
Experiments in Sampling, Reconstruction, and Filtering
KST, 4/2002

Introduction
This note describes some simple experiments in MATLAB to illustrate the sampling and reconstruction
processes, and the implementation of filtering concepts.

The required theoretical background is primarily continuous-time systems, Fourier transform and a basic
understanding of their discrete-time counterparts.

For the illustration of the theoretical principles, the various signals are compared in time and frequency
domain. The corresponding sounds are also reproduced with MATLAB’s “sound” function to provide a
tangible understanding of the concepts.

(MATLAB commands appear in Courier font; the commands are MATLAB Version 6.1, or Release 12)

Experiment 1
Here we create a sinusoid with frequency 1 kHz and listen to the sound. We use a high sampling frequency
of 44.1 kHz that represents a fairly good approximation of the continuous time signal.

Define the sampling frequency and the
time vector. (8000 points / 44 kHz ~ 0.2 s
worth of data)
Plot the output and look at the first
0.004s.  Play the sound.

fs=44100; no_pts=8192;
t=([1:no_pts]'-1)/fs;
y1=sin(2*pi*1000*t);
plot(t,y1);axis([0,.004,-1.2,1.2])
disp('original');sound(y1,fs);

Check the frequency domain signal. fr is
the frequency vector and f1 is the
magnitude of F{y1}.

fr=([1:no_pts]'-1)/no_pts*fs; %in Hz
fr=fr(1:no_pts/2);
f1=abs(fft(y1));f1=f1(1:no_pts/2)/fs;

F is the continuous time Fourier. (See
derivation notes.) Compare the analytical
continuous-time Fourier transform with
its FFT computation.

Notice the small amount of aliasing due to
the fact that the truncated sinusoid is not
bandlimited.

frp=fr*2*pi;tmax=max(t);
F1=1/j*sin((frp-1000*2*pi)*tmax/2)
.*exp(j*(frp-1000*2*pi)*tmax/2)
./(frp-1000*2*pi);
F2=1/j*sin((frp+1000*2*pi)*tmax/2)
.*exp(j*(frp+1000*2*pi)*tmax/2)
./(frp+1000*2*pi);
F=abs(F1-F2);
loglog(fr,F,fr,f1);pause

Derivations: Continuous Fourier transform interpretation of the Discrete Fourier Transform (DFT) and
Fast Fourier Transform (FFT).
The DFT is a discrete-time transform defined for a finite sequence of N numbers, as follows.

∑
−

=

−
=

1

0

2

)()(
N

n

kn
N

j
enxkX

π

The term FFT is used to signify a specific method to compute the DFT in an efficient manner. While a
transform in its own right, the DFT/FFT can be interpreted in terms of the CT-Fourier transform for a
sampled signal x(t). Let us consider a signal x(t), sampled at the time instants nT, n = 0,1,…N-1, and
suppose that the signal is 0 outside the sampled interval [0, (N-1)T]. The Fourier transform of this signal is

∫∫
−

−
∞

∞−

− ==
TN

jwtjwt dtetxdtetxjwX
)1(

0

)()()(



First, in a naïve approach, let us approximate the integral by an Euler discretization, whereby the integrand
is taken as piecewise constant.

∑∫
−

=

−
−

− ≅=
1

0

)1(

0

)()()(
N

n

jwnT
TN

jwt TenTxdtetxjwX

Let us consider now a sampled version of the Fourier transform at the frequencies 
TN

kkww
π2

0 == ,

where k=0,1,…,N-1.  Then,

∑∑
−

=

−−

=

−
=≅

1

0

21

0

2

0 )()()(
N

n

kn
N

jN

n

nT
NT
kj

enTxTTenTxjkwX
ππ

Thus,
TnTxFFTxF kww )}({|}{

0
≅=

This approximation is valid as long as the integrand approximation by a piecewise constant function is
reasonable. This implies that k must be small and x(t) should not change significantly inside any sampling
interval of length T.

In a more precise formulation, the sampled signal has a Fourier transform

∑∑ −=−=
k

s
k

ss kwwjX
T

kww
T

jwXjwX ))((1)(2*)(
2
1)( δπ
π

where, as usual, 
T

ws
π2= .  This is the familiar form of the sampled signal Fourier transform as a

summation of shifted replicas of the signal Fourier transform. Of course, aliasing effects will occur if X(jw)
extends beyond half the sampling frequency.  On the other hand, using the Fourier transform definition on
the sampled signal we find

∑
∑ ∫∫ ∑

∫ ∑∑

−

−−

−

=

−=



 −=





 −=







 −=

n

jwnT

n

jwnT

n

jwnT

jwt

nk
s

enTx

dtnTtenTxdtenTtnTx

dtenTttxnTttxFjwX

)(

)()()()(

)()()()()(

δδ

δδ

Again, evaluating this transform at a discrete set of frequencies 
TN

kkww
π2

0 == , we get

)}({)(2 2

nTxFFTenTx
TN

jkX
n

kn
N

j

s ==




 ∑

− ππ

In other words, the FFT of the sampled signal is equal to the Fourier transform of the sampled signal
evaluated at the frequencies kw0, in the interval [0, ws]. This means that the FFT will be symmetric about
the point ws/2. It will also be approximately equal to X(jw)/T, (at the corresponding discrete frequencies in
the interval [0, ws/2]) as long as any aliasing effects are small.

 (Note: The symmetry of the FFT is the reason why only the first half of the FFT points are shown in the
plots.)

More Derivations: The Fourier transform of the signal under consideration.
In this experiment we defined the signal y(t) = sin(w0t), for t in [0,Tmax]. Consequently,

Kostas  Tsakalis
Highlight



[ ]









+

+−
−

−=





+−−=

+−−−

−

2/)(

0

max02/)(

0

max0

2/max
00],0[0

max0max0

max

max

)2/)sin(()2/)sin((1

)2/sin(2*)()(
2
1)}(){sin(

TwwjTwwj

jwT
T

e
ww

Twwe
ww

Tww
j

e
w

wTwwww
j

tpulsetwF δδπ
π

This expression is used to compare the FFT-computed transform that may (does) include aliasing effects
with its theoretical value as the sampling interval approaches zero.

Experiment 2
In this experiment we sample the same sinusoid (1 kHz) at a lower sampling rate to study the aliasing
effects.

Sample the sin at 44/4 kHz.
Compare the two output and play the
sound. This may still sound OK because
of the internal filtering of the soundcard.

a=4; t_a=([1:no_pts/a]'-1)/fs*a;
y_a=sin(2*pi*1000*t_a);
plot(t,y1,t_a,y_a);
axis([0,0.004,-1.2,1.2]);
sound(y_a,fs/a);

Check the frequency domain signal.
Notice that the replicas of F{y_a} are
now in the audible range (not shown).
Also, the aliasing effects are in general
more pronounced.

fr_a=([1:no_pts/a]'-1)/no_pts*a*fs/a;
fr_a=fr_a(1:no_pts/a/2);
f_a=abs(fft(y_a));
f_a=f_a(1:no_pts/a/2)/fs*a;
loglog(fr,F,fr,f1,fr_a,f_a);

Use the interp1 function to get the ZOH
version of the signal at 44 kHz.
The ZOH version is how the signal would
sound with a 44/a kHz D/A converter.
Its difference from the original is
significant in both the time and frequency
domain and its reproduction is quite poor.

y_n =
interp1(t_a,y_a,t,'nearest','extrap');
f_n=abs(fft(y_n));f_n=f_n(1:no_pts/2)/fs;
plot(t,y1,t,y_n);
disp('original');sound(y1,fs);
disp('nearest');sound(y_n,fs);
loglog(fr,F,fr,f1,fr,f_n);

Experiment 3
Here we use different digital filters to “interpolate” the values of the low rate signal and convert it to a high
rate signal. This does not overcome any aliasing effects that occurred at sampling but improves the
reproduction by reducing the undesirable properties of the low rate ZOH. (It does require a better D/A
converter!) In the following table we concentrate on the implementation of a digital filter by approximating
the impulse response of an ideal low-pass.

Generate an “Upsampled” version of the
low-rate signal at 44 kHz.
The upsampled signal contains several
replicas of the original Fourier transform
within the sampling frequency and it is
not an approximation of the original
signal.

y_u=y1*0;k=1:a:no_pts;y_u(k)=y_a;
f_u=abs(fft(y_u));
f_u=f_u(1:no_pts/2)/fs*a;
plot(t,y1,t,y_u);axis([0,0.004,-1.2,1.2])

However, the original signal can be
“recovered” after low-pass filtering. Here,
the filter is defined in terms of its impulse
response and the output is computed as a
convolution sum. Notice that the impulse
response HS is 2000 points long yielding

hs=sin(3000*2*pi*t)/pi./t; i=1000:-1:2;
HS=[hs(i);3000*2;hs(2:1000)]*a/fs;
y_f=conv(HS,y_u);
y_f=y_f(1000:999+no_pts);
f_f=abs(fft(y_f));f_f=f_f(1:no_pts/2)/fs;
plot(t,y1,t,y_f);axis([0,0.004,-1.2,1.2])



an 1000 points delay in the sound
reproduction. This is significant but not
necessarily impractical.

disp('original');sound(y1,fs);
disp('filtered-upsampled');sound(y_f,fs);
loglog(fr,F,fr,f1,fr,f_f);

Notes: Given a discrete-time signal y(n), the upsampled signal (by a) is defined as the signal z(n) such that



 =

=
otherwise

aknifky
nz

0
)(

)(

Equivalently, we may think of z(n) as the signal produced by sampling the continuous time signal y(t) with
the impulse train )()( a

T
nu ntbtp ∑ −= δ , where bn = 1, if n/a is an integer, and 0 otherwise.

Clearly, the upsampling impulse train is identical with the original delta train )()( Tnttp ∑ −= δ and,
therefore, the continuous-time sampled signals y(t)p(t) and y(t)pu(t) are the same, and have the same Fourier
transforms. The latter, however, has a smaller sampling time (larger sampling frequency), implying that the
FFT of the discrete-time sequence will contain several replicas of  F{y}. The upsampling process does not
create any new information about the time signal but allows for the implementation of better low-pass
filters in discrete time.

Experiment 4
Equalizers are often used in audio equipment to amplify (or attenuate) frequency bands in an effort to
improve the quality of reproduction of the original signal. Their objective is to cancel (or invert) the audio
signal distortion caused by equipment limitations (amplifier, speaker, media) or the environment where the
signal is reproduced.
In this experiment we use digital low-pass filters to implement a “frequency equalizer.” The test signal is
the standard Windows sound “Tada.” The attached Matlab program loads the sound and filters it with three
different low-pass filters. Then, by taking different linear combinations of the resulting signals we can
amplify or attenuate the energy of the signal in the desired frequency band(s).


	Introduction
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

