
$:$

- 가

i DNOAM OO NHS LGHM
- SכN!7ه!ng Nu!səa
-S STd!n!यd פn!hาazann

slyכmorlino ヨn!ddUCY to Nb!sヨa + S!sklunv

$$
\begin{aligned}
& \text { TUN! } \pm \text { • } \\
& \% \mathrm{OL} \longleftarrow \text { 9/S 1538 - } \\
& \text { Њ勺ヨ syм } z \text { - } \\
& \text { SLIFS MH } 9
\end{aligned}
$$

SLbI＇ssэyd J！Waduby isF！lyadoud Indino－1ndNi

SZFLohtatad
10 15！7： $15!7$ THURUA（ Σ OYMTOS $3 \&$ OL 5，300 ± 0 Hylshs 7H1 bNiN！tac FnilRoyans oymddns yasn
FHL to $3 \mathrm{HVN}: \overline{\text { WFishs（ } 2}$
－an！logezans ob！ndins －yJs \forall he $\triangle \exists N!\exists \exists \mathrm{C}$ s，－ 40 土 0 halshs \forall

SWFISKS $\exists M!\perp d \forall व Y$ to NO！I甘าnW！S

\qquad
\qquad
\qquad

$$
(\hbar: x) \quad \text { وN!1107d : LヲONFHHOOFY (z }
$$

(ItF

$$
\left(\cdots^{\prime}(z) x^{\prime}(1) x\right)^{z} f=(z) x
$$

$$
\left(\cdots \cdot(z) x^{\prime}(1) x\right)^{1} f=(1) x \quad 20 \quad(x) f=x
$$

ソヤ甘\＆ロヲヨ』 $\quad 丬 \forall \exists N!7$

SOONH8yOISIA

KLNHLZGONO LDHZANOOD QL SNGYH：SWЭLSAS YOHEQコヨコ

NOILTO COZ्यLNI

 S＞DORE＂NOWHOO＂HFROYHL WFISKS

（i sh甘mit）sэigtiztr nolsyoyd Эาgnoe（z
 ：SINOWHOJ 4N3 Nanます

$$
\begin{aligned}
& \text { sbuiddow y'f ! } \\
& \text { SLNdu! : }{ }_{d} \text { Ul } \ni\left[\begin{array}{c}
d n \\
\vdots \\
n
\end{array}\right]=n \\
& \text { syfots: } u \text { yll } \ni\left[\begin{array}{l}
u_{x} \\
i \\
z_{x} \\
x_{x}
\end{array}\right]=x \\
& \text { əu!7: }+ \text { 进 } \ni 7
\end{aligned}
$$

$$
\begin{aligned}
& \text { wofshs כut to do!nayad pos!moutp }
\end{aligned}
$$

 watshs כut fo jo！nayag əut ha pəpatfo hifoanp fou

> כmit ytim

иoبpriatu! to maof эmos

suoy!puos prytu! hup pun n tndu! papunoq hun sof

$$
\infty \leftarrow 7 \text { so } 0 \leftarrow(f) h-(7) m
$$

$$
(m ‘ h) j=\theta
$$

2noy am

$$
n+m(t) \theta=M
$$

watshs эut physuon 'ioyftin
tubuinsoam lof agpiono

$$
\begin{aligned}
x & =h \\
n+x 0 & =x
\end{aligned}
$$

wotshs out jopisuoj

- $\quad h \longleftarrow \frac{S}{1} \leftarrow n \leftrightarrow(*): 0=\theta$

$$
h \longleftarrow \frac{1-5}{1}-n \rightarrow(*): 1=\theta \quad \cdot 7 \cdot!
$$

$$
\text { SWFlsks } \ddagger 0 \text { 人רาW甘 } \forall:\left\{\int \| \ni \theta^{\prime}(\theta) d\right\}
$$

$$
\text { furofsuos: } \theta \leq y \mid y \theta \text { 'hin'x }
$$

$$
\left.\begin{array}{rl}
x & =h \\
n+x \theta & =x
\end{array}\right\}:(\theta) d \quad \overline{b_{0}}
$$

(*)

$$
\begin{aligned}
& \text { so os noyob } \\
& \text { orod umo st! } \\
& 0 \text { pomitdo } 10 \\
& \text { ! sounomioflad } \\
& \text { subom o ytim } \\
& \text { s эrydopo uy }
\end{aligned}
$$

v

[^0]

22
 $\cdot \partial 78 \forall 1 s$ si
$n(\theta) d=人$

9

[^1]w
N

⿶凵

$\xrightarrow{\omega}$

$$
\begin{aligned}
& \text { Prf of THM. }\|x\|=\langle x, x\rangle^{1 / 2} \text { sATisFies } \\
& \text { THe NorM Axioms: } \\
& \text { 1). }\|x\| \geq 0,\|x\|=0 \text { iff } x=0 \text { (ppty } 4 \\
& \text { of }\langle\cdot, \cdot\rangle . \\
& \text { 2) }\langle\alpha x, \alpha x\rangle^{1 / 2}=\|\alpha x\|=\left(\alpha^{2}\langle x, x\rangle\right)^{1 / 2}=|a| \cdot\|x\| \\
& \text { 3). }\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+2\langle x, y\rangle \\
& \leq\|x\|^{2}+\|y\|^{2}+2\|x\| \cdot\|y\| \\
& =(\|x\|+\|y\|)^{2} \\
& \text { DEF An inner product space that is } \\
& \text { complete in the sense of the norm } \\
& \text { induced by the inner product, is } \\
& \text { called a HiLBERT space- } \\
& \text { Ex. }\left(\mathbb{R}^{n},\|\cdot\|_{2}\right) \text { is a Hilbert space } \\
& \|x\|_{2}=\left\{\sum_{1}^{n} x_{i}^{2}\right\}^{1 / 2} \text { the Euclidean norm }
\end{aligned}
$$

$\stackrel{\rightharpoonup}{\omega}$

预

$$
\begin{aligned}
& \text { Suppose we need to show that }\|x-y\|<\varepsilon \\
& \text { Then, choose an "appropriate" w st. } \\
& \|x-w\|<\varepsilon / 2 \text { and }\|y-w\| \leq \varepsilon / 2 \text {. Using the } \\
& \text { triangle inequality } \\
& \|x-y\|=\|x+w-w-y\| \leq\|x-w\|+\|w-y\|<\varepsilon / 2+\varepsilon / 2 \\
& \text { - In analysis, a usual sufficient condition } \\
& \text { for the application of the contraction mapping } \\
& \text { theorem is that } T(\cdot) \text { is continuously } \\
& \text { differentiable and } \| T \text { '(x) } \| \leq p<1 \text {. } \\
& \text { The condition }\|T x-T y\| \leq e\|x-y\| ; p<1 \\
& \text { CAN NoT be replaced by }\|T x-T y\|<\|x-y\| \\
& \text { 2. LocAl con } \| R A C T i O N S \\
& \text { A weaker version of the previous theorem } \\
& \text { holds in the case where } T \text { is a contraction } \\
& \text { only over some region } M \text { of } X \text {. (locally). }
\end{aligned}
$$

$\underset{\sim}{w}$

$$
\begin{aligned}
& \text { Ex Approximate Numerical Solutions of } \\
& \quad f(x)=0 . \\
& \text { 1. Convert } f(x)=0 \text { to } x=g(x) . \\
& \text { Suppose } g \text { : continuously differentiable on } \\
& \quad J=\left[x_{0}-r, x_{0}+r\right] \\
& \text { for some } x_{0}, r \text { and satisfies } \\
& \text { i) }\left|g^{\prime}(x)\right| \leq a<1 \quad \forall x \in J \\
& \text { ii) }\left|g\left(x_{0}\right)-x_{0}\right|<(1-\alpha) r
\end{aligned}
$$

$\stackrel{7}{8}$
$>\left\|(\cdot)\left(h_{d}\right)-(\cdot)\left(x_{d}\right)\right\|$

σ

- asods

SSONZODINO \& ЭONSLSIXЭ 7GAOTD

[^2]

$\vec{\omega}$

u

\propto

III LYAPUNOV's DIRECT METHOD.

- Consider the system

$$
\dot{x}=f(t, x), t \geq 0 \quad(*)
$$

$f(t, 0)=0, t \geq t_{0}$
THM The equilibrium point 0 at t_{0} is stable
if there exists a continuously differentiable l.pdf
V s.t: $\dot{V}(t, x) \leq 0 \quad \forall t \geq t_{0}, \forall x \in B_{r}$
for some ball ' Br $\leq \mathbb{R}^{n}$
Further, if V is also decrescent, 0 is $u . s$.
over [$\left.t_{0}, \infty\right)$.
Remarics : This is the basic stability theorem
of Lyapunov's direct method. It has a natural
interpretation in terms of the "total energy"
stored in the system. That is, V can be
䈚

20 nos 1
fo sunptiodm!

∞

$$
\begin{aligned}
& \text { If } \exists V(t, x): p d f, \text { decrescent, } \\
& \text { radially unbounded with } \dot{V}: n d f \\
& \text { then the equilibrium } x_{E}=0 \text { of }(*) \text { is } \\
& \text { globally uniformly asymptotically stable - } \\
& \text { If } \exists \varphi_{1}, \varphi_{2}, \varphi_{3} \in K R \text { and } V(t, x) \text { s.t. } \\
& \varphi_{2}(\|x\|) \leq V(t, x) \leq \varphi_{1}(\|x\|) \\
& \qquad \dot{V}(t, x) \leq-\varphi_{3}(\|x\|) \\
& \forall t \in\left[t_{0}, \infty\right) \quad \forall x \in \mathbb{R}^{n} \text { and there exist } \\
& \text { positive constants } c_{1}-c_{4} \text { st. } \\
& c_{1} \varphi_{1}(\|x\|) \leq \varphi_{2}(\|x\|) \leq c_{2} \varphi_{1}(\|x\|) \\
& c_{3} \varphi_{1}(\|x\|) \leq \varphi_{3}(\|x\|) \leq c_{4} \varphi_{1}(\|x\|) \\
& \forall x \in \mathbb{R}^{n} \text { then the equilibrium } x_{\epsilon}=0 \\
& \text { of (*) is globally exponentially stable }
\end{aligned}
$$

\vec{v}

0

$$
\frac{0}{-}
$$

403
l. $\epsilon . S=\left\{x \in \mathbb{R}^{2}: x_{2}=0\right\}$.
If S contains any trajectories of (\#)
if must have $x_{2}(t) \equiv 0$ hence $x_{1}=$ const.
-say $x_{1}=x_{10}-$ and $\dot{x}_{2} \equiv 0$. Hence,
$f\left(x_{2}\right)+g\left(x_{10}\right)=0, i, \epsilon . g\left(x_{10}\right)=0$
and therefore, wing the assumptions on $g(\cdot)$,
$x_{10}=0$. Thus, the only trajectory that
Lies entirely within S is the trivial trajectory
$x_{1} \equiv x_{2} \equiv 0$. Hence, 0 is a globally asymptotically
stable equilibrium point.

\& \quad \&
$\bar{\circ}$

$\theta \quad$

$\overline{0}$

 a). $H: L_{\infty} \rightarrow L_{\infty}$
b) $\|h * u\|_{\infty} \leq\|h\|_{1}\|u\|_{\infty} \quad \forall u \in L_{\infty}$.
and $\|h * u\|_{\infty}$ can be made arbitrarily
close to $\|h\|_{1}\|u\|_{\infty}$ ty an appropriate
choice of u.
 INDUCED NORMS of LINEAR MAPS
Let $H: u \rightarrow H u \triangleq h * u$ f.. .
$H u(t)=\int_{0}^{t} h(t-\tau) u(T) d \tau, \quad t \in \mathbb{R}_{+}$.
\bar{N}

そて1

$\overline{2}$ 0

J

0

孚

$\overline{3}$

$$
\bar{J}
$$

준

bhi : ruoynos wuaf parop ppath puo hom

be considered first.
1). MODEL REFERENCE CONTROL (MRC)
2) POLE-PLACEMENT CONTROL (PPC)
3) LINEAR QUADRATIC CONTROL (LQ)
Controllers satisfying Gither 1 or 2 cau be
designed using algebraic methods and will

$$
\begin{aligned}
& \text { The optimal } \bar{K} \text { can be calculated as } \\
& \qquad \bar{K}=b^{\top} r^{-1} \bar{P} \\
& \text { and } \bar{P} \text { is the }{ }^{P} P_{\text {solution of the algebraic }} \\
& \text { Riccati Equation (ARE) } \\
& A^{\top} \bar{P}+\bar{P} A-\bar{P} b r^{-1} b^{\top} \bar{P}+c^{\top} c=0 \\
& \text { Note that 1) } \bar{P} \text { is symmetric } \\
& \text { 2) The ARE has more than one solutions } \\
& \text { but there is only one which yields } \\
& \text { a stabilising } \bar{K}
\end{aligned}
$$

j

w

玉

僪
9

$\stackrel{\pi}{\Omega}$

$\stackrel{\&}{-}$
since $\mu(\cdot) \in L_{2}\left(n L_{\infty}\right)$. As a matter of fact
the boundedness of \hat{x} and m could be established
under weaker conditions, namely

$$
\int_{t_{0}}^{t+T_{2}} \mu(t) d t \leq c+\beta T \quad \forall T \geq 0 \text {; to } \geq 0
$$

where $\beta<\alpha$.
A physical interpretation of the above proof is
that the perturbation $t+\tilde{K} x$ adds" energy
to the m-systern which should be dissipated
in order to preserve boundedness.
A more general + more compact derivation of this
result will be pursued in the following.

各

\%
Similar properties can be shown to hold for
other estimation algorithms, $\in g$. Least -squares
w/ covariance resetting etc.
Assuming that the signals w, \dot{w} are bounded
(i.e. input+ output of the plant are bounded)
we have the following results:

- The estimation error $\epsilon_{1} \in L_{2} \cap L_{\infty}, \epsilon_{1} \rightarrow 0$ as $t \rightarrow \infty$
and $\phi, \phi \in L_{\infty}$
Further, $\dot{\phi} \in L_{2} \cap L_{\infty}$ and $\dot{\phi} \rightarrow 0$ as $t \rightarrow \infty$.
In order to relax the conditions on w we
way use the definition of regular signals
which avoids certain pathological" cases
(Such a condition is not necessary in discrete-time
systems).

$\frac{v}{v}$

$$
\text { + }\left.\right|_{\frac{-1}{3}} ^{\frac{-1}{3}}
$$

$$
\underset{\sim}{\frac{士}{n}}
$$

$$
\begin{aligned}
& \text { EXPONENTIAL CONVERGENCE OF THE } \\
& \text { IDENTIFIER: }
\end{aligned}
$$

416

$$
\begin{aligned}
& \text { When } \gamma \text {, reference input } u \text { are small, rate of conv. } \\
& \rightarrow \gamma \alpha_{1} / \delta \ldots \text {; rate of conv. } \alpha \text { (amplitude of ref.inp) } \\
& \text { However, large adaptive gains + reference inputs } \\
& \text { will saturate' the convergence rate which may } \\
& \text { even decrease. } \\
& \text { Furthermore, the rate of convergence depends } \\
& \text { on a complex manner on the input signal \& the } \\
& \text { plant to be identified via } a_{1} \text {, a } a_{2}, \delta \text {. } \\
& \text { What is particularly hard is to establish pe } \\
& \text { based on conditions on the input signal } \\
& \text { instead of w. For this, it is necessary } \\
& \text { that the plant, parametrized by } y=\theta *^{\top} w, \\
& \text { is minimal so that the number of parameters } \\
& \text { to be identified is teminimum required. } \\
& \text { (see also discussion below). }
\end{aligned}
$$

$\frac{20}{0}$

N

N

らてて

$\stackrel{N}{-}$

The properties of SPR functions can be used
to produce a variety of adaptive laws
via different constructions of the augmented
error: For example a general adaptive law would be
$\dot{\phi}=-\gamma W_{L}\left[\epsilon_{1}^{\prime}\right] \cdot Z^{\prime}$ where W_{L} is SPR and
$\epsilon_{1}^{\prime}=\phi Z^{\prime}$. (In our. care $W_{L}=1$).
It can be argued that the extra degrees of
freedom offered by W_{L} can be used to improve
8
$\frac{8}{3}$
$\frac{0}{6}$
$\frac{6}{6}$
that the plant has ret. degree $=1$
$\left(n-m=n_{m}-m_{m}\right)$. This assumption, although
it is met in several applications, it is quite
restrictive. The price paid to remove the
SPR condition, is the use of the "augmented"
error signal ϵ_{1} and the auxiliary vector Z ?
which increase the dimensionality of the
N

N
N
N
N

む

$$
\begin{aligned}
& \text { N }
\end{aligned}
$$

呈

$$
\begin{aligned}
& \text { Choosing ' } a \text { ' sufficiently large we can } \\
& \text { obtain a bound on }\left\|U_{t}\right\|_{2 \delta} \text { using }\left\|\left(\dot{\phi} m_{f}\right)_{t}\right\|_{2 \delta} \\
& \text { ana } A_{1} \|\left(\phi \varepsilon_{1} \|_{2 \delta}\right. \text { which, in turn, will be } \\
& \text { in a convenient form to apply the Bellman } \\
& \text { Gronwall lemma since } \dot{\phi} \text { and } \phi \xi_{m_{f}}= \\
& =\phi_{\text {Jj }} \cdot \sqrt{m} m_{f} \text { are } L_{2} \text { (or small in the mean) } \\
& \text { provided of course that } m / m f \text { is UB. } \\
& \text { All that remains now is some algebraic } \\
& \text { calculations } \\
& \text { Substituting the previous expressions in the } \\
& \text { bound for }\left\|U_{t}\right\|_{2 \delta} \text { and letting } \\
& \Gamma_{0}=\gamma_{2 \delta}\left(H A_{1}\right) \\
& \Gamma_{1}=\gamma_{2 \delta}\left(H \wedge W_{M}^{-1}\right) \\
& \Gamma_{2}=\gamma_{2 \delta}\left(H \wedge W_{M}^{-1} W_{M 1}\right) \\
& \text { we find }
\end{aligned}
$$

綗

μ
$\stackrel{r}{f}$

N N
10
$\frac{1}{\Omega}$

ơ

$\stackrel{N}{N}$

$$
\begin{aligned}
& \text { Note that there is a fundamental difference } \\
& \text { between this description of the fracking error } \\
& \text { and the one obtained when co was known. } \\
& \text { Namely, the perturbation } \Phi^{\top} \bar{w} \text { is now } \\
& \text { filtered by the (partially) vnkyown transfer } \\
& \text { function WM (s) } \frac{1}{c_{0}^{*}} \text {, instead of wm (s). } \\
& \text { We will therefore have to modify our construction } \\
& \text { of the augmented error. } \\
& \text { There are several ways of doing this, } \\
& \text { 1). Introduce an auxiliary parameter, say } \\
& \text { *o, to estimate } \frac{1}{c_{0}^{*}} \text {. Note that } \frac{1}{c_{0}} \text { cannot } \\
& \text { be used directly as an estimate of } \frac{1}{c_{0}^{*}} \text {. without } \\
& \text { special provisions bhe adaptive law does not guarantee } \\
& \text { that co will be bounded away from o and } \\
& \text { therefore } \frac{1}{c_{0}} \text { may become arbitrarily large or Even } \\
& \text { undefined (eq coit)=0 at some). }
\end{aligned}
$$

Le
\%

$b s e$

$$
196
$$

$\stackrel{3}{\infty}$

$$
\begin{aligned}
& N \\
& \xi \\
& \xi
\end{aligned}
$$

$$
\begin{aligned}
& \text { The robustness problem can now be formulated } \\
& \text { as follows. } \\
& \text { Consider the plant } \\
& \qquad y_{p}=P(s) \text { up } \\
& \text { and } 1 \text { let. } P(s) \text { be described as } \\
& \qquad P(s)=P_{0}(s ; p)[1+\Delta(s ; p)] \\
& P_{0}(s=p) \text { denotes the "nominal" plant which } \\
& \text { is parametrized by a set of parameters } p \text {. } \\
& \Delta(s ; p) \text { denotes a dynamic uncertainty operator } \\
& \text { which describes. the effects of unmodeled dynam } \\
& \text { not included in } P_{0} \text { and which, in general, dep } \\
& \text { on } P \text {... } \\
& \text { All operators are assumed to be causal and expon } \\
& \text { stable. Furthermore, with some extra work, we } \\
& \text { can allow } \Delta \text { to indude mild (sector bour } \\
& \text { nonlinearities. }
\end{aligned}
$$

0

ルて

Solutions for the analysis problems can be
given in terms of the small gain theorem.
The synthesis problem is, of course, more
complicated...For solutions, see Francis "A cure
on Ho control theory" springer-Verlag.
Note that if $D_{\mathcal{P}}$ is allowed to be nonzero
the solution. of the problem using a unear
controller becomes very hard and/ar conservative
. Conservatism of sGT).
3. MRAC = Ideal case
Suppose μ_{1}, $\mu_{2}=0$. Design ur tat.
satisfy the MRC objective.
This problem was solved previously using
a special for of a nonlinear controller:
Linear control + Estimation.
This control law - termed MRAC-

等

$$
\begin{aligned}
& \text { was able to satisfy the control objective } \\
& \text { Cunder the MRAC assumption) for on arbitrary. finite } \\
& \text { value of } p \text { t. That is MRAC has "infinite" } \\
& \text { robustness margin writ. parametric uncertainty. } \\
& \text { 4. MRAC = Robustness } \\
& \text { 1. Let DP }>0 \text {, } \mu_{1}, \mu_{2}>0 \text {. Design up } \\
& \text { to satisfy the MRAC objective. } \\
& \text { (Synthesis Problem) } \\
& \text { 2. Let } \mu_{1}, \mu_{2}>0 \text {. Design up to satisfy, the } \\
& \text { MRAC objective and maximize Dp (or vice-versa) } \\
& \text { 3. Consider a MRAC designed as in part } 3 \text {. } \\
& \text { Given Dp, find } \mu_{1}, \mu_{2} \text { for which the } \\
& \text { Closed loop signals remain } U \text { B. (or vice-versa) } \\
& \text { (Analysis Problem : the classical MRAC robustness) } \\
& \text { This problem will be discussed in some } \\
& \text { detail next. }
\end{aligned}
$$

SLC

$\stackrel{2}{\lrcorner}$

$\frac{8}{\Omega}$

182

2

$$
\begin{aligned}
& \text { Afterall, tracking can be modified by } \\
& \text { using a prefilter. } \\
& \text { Other tools should be used as well. } \\
& \text { E.8. local analysis [Anderson et al. } \\
& \text { "Stability of Adaptive Systems" MiT press, 1986] } \\
& \text { The design of adaptive (Non linear) controllers } \\
& \text { is not straightforward and extensive and } \\
& \text { careful analysis is required. General theorems } \\
& \text { can give a rough idea of what a good design } \\
& \text { should look like. - The adaptive controller should } \\
& \text { then be tailored to the needs of the specific } \\
& \text { problem. (Further comments on design guidelines will be } \\
& \text { given later) : }
\end{aligned}
$$

me

"

N

学

芯

$$
\begin{aligned}
& \text { in a time interval of length } \ln M \\
& \text { Inside this interval } \int_{f_{0}}^{t_{0}+\ln M} \frac{\left|S_{d y} d\right|^{2}}{m} \leq \frac{\left|S_{d y d}\right|^{2}}{M} \cdot \ln M \\
& \text { Using the Bellman Gronwall lemma - or some } \\
& \text { Lyapunov function candidate for the coed loop states- } \\
& \text { we obtain a contradiction, that is } m \text { should } \\
& \text { become smaller than } M \text { in }[\text { to, to+ } \ln M] \text {. } \\
& \text { "Disadvantage" of the approach: Although this technique } \\
& \text { can be used for any finite of bounded disturbances } \\
& \text { it indicates that m may have to become very } \\
& \text { large inside some interval. Intuitively, it can } \\
& \text { be argued that the signals should become suff. large } \\
& \text { (} \epsilon_{1} \text { large) in order for the signal to noise ratio } \\
& \text { (} \epsilon / d \text {) to become large and the adaptation to } \\
& \text { produce good estimates. of the controller parameters. }
\end{aligned}
$$

s.

$\stackrel{N}{9}$

葛

$$
\begin{aligned}
& \text { As a final remark the design of adaptive } \\
& \text { controllers should not be considered as a } \\
& \text { panacea. It may help to improve performance } \\
& \text { and stability for plants with large parametric } \\
& \text { and small non-parametric uncertainty and for } \\
& \text { stout time -varying parameters but extensive work needs } \\
& \text { to be done in order to guarantee that the } \\
& \text { undesirable effects of adaptation will be avoided. }
\end{aligned}
$$

"

ん

\％

$\stackrel{w}{w}$

$\stackrel{\omega}{\omega}$
$\hat{p}, \hat{\theta} \rightarrow$ constant. That is, the closed loop system
can be expressed as an LTI system with
an L_{2} perturbation due to $\dot{\phi}$ and a state-
dependent perturbation $\epsilon_{I} \sim \mu \sqrt{m}$.
In this case the robust -stability properties
of the closed loop system are determined by
those of the frozen (LTI) system $1+2$
with $\hat{P}_{\text {as }}=$ lim $\left.\hat{P}\right|_{t \rightarrow \infty}$ Since $\hat{\theta}$, calculated
as $f(\hat{p})$, determines the desired controller
adaptive controller will be able to tolerate
uncertainty of size μ_{*} st.
$\mu_{*} \geq$ inf $\hat{p} \in \mathcal{P}$. $\mu_{L T I}(\hat{p})$
where $\mu_{l I I}(\hat{p})$ is the uncertainty tolerated by
the closed loop of $P_{0}(s ; \hat{p})$ and the corresponding
desired LII controller.

$$
\begin{aligned}
& \text { For inf } \mu_{l T I}(\hat{p}) \text { to be nonzero, } \\
& \mathscr{P} \in \mathcal{P} \text {, the set of parametric uncertainty in } \hat{p} \text {, } \\
& \text { should not contain or te arbitrarily clove to } \\
& \text { points where } P_{0}(s ; \hat{p}) \text { is uncontrollable or } \\
& \text { unobservable. } \\
& \text { "inf } \mu_{L T I}(\hat{p})>0 \text { is a "standard" condition } \\
& \hat{p} \in \mathcal{P} \\
& \text { and a typical problem of indirect adaptive } \\
& \text { schemes (it does not appear in the direct MRAC } \\
& \text { case where the problem is circumvented by estimating } \\
& \hat{\theta} \text { directly). Presently, the following solution } \\
& \text { are available: } \\
& -1 \text {. } P * \in P \text { and diam } P \text { : suff. small. }
\end{aligned}
$$

$\frac{w}{n}$

\cong

[^0]:

[^1]:

[^2]: MONODVK7 ± 0 ヨSNコS $3 H \perp \mathrm{NI}$ NL! $7!8 \forall \perp S$

