control input saturation does not allow the use of very fast controllers and
keeping the pendulum inverted requires low sensitivity peaks.

The ¯rst issue in the controller design for such a system is the selection of the control structure. Since the system has
two outputs and one input, a cascade controller is a reasonable choice. The inner loop should be controlling the pendulum
angle, stabilizing it in the inverted position. It should achieve that fairly fast (otherwise the cart runs out of the track) and
without excessive overshoot. In addition to the pendulum instability, the plant (cart force to pendulum angle) has a zero
at the origin that makes the controller design more di±cult. After closing the inner loop, the outer loop should control
the cart position by issuing commands to the inner loop. The corresponding model (angle reference input to cart position)
has a RHP zero and a double pole at the origin. It can be stabilized with even small amounts of lead compensation but
achieving good sensitivity properties requires a more careful design. 6

Finally, it goes without saying that the range of operation of the cart-and-pendulum is fairly narrow. The controller

should not be expected to handle large deviations in the pendulum angle, and all test inputs should re°ect that.

6For more details on appropriate specs for each loop you can look at the response of the controller included with the Simulink
model of the cart-and-pendulum, http://www.eas.asu.edu/ tsakalis/coursea/sblocks.zip.
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