EEE 480 Feedback Systems Outline

Topic	Reading	Contents	
ropie	Material		
1. Control Problems	Ch.	Quick introduction, general concepts and terminology of feedback systems, block diagrams. Feedback versus feedforward, sensors and actuators, disturbances, uncertainty and robustness, stabilization, tracking, performance, sensitivity, optimality.	
2. System Models	Ch., handouts	Modeling for control, ODE/state-space concepts, linearization, time-scaling.	
3. Dynamic Response	Ch.	Quantifying properties of dynamic response. Laplace transforms and frequency domain description, block diagram algebra, transfer functions for feedback and interconnected systems. Limit theorems, internal model principle Partial fraction expansion Effect of pole-zero locations on step response Performance indicators (overshoot, damping, settling time, rise time, bandwidth, resonance frequency)	
4. Simple Controllers	Ch.	The PID controller. Lead and Lag compensators.	
5. System Approximations	Handouts	Understanding the notion of approximation in systems. Quantifying the dominant dynamics, modeling error. Model order reduction principles. Handout examples.	
6. System properties	Ch.	Stability, Routh	
7. Design Tools	Ch. Ch.	 Pole-placement (Root-locus, dominant target matching) Loop-shaping (Bode/Nyquist) 	
8. Design	Ch.	Pole-placement (Lead-Lag Designs)	
Computations	Ch.	Loop-shaping (Lead-Lag Designs)	

NO	NOTES			
1.	1. Simple examples to motivate the study of feedback systems.			
	General problem:			
	Given a system G: (u,d) \rightarrow y, and a set of reference signals y*, design a controller C: (y,y*) \rightarrow u, such			
	that y~y*.			
	Model-matching version: $G_c: r \rightarrow y, G_m: r \rightarrow y^*$. Find C: $(y,r) \rightarrow u$ s.t. $C_c \sim G_m$.			
2.	Modeling issues:			
	We are primarily interested in the model $u \rightarrow y$. We need to know how the control input affects the output. We do not know the disturbances (certain			
	"disturbances" can be measured leading to feedforward controllers) but we should know certain gross			
	properties (spectrum, energy/power bounds). Similarly for modeling errors, we should know a bound			
	on the so-called multiplicative uncertainty.			
	Improving the design of control systems:			
	More accurate models: Dynamic compensators, general design methods.			
	Respect the uncertain: Design constraints, specifications/control objectives, feasibility			
3.	Specifications:			
	The difficult part is to translate linguistic specifications (well-behaved closed-loop, quick settling,			
	reasonable overshoot, good disturbance attenuation) to quantitative ones (stability, damping ratio >			
	0.7, Bandwidth $>$ 1.3, $ S(jw) < -20$ dB for w in [0,.5], zero steady-state error to steps). Basic analytical			
	tools help to define what is feasible and some of the necessary ingredients a compensator must			
	possess.			
4.	The general shape of compensators: An integral part for high gain at low frequencies, a derivative part			
-	to shape the crossover and a proportional part to adjust the level.			
5.	Distance between systems:			
	Peak magnitude of the frequency response of the difference $\max_{w}(G_1(jw)-G_2(jw))$. From this, a			
	reduction of the model order can be achieved by eliminating small terms in the partial fraction expansion. Dominant modes = modes of the big terms. Near pole-zero cancellations, fast dynamics			
	lead to terms with small residues. System approximation concepts are particularly useful in simplified			
	designs.			
6.	A nice analytical tool			
7.	The two basic analysis/design methods.			
1.	Root-Locus: Determine how the roots of a polynomial move as we change the coefficients.			
	(coefficients = affine functions of a single parameter).			
	Nyquist: Complex analytic argument to determine the RHP roots of a polynomial.			
8.	The controller computations. Dynamic compensators introduce poles and zeros to reshape the root-			
Ŭ.	locus/Nyquist plots.			
	-Root-locus design essentially works by shaping a dominant 2 nd order approximation of the closed			
	loop.			
	-Nyquist/Bode design adjusts the loop transfer function around the crossover frequency.			
	The choice depends on specifications and user preference. Usually, designs involve an interplay of the			
	two, at least at the conceptual level.			
	Design Evaluation:			
	Simulation, Experiment, Operation.			
	Did we actually achieve the desired response? Do we need to iterate and what needs to be modified?			
	W/h = 4 2 = h = 10			
	What is hard?			
	In 480: Root-locus, Nyquist plots, Design computations, Modeling (some)			
	In reality: Modeling, Quantify modeling approximations, Estimate disturbance/uncertainty			
	properties, Decide design specifications, Feasibility issues, Quantify performance, Optimality,			
	Design computations (multiple objectives), Managing the global behavior (saturation			
	handling, nonlinear effects), Maintenance Issues			

Week	Instruction	Lab
1	General Intro, Systems, Applications, Robustness-Performance	-
	trade-off. Modeling and Simulations (MATLAB).	
2	Models for control, State-Space essentials, Linearization.	#1. MATLAB/SIMULINK
	Laplace review, PFE, Limit Value theorems.	
	Block diagram algebra, Loop tf computations.	
3	Step and frequency responses, 1-2-3 order, effects of pole/zero	#1 cont.
HW1	location, performance indicators.	
	Control objectives, Basic controller shapes: PID-Lead/lag:	
	Frequency resp of closed-loop, Sensitivity and Complementary	
	sensitivity. 2DOF controllers, prefilters.	
4	System approximations, dominant dynamics, unmodeled	#2 System Responses
HW2	dynamics, Model-order reduction, uncertainty, robustness,	
	Stability (Routh, 3 rd order example R/L crossings)	
5	Root-Locus analysis: concept, computations. Real axis rule,	#2 cont.
	asymptotes, breakaway points, angle of departure/arrival, RL	
HW3	patterns	
6	RL examples and design hints: design for a 2 nd order dominant	#3 Modeling and approximations,
EX1	CL system	uncertainty estimates
7	RL design	#3 cont.
HW4		
8	Nyquist analysis: The basic theorem and examples	#4 Simple R/L design (car)
EX2		
9	Nyquist-Bode (frequency domain) examples and Sensitivity	#4 cont.
HW5	properties, Loop shaping principles	
10	N/B Design	#5 Simple N-B design (car)
HW6		
EX3		
11	Lead-lag compensation (R/L-N/B)	#6 Torque pendulum control
HW7		(instability)
12	Case studies	
EX4		
13	Case Studies, Nonlinear effects (saturation), Discretization	#7 Temperature control
HW8		(Saturation), Cart&Pendulum
		control (nasty)
14+	Case Studies, Review	#7 cont.
EX5		