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Preface

The lack of complete knowledge about the plant to be controlled and the unpredictable changes in the

environment are among the main reasons for using feedback. The design of feedback control laws to meet

the stability and performance requirements for a given plant continues to be a challenging problem in

many applications. This is partly due to the complexity and uncertainty associated with real plants and

partly due to the scarcity of feedback control laws even when the plant is perfectly known. In practice,

plants are nonlinear, time-varying and in�nite dimensional and any attempt to represent them precisely by

mathematical models is almost futile. Consequently, a common practice adopted by most, if not all, control

engineers is to approximate the actual plant by a simpli�ed model allowing the development of feedback

control laws which are easily implemented using available technologies. A class of popular simpli�ed models

are those represented by a linear, time-invariant, ordinary di�erential equation. Such models may provide

a good approximation of the actual plant around operating points while maintaining a reasonable degree of

analytical simplicity. Naturally, a large amount of research e�ort has been directed over the years to the

detailed study of linear time-invariant systems and numerous results have been reported in the literature on

the systematic and quantitative analysis and design of control laws for such systems.

On the other hand, in many applications such as aerospace, process control etc., the ever increasing

performance demands and more stringent speci�cations over a wide range of operating conditions diminish

the value of linear time-invariant models as good approximations of the actual plant. For such systems, a

more accurate description can be provided by considering linear time-varying models which capture the time

dependent characteristics of the plant. Time dependence may manifest itself as small in magnitude time-

varying perturbations of the nominal parameters of a linear time-invariant model. In such a case, the control

problem can still be approached from a linear time-invariant point of view by designing a control law which

is robust with respect to the time-varying parameter perturbations. In many applications, however, time

dependence is so pronounced that the linear time-invariant approach is no longer adequate for modeling and

control. In these situations the plant may be modeled by a linear ordinary di�erential equation with time-

varying coe�cients, simply referred to as a linear time-varying plant. Until recently, the lack of technology for

implementing complex controllers did not justify an extensive and thorough analysis and design of control

laws for linear time-varying plants. However, in view of the current state of the art in electronics and

computer technology, the implementation of complex control algorithms is both feasible and inexpensive,

motivating a more detailed study of the control problem for linear time-varying plants.

The purpose of this book is to contribute to the advancement of the theory and design techniques of control

laws for linear time-varying plants. An input-output framework is adopted, preserving many similarities with

the well-understood linear time-invariant case. Polynomial di�erential operators and time-varying input-

output operators serve as generalizations of the polynomials and transfer functions of the time-invariant

case. The notion of poles is generalized by an integral operator associated with simple di�erential equations.

In this mathematical framework, algebraic techniques are employed to design and analyze control laws for

linear time-varying plants with smooth or piecewise continuous parameters which are known functions of

viii



PREFACE ix

time. The precise knowledge of the plant parameters, however, may be quite restrictive in many applications

where the plant parameter variations arise due to either unpredictable or complicated changes in the plant

description. The need to counteract such forms of plant uncertainty, also known as parametric uncertainty,

has led to the development of the so-called adaptive control laws that require little or no information about

the plant parameters. Adaptive control was motivated by the aircraft control problem in the 1950s and

early 1960s and continues to be an active area of research, having successfully produced several classes of

adaptive control schemes. Despite the intuitive claim, however, that such control schemes should �nd major

applications with linear slowly time-varying plants, it was not until recently that their use in a time-varying

environment could be theoretically justi�ed. A considerable part of this book is devoted to the analysis and

design of adaptive controllers for a wide class of linear time-varying plants.

A brief outline of the book is as follows: Chapter 1 contains an introduction on the control structures

studied in the later chapters. Chapter 2 presents the essential mathematical background for the representa-

tion and analysis of linear time-varying plants. The linear time-varying plant and its various representations

used in the subsequent chapters for control and identi�cation purposes are studied in Chapter 3. Chapter

4 deals with the model reference control problem for linear time-varying plants with known parameters.

In Chapter 5, the pole-placement control problem is studied after being appropriately generalized to the

time-varying case. In Chapter 6, the identi�cation problem of linear time-varying plants is considered using

parameter estimation techniques. The results of Chapters 4 and 6 are combined in Chapter 7 to develop

model reference adaptive control schemes which relax the requirement of Chapter 4 that the plant param-

eters are precisely known and are applic-able to plants with large parametric uncertainty. An analogous

development is presented in Chapter 8 where the results of Chapters 5 and 6 are combined to yield adaptive

`pole-placement' schemes for linear time-varying plants with large parametric uncertainty. In all chapters,

the theoretical analysis is complemented by examples and numerical simulations illustrating the discussed

controller design techniques and the resulting closed-loop plant behavior.

The book is intended to introduce control researchers and practitioners to certain aspects of theory and

design of control systems for linear time-varying plants with full or partial knowledge of parameter variations.

The adopted treatment revolves around the use of input-output tools generalizing the corresponding linear

time-invariant methods to the linear time-varying case. This approach allows for the development of analysis

and design techniques that resemble the more elementary ones used for linear time-invariant plants and makes

the �rst �ve chapters of the book easy to follow by graduate students and researchers with background on

classical control and basic linear system theory. On the other hand, Chapters 6, 7 and 8 assume some

familiarity with Lyapunov techniques and stability theory. Such a background may be acquired during a

�rst graduate course on nonlinear systems.

It is a pleasure to acknowledge the contributions of colleagues, researchers and former students who

helped and motivated us to write this book. We begin by thanking some of the earlier key researchers in

adaptive control Bob Narendra, Karl Astrom, Gerhard Kreisselmeier, Yoan Landau, Brian Anderson, Steve

Morse, Graham Goodwin, R. Monopoli, Rick Johnson and Bo Egardt whose continuous enthusiasm and

work laid the foundations and paved the road towards the solution of several of the problems addressed in

this book. We would especially like to express our deepest appreciation to Petar Kokotovic and Laurent

Praly. Their constructive criticism, guidance and input held our motivation for research high and helped us

re�ne most of the material in this book.

We are also indebted to many colleagues for stimulating discussions at conferences and other scienti�c

meetings. Their comments were invaluable in enhancing our understanding of the �eld and improving our

work. In particular, we would like to thank Anu Annaswamy, Fouad Giri, Rick Middleton, Bob Narendra,

Brian Anderson, Steve Morse, Shankar Sastry, Jim Winkelman, Bob Kosut, Marc Bodson, Eric Ydstie, Ivan
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Mareels, Robert Bitmead, Rogelio Lozano-Leal, Romeo Ortega and Ken Gousman, to mention a few, for

many fruitful discussions.

Closer to home, our co-workers and former students played a vital role in the development of this book,

by sharing with us their views and insight on our research. We are appreciative of the comments of Mike

Safonov and Gary Rosen who served in the doctoral dissertation committee of the �rst author on which this

book is based. We also thank the former students of the second author Gang Tao, Jing Sun, Aniruddha

Datta, John Reed and Farid Ahmed-Zaid for their comments and stimulating discussions. And, on behalf of

the �rst author, Thanasis Sideris, Georgios Giannakis and the late Constantine Economou deserve a special

mention.

Finally, we acknowledge the support of several organizations including the National Science Foundation,

General Motors Project Trilby, Ford Motor Company, Rockwell International and Lockheed. Special thanks

are due to Bob Borcherts, Bill Powers, Roger Fruechte, Neil Schilke, James Rillings and Bob Rooney whose

continuous support of our research made this book possible.

Kostas S. Tsakalis

Petros A. Ioannou
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Chapter 1

Introduction

This book is concerned with the analysis, parametrization and control of a class of linear systems represented

by a vector di�erential equation of the form

_x(t) = A(t)x(t) + b(t)u(t)

y(t) = c>(t)x(t) (1.1)

where x(t) 2 Rn is the state vector, u(t) 2 R is the input, often referred to as the control input, y(t) 2 R is

the output and A(t); b(t); c(t) are matrices of appropriate dimensions, referred to as the system parameters,

whose elements are piecewise continuous functions of time. We refer to (1.1) as a linear time-varying (LTV)

system. When A(t); b(t); c(t) are independent of time, (1.1) is referred to as a linear time-invariant (LTI)

system.

Equation (1.1) arises when an approximate model of a physical process is obtained by linearizing a more

accurate nonlinear model about a nominal trajectory or generated directly from physical laws. For example,

consider a dynamical system described by the ordinary di�erential equation (ODE)

_xs(t) = f(xs(t); us(t); t) ; t � t0 (1:2)

and evolving around a nominal trajectory described by

_xo(t) = f(xo(t); uo(t); t) ; t � t0 (1:3)

Then, assuming that f(:; :; :) is well-behaved in a neighborhood of (xo; uo) and for small deviations (x; u) =

(xs � xo; us � uo), the behavior of the system (1.2) can be approximately described by

_x(t) = A(t)x(t) + b(t)u(t)

where

A(t) =

�
@f(x; u; t)

@x

�
x=xo

; b(t) =

�
@f(x; u; t)

@u

�
u=uo

Some examples of such systems are:

� The dynamics of an aircraft where (1.3) may represent a desired 
ight trajectory with speci�ed nominal

velocity and altitude pattern and (1.2) the actual 
ight trajectory with small velocity and altitude

deviations from their prescribed nominal values.

� The motion of a space station acted upon by gravity gradient and aerodynamic torques is described by

a set of nonlinear di�erential equations. Even after linearization, signi�cant variations in the inertia

matrix and the system parameters are introduced by large moving payloads.

1



1.1. STM, STABILITY 2

� In chemical process control, heat transfer rates may be altered by fouling or corrosion. Such phenomena

may induce, for example, thermocouple drift or change the characteristics of a heat exchanger resulting

in a time-varying process description. Moreover, the dynamics of several chemical reactions are highly

nonlinear. Consequently, in processes involving such reactions, varying set points or feed-stream com-

position and other disturbances in general may cause a signi�cant change in the operating conditions

and the parameters of the process model.

1.1 State Transition Matrix and Stability

Consider the vector di�erential equation

_x = A(t)x ; x(t0) = x0; t � t0 (1:4)

which is of the form of (1.1) with u(t) � 0. The point xe = 0 is an equilibrium point of (1.4) at any time t0
and an isolated equilibrium point of (1.4) if A(t) is nonsingular at some t � t0.

The general solution of (1.4) is of the form (e.g., see [Kai.80, Des.69])

x(t) = �(t; t0)x0

where �(:; :) is the unique solution of the matrix ODE

@�(t; t0)

@t
= A(t)�(t; t0) ; �(t0; t0) = I; t � t0

The matrix �(:; :) is commonly referred to as the state transition matrix (STM) associated with A(t). In

general, it may not be possible to derive an analytical, closed-form expression of the STM associated with

an arbitrary matrix A(t). Such expressions are only available in certain special cases, the most frequently

encountered example of which is the case of LTI systems. That is, when A(t) � A is a constant matrix, it

is easy to verify that the STM of A is of the form

�(t; t0) = I +A(t� t0) +
1

2
A2(t� t0)

2 + � � � �= eA(t�t0) = exp

Z t

t0

Ad�

In the time-varying case, the matrix exponential is generalized to the use of a power series expansion for

�(t; t0), called the Peano-Baker formula:

�(t; t0) = I +

Z t

t0

A(�1) d�1 +

Z t

t0

Z �1

t0

A(�1)A(�2) d�2d�1 + � � �

+

Z t

t0

Z �1

t0

� � �
Z �n�1

t0

A(�1)A(�2) . . .A(�n) d�n . . . d�2d�1 + � � �

It should be emphasized, however, that the matrix resulting from the Peano-Baker formula is not equal to

exp
R t
t0
A(�) d� , unless A(t) and

R t
t0
A(�) d� commute.

Despite the lack of general closed-form expressions, the state transition matrix is a powerful analytical

tool in studying the properties of the solutions of the ODE (1.4), especially those pertaining to the stability

of the equilibrium xe = 0. These properties, summarized by the following theorem, are exploited throughout

this book in studying the stability properties of several control systems.

1.1 Theorem: The equilibrium point xe = 0 of _x = A(t)x, t � t0 � 0, is

1. stable i� supt�t0 k�(t; t0)k
�
= c(t0) <1.

2. asymptotically stable i� limt!1 k�(t; t0)k = 0.
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3. uniformly stable i� supt0�0 c(t0) = supt0�0 supt�t0 k�(t; t0)k
�
= c <1.

4. uniformly asymptotically stable and exponentially stable i� there exist constants k; a > 0 such that

k�(t; t0)k � k exp[�a(t� t0)], 8t � t0, 8t0 � 0.

for any �nite initial conditions x(t0). 55

Proof: See e.g., [Vid.78, Kai.80].

An important issue raised by the above theorem is that the stability of the zero equilibrium of (1.4) is given

in terms of the di�cult or even impossible to compute analytically state transition matrix. Based on the LTI

case analogue, one may hope that the stability problem can be reduced to examining properties of the matrix

A(t) and, in particular, its eigenvalues. In fact, this type of a result has recently been established in [Z.J.89]

for a wide class of LTV systems. Without getting into the details, the necessary and su�cient condition

for stability of [Z.J.89] is given in terms of the eigenvalues and the so-called co-eigenvalues of a matrix

obtained from A(t) via a similarity transformation and closely resembles the condition derived for the scalar

case (see Example 1.2 below). Without diminishing the signi�cance of the result, it should be mentioned

that the computation of the co-eigenvalues and the similarity transformation, although straightforward, is

quite complicated. The complexity of this result justi�es the development and study of simpler and more

intuitive su�cient conditions for stability relying on assumptions on the structure and/or the speed of the

time variations [Ven.77, Vid.78, IOP.87]. The following examples illustrate the di�culty of the stability

problem in the time-varying case.

1.2 Example: Let us begin by considering the simplest �rst order LTV system described by

_x = �a(t)x ; x(0) = x0 (1:5)

where a(t) is a scalar piecewise continuous function of time. Since a(t) and its integral commute, the

corresponding state transition matrix is given by

�(t; �) = e
�
R
t

�
a(s) ds

and therefore, the solution of (1.5) is

x(t) = e
�
R
t

0

a(s) ds
x0

Clearly, if a(t) = a0 is a constant, x(t) converges to zero exponentially fast when a0 > 0 while it diverges to

in�nity when a0 < 0, for any initial condition x0. On the other hand, if a(t) varies with time, the necessary

and su�cient condition for exponential stability given by Theorem 1.1 is that there exists a positive constant

a0 and a constant c0 such that for all t � 0Z t

0

a(�) d� � c0 + a0t (1:6)

Note that in contrast to the LTI case, condition (1.6) allows a(t) to assume both positive and negative values

as long as its average as t!1 is positive, uniformly in t. 55
The situation becomes considerably more complicated in the higher dimensional case, as demonstrated

by the following classical examples where the zero equilibrium of (1.4) is unstable, even though the matrix

A(t) is stable for each �xed time t.

1.3 Example: Consider the second order di�erential equation

�y + a0(t) _y + a1(t)y = 0 (1:7)
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and its state-space realization

_x =

�
0 1

�a1(t) �a0(t)
�

| {z }
A(t)

x ; y = [1; 0]x (1:8)

When a0(t); a1(t) are constants, a necessary and su�cient condition for the exponential stability of the zero

equilibrium of (1.8) is a0; a1 > 0. On the other hand, consider the case where

a0(t) = a0 > 0 ; a1(t) = �� � coswt > 0; 8t

representing the well known damped Mathieu equation. For a0 = 0:1, � = 10:1, � = 10 and w = � = 3:14159,

both a0; a1(t) are positive while the eigenvalues of the state matrix A(t), given by

�0:05� j

p
0:39 + 40(1� cos�t)

2

are in the left half-plane for all t and, in fact, their real part is constant and equal to �0:05.

s2 + 0:1s+ 10(1� cos�t) + 0:1

On the other hand, the stability properties of (1.8) are determined by the properties of the associated state

transition matrix �(:; :). Since A(t) is periodic with period T = 2, one may apply Floquet analysis to study

its stability properties [C.L.55]. A numerical evaluation of �(T; 0) yields

�(T; 0) =

�
1:0988 0:1784
2:0683 1:0809

�
whose eigenvalues have absolute values

1:6973; 0:4824

Since x(kT ) = �k(T; 0)x(0), k 2 N and �(T; 0) has eigenvalues outside the unit circle, we can always select

x(0) such that kx(kT )k ! 1 as k !1. Hence, the zero equilibrium of (1.8) is unstable. 55
1.4 Example: Consider the di�erential equation (1.4) with t0 = 0 and

A(t) =

�
cos t � sin t
sin t cos t

�� �1 �4
0 �1

��
cos t sin t

� sin t cos t

�
which is of the form e
tBe�
t where 
 and B are constant matrices. Note that both the eigenvalues of A(t)

are constant and equal to �1. It can be easily veri�ed that the solution of (1.4) is given by

x(t) = e
te(�
+B)tx0

But,

A0
�
= �
+B =

� �1 �3
�1 �1

�
has eigenvalues �1�p3 and, hence, we can �nd x0 such that kx(t)k ! 1 as t!1, implying that the zero

equilibrium of _x = A(t)x is unstable. 55

Conversely, one may construct examples where the matrix A(t) is unstable for each �xed time t but the

zero equilibrium of (1.4) is exponentially stable.

1.5 Example: Consider the system of Example 1.4 except that now

B =

� �1 4
1 �1

�
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In this case the eigenvalues of A(t) are constant and equal to 1;�3 and, hence, A(t) is unstable at each �xed
time t. However,

A0 = �
+B =

� �1 5
0 �1

�
has both eigenvalues equal to �1. Since e
t is bounded, we have that for any x0 kx(t)k ! 0 exponentially

fast as t!1, uniformly in t, implying that the zero equilibrium of _x = A(t)x is exponentially stable. 55

The above examples illustrate that the stability properties of LTV systems are quite complicated and

not always compatible with our LTI intuition. Furthermore, the analysis of these properties for a given state

matrix A(t) is in general a formidable task. Nevertheless, in several practically interesting special cases, it

is possible to develop simple su�cient conditions for stability. For example, in Chapter 2 of this book, we

discuss the case of slowly varying systems where a su�cient condition for the exponential stability of the

trivial equilibrium of (1.4) is that A(t) is pointwise exponentially stable with a nonzero stability margin,

uniformly in time and the variations of A(t) are su�ciently small or small in the mean square. This result is

also extended to the case where the dependence of the matrix A(t) has a special form. In particular, when

A(t) = A(t; �(t)) where �(t) are parameters which are themselves functions of time, then the zero equilibrium

of (1.4) is exponentially stable provided that for each �xed �̂, A(t; �̂) is exponentially stable with a nonzero

stability margin, uniformly in �̂ and the variations of �(t) are su�ciently small or small in the mean square.

In this case, the overall time variations of A(t) are not restricted to be slow. Such stability results are

exploited in the rest of this book to analyze and establish the stability properties of various feedback control

schemes.

1.2 Control of LTV Plants

Let us consider the LTV plant to be controlled

_x(t) = A(t)x(t) + b(t)u(t)

y(t) = c>(t)x(t) (1.9)

where y(t) is the measured output and u(t) is the control input, to be chosen so that (1.9) meets certain

prescribed performance objectives.

The design of control laws for LTV plants of the form (1.9) has attracted considerable interest since the

early 1970s. Quadratic optimization criteria and geometric arguments yielded compensators whose parame-

ters are computed by solving a Riccati di�erential equation [Bro.70, Kai.80, B.H.69]. On the other hand, a

general algebraic approach motivated by the results of [YJB.76, DLMS.80] was the subject of more recent

studies [F.F.84, Man.87, RKMN.88, RNK.90]. These studies established a compensator design methodol-

ogy, parallel to the popular H1 or `LQG/LTR' robustness/performance approach for LTI plants, where the

control objectives are expressed in terms of induced gains of certain closed-loop sensitivity operators. The

implementation of these controllers, however, requires great computational e�ort and becomes less attractive

when there are limitations on the time allowed for the control law computations which, for example, is the

case in adaptive control.

In this book we overcome this di�culty by considering an input-output (I/O) description of (1.9) which

is motivated by the corresponding I/O di�erential equation. Such description is compatible with the general

algebraic formulation of [DLMS.80] and enjoys several algebraic properties, closely resembling the transfer

function approach in the LTI case.1 In this framework we concentrate on two general control objectives,

illustrated by simple examples in the following subsections. For these control objectives we derive explicit

1See, for example, [Sol.66, INS.84, K.H.79, Kam.79] for similar developments.
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control laws whose realization only requires the solution of linear algebraic equations and, as such, are

especially attractive in the design of adaptive control schemes.

1.2.1 Model Reference Control

Let us consider the �rst order LTV plant described by the di�erential equation

_y = a(t)y + b(t)u ; y(0) = y0 (1.10)

where a(t); b(t) are given piecewise continuous, bounded functions of time and b(t) 6= 0, 8t � 0. The model

reference control (MRC) objective is to select the control input u(t) so that all signals in the closed-loop

plant are bounded and the output y tracks, asymptotically as t!1, the output of the reference model

_ym = �ym + r ; ym(0) = 0 (1:11)

where r is a piecewise continuous, bounded signal, usually called the reference input. Note that the choice of

a LTI reference model serves only to simplify the presentation and is not crucial for the rest of our discussion;

similar arguments can be made for LTV reference models as well.

The choice of the control input u(t) in (1.10) that meets the model reference control objective is obvious

for this simple example, i.e.,

u = �a(t)y + y + r

b(t)

For this control input, the closed-loop plant is described by

_y = �y + r

and the tracking error e1 = y � ym satis�es _e1 = �e1 i.e., e1(t) = e�te1(0). Therefore, for any bounded

reference input, e1 and y are bounded and e1(t) ! 0 as t ! 1 exponentially fast. Furthermore, if jb(t)j �
c > 0, 8t � 0, then u is also bounded.

Next, let us consider the second order LTV plant

�y + a1(t) _y + a2(t)y = u ; y(0) = y0; _y(0) = _y0 (1:12)

where a1(t); a2(t) are given piecewise continuous, bounded functions of time. The control input u(t) is now

to be chosen so that all signals in the closed-loop plant are bounded and the output y tracks the output of

the reference model

�ym + 3 _ym + 2ym = r (1:13)

asymptotically as t!1, where r is a piecewise continuous, bounded reference input signal.

Assuming that, in addition to y, _y is available for measurement, the choice of the control input u is again

obvious, i.e.,

u = (a1(t)� 3) _y + (a2(t)� 2)y + r

For this control input, the closed-loop plant is

�y + 3 _y + 2y = r

and the tracking error e1 = y � ym satis�es �e1 + 3 _e1 + 2e1 = 0. Clearly, for any bounded reference input,

e1; y; _y and u are bounded and e1(t)! 0 as t!1 exponentially fast.

On the other hand, if _y is not available for measurement, which is often the case in many physical systems,

the choice of u that meets the model reference control objective is not as obvious. Chapter 4 is devoted to

the analysis and design of time-varying control laws which meet the model reference control objective exactly
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for a wide class of LTV plants. The last example is then revisited in Section 4.7 where it is employed to

illustrate the calculation and properties of various controller designs. As demonstrated in the same section a

controller realization that meets the model reference control objective for an LTI plant does not necessarily

achieve the same result when the plant is LTV. This observation con�rms the intuitive expectation that any

plant parameter variations should carefully be accounted for during the design of a controller.

1.2.2 Pole-Placement Control

When the plant is LTI, the pole-placement (or pole-assignment) problem is well de�ned and extensively

studied. It involves the selection of the control input so that the closed-loop poles are placed at some desired

locations. Since in the LTI case the location of the poles completely determines the stability properties of

the system, pole-placement control (PPC) can be used as an approach to stabilize a plant. Furthermore,

a necessary and su�cient condition for such a design to be possible for arbitrary pole locations is that the

plant is completely controllable.

In the LTV case, on the other hand, such a simple notion of poles is unavailable. It also goes without

saying that in view of the examples of the previous section, pointwise design techniques are only applicable

to special classes of LTV plants. Consequently, the extension of the PPC objective to the LTV case requires

a suitable formulation of the problem and the development of appropriate analytical tools. One of the goals

of this book is to establish such an analytical framework and is achieved in Chapter 2 by considering I/O

descriptions of LTV systems in terms of elementary di�erential and integral operators. The integral operators

in particular are de�ned as solutions of homogeneous di�erential equations and therefore determine the

stability of the system. Such descriptions are directly related to canonical forms (controllable or observable)

which allow for simple and explicit designs. In this framework, the generalization of the PPC objective can

be simply stated in terms of the homogeneous solution of the di�erential equation describing the closed-loop

plant. Furthermore, using the concepts established in [DLMS.80], the design of a PPC scheme is achieved

by solving a Diophantine equation involving di�erential operators. Remarkably, the solution of such an

equation can be obtained in closed-form by solving a system of linear algebraic equations and its existence

is guaranteed under certain controllability and observability conditions on the LTV plant. In addition,

the same approach provides a solution to the problem of exact tracking of a class of reference inputs by

incorporating the internal model principle (IMP) in the PPC design. The details of PPC design for LTV

plants are discussed in Chapter 5.

It should be mentioned at this point that in both cases of MRC and PPC objectives, the respective designs

guarantee that the closed-loop system is stable and meets the control objective exactly independent of the

speed of the plant parameter variations. On the other hand, due to its relative importance in applications

and the resulting controller simpli�cation, the case of slowly time-varying plants is also discussed separately

in Chapters 4 and 5. Indeed, a controller designed in a pointwise sense2 can be shown to guarantee closed-

loop stability and meet its objective approximately, provided that the parameter variations are su�ciently

slow, see for example [K.K.79, S.A.91].

1.3 Adaptive Control of LTV Plants

In Section 1.2 we discussed the control problem for a LTV plant of the form (1.9) assuming that the matrices

A(t); b(t); c(t) |often referred to as plant parameters| consist of elements that are known functions of

time. In many practical problems, however, the plant parameters are not accurately known. The process

characteristics may change with time in a predictable or unpredictable fashion due to a variety of reasons

including changes in the operating conditions, normal wear and tear etc. Therefore, although the actual

2Such design techniques are also referred to as gain-scheduling.
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process may be modeled as a linear system of the form (1.9), the assumption that the plant parameters

are accurately known is unrealistic in many applications such as aircraft control, chemical process control,

control of prosthetic devices and robots etc. The often large parametric uncertainty associated with LTV

plants was the motivation for developing a class of nonlinear control laws in the late 1950s and early 1960s,

known as adaptive controllers [AMS.58, Bel.61, Jac.61]. The intuitive idea behind adaptive control was

that the measured input and output of the plant contain information not only about its internal signals but

about the plant parameters as well. Therefore, in principle, one can extract information about the plant

parameters and their variations by properly processing the input-output signals and use them for control

purposes. Starting with the late 1950s, the �eld of adaptive control evolved into a major area of research.

Several di�erent classes of adaptive control schemes have been proposed and analyzed in recent books and

manuscripts. [Ega.79, Lan.79, I.K.83, G.S.84, Gaw.87, A++.86, N.A.89, S.B.89, BGW.90, A.W.88].

A widely used methodology for designing adaptive control systems consists of two steps. In the �rst step,

the plant parameters are assumed to be known and a control law is designed to meet a control objective. In

the second step, a parameter estimation technique is used to estimate the unknown parameters on-line. The

adaptive controller is then implemented by using the parameter estimates as if they were the true parameters;

such controllers are commonly referred to as certainty equivalence adaptive controllers. In the subsequent

chapters we distinguish two classes of algorithms depending on the parameters we choose to estimate. The

identi�cation (via parameter estimation) of a suitably parametrized model of the plant, e.g., a canonical

form, leads to an indirect adaptive controller where the controller parameters are indirectly obtained from

the plant parameters using the control law design equations. In some cases, however, it is possible to re-

parametrize the plant with respect to the controller parameters which can then be estimated directly; the

resulting adaptive controller is commonly referred to as direct, a term signifying the direct estimation of the

control law parameters. Further, another classi�cation of adaptive control schemes is based on the choice of

the control objective and the corresponding control law. In this book we focus our interest on the two most

frequently analyzed control strategies, the pole-placement control and the model reference control, primarily

due to the simplicity of the associated design equations.

In principle, an adaptive controller has the capability to learn about the changes in the plant parameters

and compensate for their e�ects on the behavior of the closed-loop plant. The component responsible for this

property is the on-line parameter estimation (or, in general, system identi�cation) algorithm. However, the

interaction of this component with the control law makes the overall closed-loop system nonlinear and di�cult

to analyze even for LTI plants. For this reason, most hard results in adaptive control theory deal with LTI

plants with unknown, constant parameters. Intuitive arguments were often used to claim that an adaptive

controller with good performance in the LTI case should be able to cope with slow time-variations of the

plant parameters. Initially, however, these arguments were not analytically substantiated for a general class

of slow variations due to the lack of su�cient theoretical developments in robust adaptive control. Parameter

variations introduce a perturbation in the parameter estimator which acts as an unknown disturbance. Since

the early adaptive control schemes could exhibit unbounded response in the presence of modeling errors and

disturbances [Ega.79, I.K.83, P.N.82, RVAS.85], there was no signi�cant progress towards the adaptive control

of LTV systems until the mid-1980s when some fundamental robustness problems were resolved.

In the early attempts [A.J.83, G.T.83], the persistence of excitation (PE) of certain signals in the adaptive

loop was employed to guarantee the exponential stability of the unperturbed error system, which eventually

led to the local stability of the closed-loop TV plant. Elsewhere, the restriction of the type of time variations

of the plant parameters also led to the conclusion that an adaptive controller could be used in the respective

environment. More speci�cally, in [C.C.84] the parameter variations were assumed to be perturbations of

some nominal constant parameters, which are small in the norm and modeled as a martingale process with

bounded covariance. A treatment of the parameter variations as small TV perturbations, in an L2-gain sense,
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was also considered in [G.C.86] for a restrictive class of LTI-nominal plants. Special models of parameter

variations, such as exponential or 1=t-decaying or �nite number of jump-discontinuities, were considered in

[GHX.84, Ohk.85, M-S.85].

Some more general results were initiated by the development of adaptive laws that were shown to be

robust in the presence of bounded disturbances [Ega.79]. Further modi�cations and studies in [Pra.83, Pra.84]

and later in [K.A.86, I.T.86], established the robustness of these adaptive laws with respect to bounded

disturbances as well as unmodeled dynamics and plant uncertainty, without requiring any PE conditions. The

use of robust adaptive laws for estimating the TV parameters was shown to guarantee signal boundedness and

small in the mean tracking errors in the case of direct model reference adaptive control (MRAC) [T.I.87], and

indirect adaptive control [Kre.86, M.G.88] for slowly TV plants, without any PE requirements. Furthermore,

an internally generated excitation sequence was developed in [GMDD.87] to show the robustness of a direct

adaptive pole-placement controller (APPC) with respect to plant parameter variations. The common key-

point of those studies was the intuitive idea that, at each time instant, a linear slowly TV system behaves

`almost' like an LTI one. The e�ect of the time variations was then expressed as a disturbance, not necessarily

bounded but small compared to the useful signals. This treatment led to the proof that the respective robust

adaptive controller can operate successfully in such a TV environment. We should note, however, that in

those studies the e�ort to design an adaptive controller for linear time-varying plants was concentrated on

improving the robustness properties of the estimator while the control law was designed in a pointwise sense,

following LTI principles. Such an approach is therefore limited to the practically interesting, nonetheless

restrictive class of slowly varying plants.

Further analysis of the available results indicates that in order to devise adaptive controllers for general

LTV plants, the design of both the control and parameter estimation algorithms needs to be improved. In

particular, the standard control laws, used in the adaptive literature, are derived based on the assumption

that the plant parameters are constant. When these control laws are applied to a LTV plant they can only

meet the control objective approximately provided that the plant parameters are slowly varying with time.

However, for a general LTV plant with not necessarily slowly varying parameters, such control laws may fail

to guarantee even closed-loop stability. Furthermore, the standard adaptive laws (parameter estimators) are

essentially integrators with a �nite gain at all frequencies except zero. That is, only constant parameters can

be estimated with asymptotically zero estimation error. Consequently, in order to allow for exact asymptotic

identi�cation, at least in cases where the functional form of the parameter variations is known, a suitable

parametrization of LTV plants is required.

In this study we deviate from the standard approach in which the design of adaptive controllers begins

with the assumption that the plant is LTI and restricts the study of the TV case to a robustness analysis.

Instead, we formulate and analyze the control problem by considering that the plant is LTV from the very

beginning, an approach consistent with the introduction of the adaptive controllers to be operating in a

possibly TV environment. Having established controller design procedures for a wide class of LTV plants,

the next step in the development of a certainty equivalence adaptive controller is to estimate the unknown

plant or controller parameters. We introduce the notion of structured parameter variations (various forms of

which have appeared in [Ohk.85, X.E.84, L.S.88]) whereby any a priori available knowledge of the modes of

variation of the plant parameters is explicitly incorporated in the parameter estimates. Such an approach has

the advantage that the unknown parameters can be estimated with asymptotically zero estimation error in

the case of structured parameter variations e.g., if the frequency or form of variation of the plant parameters

is known a priori. Furthermore, the I/O quality of the parameter estimates depends on the speed of variation

of the unstructured part only and not on the overall speed of variation of the plant parameters. We discuss

the issues pertaining to the estimation of time-varying parameters and the parametric identi�cation of LTV

systems in Chapter 6. A by-product of this approach is the development of a plant parametrization which
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allows for its exact asymptotic identi�cation, under some PE conditions, in the case of structured parameter

variations.

In the last step of our study, we employ the certainty equivalence principle to combine the previ-

ously designed control laws and estimators to obtain the respective adaptive controller (MRAC, APPC

or IMP/APPC). We analyze the stability properties of these adaptive control schemes in Chapters 7 and

8 where we show that the boundedness of all signals in the closed loop depends only on the speed of the

unstructured part of the plant parameter variations, while the overall plant may be fast TV. This result is

obtained using standard assumptions, analogous to those used for LTI plants and without requiring any PE

conditions. In the ideal case of structured parameter variations our adaptive controllers meet the respective

control objective asymptotically as t!1, independent of the speed of the plant parameter variations. The

price paid for this result is the updating of additional parameters. We note that such results cannot be

derived by using the standard pointwise designs which, even in the case of completely structured parameter

variations, cannot guarantee stability unless the plant is slowly TV. The impact and conceptual di�erence

of this result from the existing ones is that the use of adaptive controllers need not be restricted to slowly

TV plants only. The critical quantity is the speed of variation of the unstructured part of the unknown

parameters and not the overall speed of their variation.



Chapter 2

Preliminaries

2.1 Introduction

In this chapter we present some de�nitions and lemmas which comprise the essential mathematical back-

ground used in the subsequent chapters. Our aim is to establish a general framework where LTV systems

are described by input-output (I/O) operators with fractional representations and take full advantage of

the powerful methodology and intuition available in the algebraic design of controllers [DLMS.80]. This

development allows us to treat the TV systems using I/O relationships in a similar way to the LTI case

where transfer functions are used to describe I/O properties.

2.2 Time-Varying Di�erential Operators

Let us begin by considering the LTV nth order ordinary di�erential equation (ODE)

y(n) + a1(t)y
(n�1) + � � �+ an�1(t)y

(1) + an(t)y = u (2:1)

with initial conditions y(i)(0); i = 0; 1; . . . ; n� 1, where y(i)
�
= di

dti
y(t), y; u : R+ 7! R and ai(t), i = 1; . . . ; n

are piecewise continuous,1 uniformly bounded (UB) functions of time. Equation (2.1) may be written in a

left polynomial form as �
sn + a1(t)s

n�1 + � � �+ an�1(t)s+ an(t)
	
[y] = u (2:2)

where s
�
= d

dt
(�) is the di�erential operator [C.L.55], or in the state representation form

_X =

26664
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... 1

�an(t) �an�1(t) �an�2(t) . . . �a1(t)

37775X +

26664
0
0
...
1

37775u
y = [1; 0; . . . ; 0]X (2:3)

where X = [y; y(1); . . . ; y(n�1)]>.

2.1 De�nition: An LTV left Polynomial Di�erential Operator (PDO) of degree n is de�ned by

P (s; t) = a0(t)s
n + a1(t)s

n�1 + � � �+ an(t) (2:4)

where s
�
= d

dt
(�) ; ai(t); i = 0; 1; . . . ; n are piecewise continuous functions of time, a0(t) 6= 0 for some t 2 R+.

When a0(t) � 1 8 t 2 R+; P (s; t) is referred to as a monic PDO. 55
1In the following, any parameter discontinuity is always of the �rst kind.

11
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In view of De�nition 2.1 we may now simplify the notation and write (2.1) or (2.3) in the form

P (s; t)[y] = u

where P (s; t) is the PDO sn + a1(t)s
n�1 + � � �+ an�1(t)s+ an(t).

Similarly, an LTV right PDO is de�ned as:

2.2 De�nition: An LTV right PDO of degree n is de�ned by

P̂ (s; t) = snâ0(t) + sn�1â1(t) + � � �+ ân(t) (2:5)

where s
�
= d

dt
(�) ; âi(t); i = 0; 1; . . . ; n are smooth functions of time, â0(t) 6= 0 for some t 2 R+. When

â0(t) � 1 8 t 2 R+; P̂ (s; t) is referred to as a monic PDO. 55

Thus, the I/O map of a linear ordinary di�erential equation with state space representation

_X =

26664
�â1(t) 1 0 . . . 0
�â2(t) 0 1 . . . 0
...

...
... 1

�ân(t) 0 0 . . . 0

37775X +

26664
0
0
...
1

37775u
y = [1; 0; . . . ; 0]X (2:6)

can be written as

P̂ (s; t)[y] = u

where now, P̂ (s; t) is a right PDO. Notice that, in this framework, PDO's are interpreted as components

of a particular state-space realization of an I/O map. In this sense we may extend the de�nition of the

right PDO to admit piecewise continuous parameters, provided of course that the I/O map de�nition and

treatment does not require the di�erentiation of these parameters.2

From the properties of di�erentiation it follows that if the coe�cients ai(t) or âi(t) are smooth functions

of time, a PDO can be written either in the left or the right form, as illustrated by the following example.

2.3 Example: Consider the left PDO P (s; t) = a0(t)s
2+a1(t)s+a2(t), where ai(t) are smooth functions

of time. Then P (s; t) can be written as a right PDO, i.e., P (s; t) = P̂ (s; t) = s2â0(t) + sâ1(t) + â2(t) where

â0(t) = a0(t)
â1(t) = a1(t)� 2 _a0(t)
â2(t) = a2(t)� _a1(t) + �a0(t)

Alternatively, if we consider the right PDO P̂ (s; t) = s2â0(t) + sâ1(t) + â2(t), then P (s; t) can be expressed

as a left PDO, i.e., P̂ (s; t) = P (s; t) = a0(t)s
2 + a1(t)s+ a2(t) where

a0(t) = â0(t)

a1(t) = â1(t) + 2 _̂a0(t)

a2(t) = â2(t) + _̂a1(t) + �̂a0(t)

In both cases the relationships between the coe�cients of the two forms follow from the operator identity

as = sa� _a. 55

The properties of PDO's follow from the rules of di�erentiation and can be summarized as follows:3

2That is, a right PDO with non-di�erentiable parameters should be treated as such and should not be converted to a left
PDO.

3The equality of two operators P : u 7! y and Q : u 7! �y with the same domain D is generally de�ned as P = Q if y = �y,
8u 2 D.
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P1. If P (s; t); Q(s; t) are left (right) PDO's of degree n; m and with coe�cients ai(t); bj(t) respectively,

P (s; t) = Q(s; t) i� n = m and ai(t) = bi(t), 8 t, i = 0; 1; . . . ; n.

P2. P (s; t) +Q(s; t) = Q(s; t) + P (s; t).

P3. P (s; t)c = cP (s; t); c is a constant.

P4. P (s; t)x(t) = x(t)P (s; t)+ �P (s; t); x(t) is a smooth function of t and �P (s; t) is a PDO with deg[ �P (s; t)] �
deg[P (s; t)]� 1 whose coe�cients are O[ _x(t); �x(t); . . .]. 4

The proof of P1, P2 and P3 is immediate from the properties of di�erentiation. To show P4 we use the

operator identity sx(t) = x(t)s+ _x(t) which, repeatedly applied on P (s; t)x(t), yields P4, where5

�P (s; t) =
nX
i=1

iX
k=1

ai�k(t)

�
n+ k � i

k

�
x(k)(t)sn�i

and P (s; t) is an nth degree left PDO. In a similar way, P4 can be established for right PDO's. 22

The rest of this section is devoted to the solution and properties of the PDO equation

Q(s; t)D(s; t) + P (s; t)N(s; t) = A(s; t):

Equations of this form are commonly referred to as Diophantine equations (or Bezout equations when

A(s; t) = 1) and they are frequently encountered in the algebraic controller design ([DLMS.80], [Frn.87]). In

order to assess the solvability of the above equation whereD(s; t); N(s; t); A(s; t) are given andQ(s; t); P (s; t)

are unknown PDO's we need to introduce the notion of coprimeness of PDO's. It is exactly at this point

where the non-commutativity with respect to multiplication of TV PDO's (see property P4) necessitates a

somewhat di�erent treatment of the TV case than the TI one. It should be pointed out that this treatment

is expected to have many similarities with the multivariable LTI case where the polynomial matrices also

lack commutativity with respect to multiplication [Frn.87]. In our case, however, an additional di�culty is

due to the appearance of the di�erential operator which makes a Diophantine equation to be, at the �rst

glance, a di�erential equation; consequently, it is of special interest to obtain the solution of a Diophantine

equation, whenever possible, as a solution of an algebraic equation. The coprimeness of two TV PDO's is

de�ned as follows.

2.4 De�nition: Let D(s; t); N(s; t) be PDO's with smooth coe�cients and such that D(s; t) is monic.

We say that D(s; t) and N(s; t) are right coprime in (t1; t2),
6 if there exist PDO's P0(s; t), Q0(s; t), Q1(s; t)

and P1(s; t) with smooth coe�cients, such that P0(s; t) is monic, deg[P0(s; t)] = deg[D(s; t)] and

Q0(s; t)D(s; t) + P0(s; t)N(s; t) = 0

Q1(s; t)D(s; t) + P1(s; t)N(s; t) = 1

for all t 2 (t1; t2). Dually, we say that D(s; t) and N(s; t) are left coprime in (t1; t2), if there exist PDO's

P0(s; t), Q0(s; t), Q1(s; t) and P1(s; t) with smooth coe�cients, such that P0(s; t) is monic, deg[P0(s; t)] =

deg[D(s; t)] and

D(s; t)Q0(s; t) +N(s; t)P0(s; t) = 0

D(s; t)Q1(s; t) +N(s; t)P1(s; t) = 1

4We say that a function f(x) is O(x) if there exists a constant k 2 (0;1) such that kf(x)k � kkxk, 8x.
5

�
n

m

�
�
= n!

m!(n�m)!

6The same de�nition can be used for not necessarily open intervals as long as t2 > t1.



2.2. TIME-VARYING DIFFERENTIAL OPERATORS 14

for all t 2 (t1; t2). 55

2.5 Example: Let D(s; t) = [s2 + a1(t)s + a2(t)] and N(s; t) = [s + b(t)] where a1(t); a2(t); b(t) are

smooth functions of t. According to the previous de�nition, D(s; t) and N(s; t) are right coprime in a time

interval J , if we can �nd q0i(t); p0i(t); p1i(t), i = 1; 2, and q11(t) satisfying the Diophantine equations

[q01(t)s+ q02(t)]D(s; t) + [s2 + p01(t)s+ p02(t)]N(s; t) = 0

q11(t)D(s; t) + [p11(t)s+ p12(t)]N(s; t) = 1:

for all t 2 J . After some straightforward calculations, the above equations can be written as

q01(t) = �124 1 1 0
a1(t) b(t) 1

a2(t) _b(t) b(t)

35
| {z }

SR(t)

24 q02(t) q11(t)
p01(t) p11(t)
p02(t) p12(t)

35 =

24 a1(t)� b(t) 0

a2(t) + _a1(t)� 2_b(t) 0

_a2(t)� �b(t) 1

35

which imply that D(s; t) and N(s; t) are right coprime in J if det[SR(t)] 6= 0, 8t 2 J . 55

The above example indicates that the coprimeness of two TV PDO's can be checked in a similar way as

in the TI case by �rst extending the de�nition of the Sylvester matrix to the TV case and then examining

its properties.

2.6 De�nition: The right TV Sylvester matrix SR(t) of the PDO's D(s; t), N(s; t), of degree n; m

respectively is de�ned as

SR(t) = [C1; . . . ; Cm; B1; . . . ; Bn]

where Ci; Bj are column vectors of the coe�cients of sm�iD(s; t), i = 1; 2; . . ., m and sn�jN(s; t), j =

1; 2; . . . ; n respectively, expressed as (n+m� 1)-degree left PDO's, by setting the missing coe�cients equal

to zero.7 The left TV Sylvester matrix SL(t) of D(s; t); N(s; t) is de�ned in a dual manner as

SL(t) = [Ĉ1; . . . ; Ĉm; B̂1; . . . ; B̂n]

where Ĉi; B̂j are vectors of the coe�cients of D(s; t)sm�i, N(s; t)sn�j respectively, expressed as (n+m�1)-

degree right PDO's. 55

The motivation of De�nition 2.6 becomes clear if, given the PDO's D(s; t), N(s; t) of degree n, m

respectively, we consider the Diophantine equation

Q(s; t)D(s; t) + P (s; t)N(s; t) = A(s; t) (2:7)

with deg[A(s; t)] � n+m� 1 and express both sides as left PDO's. We can then write (2.7) as a system of

linear algebraic equations SR(t)x(t) = a(t) where x(t); a(t) are vectors of the TV coe�cients ofQ(s; t); P (s; t)

and A(s; t) respectively.

Similarly, if we express both sides of the Diophantine equation

D(s; t)Q(s; t) +N(s; t)P (s; t) = A(s; t) (2:8)

as right PDO's, (2.8) can be written as SL(t)x(t) = a(t).

2.7 Example: Let D(s; t) = s2 + a1(t)s + a2(t), N(s; t) = b0(t)s
2 + b1(t)s + b2(t) and A(s; t) = 1

and consider the equation (2.7) where Q(s; t) = q0(t)s+ q1(t), P (s; t) = p0(t)s+ p1(t) are unknown PDO's.

7A zero degree indicates absence of the corresponding columns.
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Expressing both sides of (2.7) as left PDO's we obtain the following system of algebraic equations for qi(t),

pi(t): 2664
1 0 b0(t) 0

a1(t) 1 b1(t) + _b0(t) b0(t)

a2(t) + _a1(t) a1(t) b2(t) + _b1(t) b1(t)

_a2(t) a2(t) _b2(t) b2(t)

3775
| {z }

SR(t)

2664
q0(t)
q1(t)
p0(t)
p1(t)

3775 =

2664
0
0
0
1

3775

Similarly, if D(s; t) = s2 + sa1(t) + a2(t), N(s; t) = s2b0(t) + sb1(t) + b2(t), A(s; t) = 1 then equation (2.8)

can be written as 2664
1 0 b0(t) 0

a1(t) 1 b1(t)� _b0(t) b0(t)

a2(t)� _a1(t) a1(t) b2(t)� _b1(t) b1(t)

� _a2(t) a2(t) �_b2(t) b2(t)

3775
| {z }

SL(t)

2664
q0(t)
q1(t)
p0(t)
p1(t)

3775 =

2664
0
0
0
1

3775

where q0; q1; p0; p1 are the coe�cients of the right PDO's Q(s; t); P (s; t), i.e.,

Q(s; t) = sq0(t) + q1(t) ; P (s; t) = sp0(t) + p1(t)

This example illustrates that a Diophantine equation of the form (2.7) or (2.8) can be written as a

system of linear algebraic equations and therefore, its solution can be obtained without necessarily solving

a di�erential equation. We should emphasize that this result is made possible by expressing the PDO's in

(2.7) or (2.8) in the appropriate left or right form. 55

2.8 Lemma: Two PDO's with smooth coe�cients, one of which is monic, are right (left) coprime in

(t1; t2) i� their right (left) TV Sylvester matrix is nonsingular for all t 2 (t1; t2). 55

Proof: In Appendix II.

2.9 Example: Let D(s; t) be a monic PDO of degree 1 and N(s; t) be a PDO of degree zero, i.e.,

D(s; t) = s + a(t) and N(s; t) = b(t) where a(t); b(t) are smooth functions of t. Following De�nition 2.4,

D(s; t); N(s; t) are coprime in an interval J if there exist PDO's q0(t), [s+ p0(t)] and p1(t) such that

q0(t)[s+ a(t)] + [s+ p0(t)]b(t) = 0 ; p1(t)b(t) = 1

for all t 2 J . From the above equation,

q0(t) = �b(t) ; p0(t)b(t) = �_b(t)� q0(t)a(t) ; p1(t) = 1=b(t)

which implies that D(s; t) and N(s; t) are coprime in J i� b(t) 6= 0, 8 t 2 J . Further, the right TV Sylvester

matrix of D(s; t) and N(s; t) is SR(t) = b(t) which is nonsingular i� b(t) is non-zero in J . 55

A straightforward extension of Lemma 2.8 in the case of non-monic PDO's can be given as follows:

2.10 Corollary: Let k1(t), k2(t) be smooth functions of time such that k1(t), k2(t) 6= 0, 8 t 2 (t1; t2) and

D(s; t); N(s; t) be two PDO's with D(s; t) monic. Then, the right TV Sylvester matrix of k1(t)D(s; t) and

k2(t)N(s; t) is nonsingular in (t1; t2) i� D(s; t), N(s; t) are right coprime PDO's in (t1; t2).

Dually, the left TV Sylvester matrix ofD(s; t)k1(t) andN(s; t)k2(t) is nonsingular in (t1; t2) i�D(s; t); N(s; t)

are left coprime PDO's in (t1; t2). 55

The coprimeness (right or left) of two PDO's is needed to guarantee, in general, the existence of solutions

of the respective Diophantine equation. Further, since such solutions are subsequently used in the design of
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control laws for TV systems, we are also interested in deriving conditions that ensure the boundedness of

the coe�cients of the PDO's, satisfying a Diophantine equation. Such conditions are primarily needed to

describe the coprimeness properties of two PDO's in the limit as t ! 1, as demonstrated by the following

example.

2.11 Example: Consider the PDO's D(s; t) = s2 + s 1
t+1

� 1, N(s; t) = s+ 1. By De�nition 2.6, the

left TV Sylvester matrix of D(s; t); N(s; t) is given as

SL(t) =

0@ 1 1 0
1
t+1

1 1

�1 0 1

1A
whose determinant is det[SL(t)] = � 1

t+1
. Hence, D(s; t); N(s; t) are left coprime in any interval (0; T ),

T 2 R+. However, in the limit as t ! 1, limt!1 SL(t) is a singular matrix and therefore D(s; t); N(s; t)

are not left coprime in (0;1]. The `non-strong' or `non-uniform' coprimeness of D(s; t); N(s; t) manifests

itself if we attempt to solve a Diophantine equation of the form

[s2 + s 1
t+1

� 1][q0(t)] + [s+ 1][sp0(t) + p1(t)] = 1

whose solution is q0(t) = �(t + 1), p0(t) = t + 1, p1(t) = �t. We observe that, although the coe�cients of

D(s; t); N(s; t) are bounded, the solution [q0(t); p0(t); p1(t)] is not, when we consider a time interval open

at 1. 55

2.12 De�nition: Let D(s; t); N(s; t) be PDO's with smooth,8 UB coe�cients and D(s; t) monic. We say

that D(s; t) and N(s; t) are strongly right (left) coprime in (t0;1), if they are right (left) coprime in (t0; T ),

8T > t0 and the coe�cients of the PDO's D0(s; t), N0(s; t), Q(s; t) and P (s; t) of De�nition 2.4, are UB

8 t 2 (t0;1). 55

With the above de�nition, the determinant of the TV Sylvester matrix of strongly coprime PDO's is

strongly nonsingular, as shown by the following lemma.

2.13 Lemma: Two PDO's with smooth, UB coe�cients, one of which is monic, are strongly right (left)

coprime in (t0;1) i� there exists a constant c > 0 such that their right (left) TV Sylvester matrix SR(t)

(SL(t)) satis�es jdet[SR(t)]j � c, (jdet[SL(t)]j � c), 8 t 2 (t0;1): 55
Proof: In Appendix II.

The above lemma is easily extended to cover cases where both PDO's are non-monic and at least one of

them has a leading coe�cient bounded away from zero:

2.14 Corollary: Let k1(t), k2(t) be smooth, UB functions of time such that jk1(t)j, jk2(t)j � c > 0,

8 t 2 (t0;1) and D(s; t); N(s; t) be two PDO's with smooth, UB coe�cients and D(s; t) monic. Then,

there exists a constant c0 > 0 such that the right (left) TV Sylvester matrix of k1(t)D(s; t), k2(t)N(s; t)

(D(s; t)k1(t); N(s; t)k2(t)) SR(t) (SL(t)) satis�es

jdet[SR(t)]j � c0 (jdet[SL(t)]j � c0) ; 8 t 2 (t0;1)

i� D(s; t), N(s; t) are strongly right (left) coprime PDO's in (t0;1). 55

Proof: Straightforward extension of the proof of Lemma 2.13. 22

2.15 Example: Considering the same PDO's as in Example 2.11 we note that the conditions of both

De�nition 2.12 and Lemma 2.13 are violated since the coe�cients of the PDO's that satisfy the Bezout

8In the sequel, we use the term smoothness to signify that the derivatives of the coe�cients (or parameters) exist and are
bounded functions of time.
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equation are unbounded functions of time over R+ and det[SL(t)] = � 1
t+1

is not bounded away from zero

when t 2 R+. Hence, the PDO's [s
2 + s 1

t+1
� 1] and [s + 1], although left coprime in every �nite interval

[0; T ), are not strongly left coprime in R+. 55

The previously presented de�nitions and lemmas can be used to give a general, closed-form characteri-

zation of the solutions of Diophantine equations. In the subsequent chapters it is of particular interest to

solve the following type of problems:

Given PDO's D(s; t), N(s; t) and A�(s; t) with smooth, UB coe�cients and a smooth, UB and bounded

away from zero function k1(t) where D(s; t), and A�(s; t) are monic PDO's, deg[N(s; t)] � deg[D(s; t)]� 1,

deg[A�(s; t)] � deg[D(s; t)] + deg[N(s; t)], �nd PDO's P (s; t); Q(s; t) such that

Q(s; t)k1(t)D(s; t) + P (s; t)N(s; t) = k1(t)A�(s; t) (2:9)

or

D(s; t)Q(s; t) +N(s; t)P (s; t) = A�(s; t) (2:10)

For the PDO's P (s; t); Q(s; t), we seek a solution such that deg[P (s; t)] � deg[D(s; t)]� 1 which implies that

Q(s; t) must be a monic PDO with

deg[Q(s; t)] = deg[A�(s; t)]� deg[D(s; t)]

Under these conditions the following corollary can be used.

2.16 Corollary: Suppose that the PDO's D(s; t), N(s; t) are strongly right coprime in R+ and

jk1(t)j � c > 0 8 t 2 R+. Then the Diophantine equation (2.9) has a unique solution for Q(s; t); P (s; t) with

UB coe�cients 8t 2 R+ and such that deg[P (s; t)] � deg[D(s; t)]� 1. The coe�cients of Q(s; t); P (s; t) can

be calculated by solving a system of linear algebraic equations Ŝ(t)x(t) = a(t) where x(t) is the vector of

coe�cients of Q(s; t); P (s; t); Ŝ(t) is an invertible matrix and a(t) is a vector whose entries depend on k1(t)

and the coe�cients of D(s; t); N(s; t); A�(s; t) and their derivatives. This statement also holds in the case

of equation (2.10) provided that D(s; t); N(s; t) are strongly left coprime PDO's in R+. 55

Proof: In Appendix II.

2.17 Example: Consider the Diophantine equation

Q(s; t)D(s; t) + P (s; t)N(s; t) = A�(s; t) (2:11)

where D(s; t) = [s2 + a1(t)s + a2(t)] and N(s; t) = [s + b(t)] are strongly right coprime PDO's in R+

and a1(t); a2(t); b(t) are smooth, UB functions of t. Further, suppose that we seek a solution of (2.11) for

A�(s; t) = s3 + k1s
2 + k2s+ k3 and such that deg[P (s; t)] � 1.

Observe �rst that for the degrees of the left and right hand-side of (2.11) to be equal deg[Q(s; t)] = 1.

Hence, (2.11) can be written as

[s+ q(t)]D(s; t) + [p1(t)s+ p2(t)]N(s; t) = A�(s; t)

q(t)D(s; t) + [p1(t)s+ p2(t)]N(s; t) = A�(s; t)� sD(s; t) (2:12)

Expressing (2.12) in terms of the right TV Sylvester matrix of D(s; t) and N(s; t) we obtain24 1 1 0
a1(t) b(t) 1

a2(t) _b(t) b(t)

35
| {z }

SR(t)

24 q(t)
p1(t)
p2(t)

35 =

24 k1 � a1(t)
k2 � a2(t)� _a1(t)
k3 � _a2(t)

35
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Since D(s; t) and N(s; t) are strongly right coprime in R+, it follows that det[SR(t)] � c > 0 and therefore

(2.11) has a unique solution for Q(s; t) and P (s; t) with UB coe�cients 8 t 2 R+ and such that Q(s; t) is

monic and deg[P (s; t)] � 1. 55

2.18 Remark: The uniqueness of solutions of a Diophantine equation, established in Corollary 2.16,

is valid under the constraint that deg[P (s; t)] � deg[D(s; t)]� 1. If this condition is removed, the results of

the above corollary are still valid except for the part regarding the uniqueness of solutions. It is actually

straightforward to see that if the pair [Q(s; t); P (s; t)] is a solution of the Diophantine equation

Q(s; t)D(s; t) + P (s; t)N(s; t) = A�(s; t)

so is the pair [Q(s; t) + W (s; t)Q0(s; t); P (s; t) + W (s; t)P0(s; t)] where P0(s; t), Q0(s; t) are as given in

De�nition 2.4 and W (s; t) is an arbitrary PDO (compare with [DLMS.80]). This observation, together with

its dual counterpart for a Diophantine equation D(s; t)Q(s; t)+N(s; t)P (s; t) = A�(s; t), plays an important

role in the design of controllers which are required to meet certain sensitivity-related objectives, in addition

to closed-loop stability. 55

2.3 Time-Varying I/O Operators

The next step in our e�ort to describe LTV systems by fractional representations is to develop the notion

of the `inverse' operator corresponding to a PDO. Considering the di�erential equation (2.1), the inverse

operator would be an integral operator that maps u 7! y. The solution of (2.1), customarily de�ned through

the state transition matrix of the corresponding di�erential equation, is given as (see [D.V.75, Des.69])

y(t) = c>
Z t

t0

�(t; �)bu(�) d�| {z }
ZSR

+ c>�(t; t0)x(t0)| {z }
ZIR

(2:13)

where �(t; �) is the state transition matrix of (2.3) and c; b; x are as in (2.3). The �rst term of the right-hand

side of (2.13) is referred to as the zero-state response (ZSR) while the second term is the zero-input response

(ZIR) of (2.1).

2.19 De�nition: An LTV left (right) Polynomial Integral Operator PIO of order n is de�ned as the

operator that maps the input u to the zero-state response of the di�erential equation P (s; t)[y] = u where

P (s; t) is a monic left (right) PDO of degree n. 9 We denote a PIO by P�1(s; t) and write

P�1(s; t)[u](t) = c>
Z t

t0

�(t; �)bu(�) d�

55
Using De�nition 2.19 the solution of (2.1) can be written as

y(t) = P�1(s; t)[u](t) + c>�(t; t0)x(t0) (2:14)

The motivation to denote a PIO as an inverse PDO can be explained by the following lemma.

2.20 Lemma: Let P (s; t) be a monic nth degree PDO with piecewise continuous, UB coe�cients. Suppose

that y = P�1(s; t)[u] and x is such that P (s; t)[x] = u where u : [t0;1) 7! R is a piecewise continuous

function. Also suppose that y(i)(t0) = x(i)(t0) = 0 for i = 0; 1; . . . ; n� 1. Then y = P�1(s; t)P (s; t)[x] = x,

9The `polynomial' term in the PIO is due to the polynomial form of the associated di�erential operator.
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in [t0;1). Further, if �y = P (s; t)P�1(s; t)[u] then �y = u, in [t0;1). 55

Proof: (a.) From the PIO de�nition we have that P (s; t)[y] = P (s; t)[x]. Since the coe�cients of

P (s; t) are UB and piecewise continuous the solution of the di�erential equation P (s; t)[y] = u, on [t0;1),

exists and is unique. Furthermore, the solutions of P (s; t)[y] = u and P (s; t)[x] = u, on [t0;1), pass through

the same point since y; x have the same initial conditions; hence, y(t) = x(t), 8t 2 [t0;1) [C.L.55].

(b.) Let z = P�1(s; t)[u]. Then �y = P (s; t)[z], in [t0;1). Also, from De�nition 2.19, P (s; t)[z] = u, in

[t0;1). Hence, �y(t) = x(t), 8t 2 [t0;1). 22

Using the notion of PDO's and PIO's we can express the zero-state response of more general LTV

di�erential equations than P (s; t)y = u in a compact form. This is achieved by introducing the notion of an

LTV I/O operator which can be written as a combination of PDO's and PIO's and has properties analogous

to those of a transfer function in LTI systems. We consider the following general LTV system

_z = A(t)z + b(t)u ; y = c>(t)z + d(t)u ; z(t0) = z0 (2:15)

where A(t); b(t); c(t); d(t) are UB, piecewise continuous functions of time.

2.21 De�nition: The operator G that maps the input u to the zero-state response of the di�erential

equation (2.15) is de�ned as

G[u](t) = c>(t)

Z t

t0

�(t; �)b(�)u(�) d� + d(t)u; t � t0 � 0:

We refer to G as the proper LTV I/O operator of (2.15). When d(t) = 0 8 t � 0 we refer to G as the strictly

proper LTV I/O operator of (2.15). 55
2.22 Example: Let us consider the LTV system described by the linear ordinary di�erential equation

_X =

26664
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... 1

�an(t) �an�1(t) �an�2(t) . . . �a1(t)

37775X +

26664
0
0
...
1

37775u
y = [bn�1(t); bn�2(t); . . . ; b0(t)]X (2:16)

where X : R+ 7! Rn is the state vector and u; y : R+ 7! R is the input and the output of the system

respectively. It is straightforward to see that by letting

D(s; t) = sn + a1(t)s
n�1 + � � �+ an(t)

N(s; t) = b0(t)s
n�1 + b1(t)s

n�2 + � � �+ bn�1(t)

the I/O relationship (2.16) can be described as

D(s; t)[x] = u ; y = N(s; t)[x] (2:17)

where x = [1; 0; . . . ; 0]X and thus, the I/O operator of (2.16) admits a right factorization in terms of PDO's

and PIO's, that is G1(s; t) = N(s; t)D�1(s; t). 55

2.23 Example: Let us consider the LTV system described by the linear ordinary di�erential equation

_X =

26664
�a1(t) 1 0 . . . 0
�a2(t) 0 1 . . . 0
...

...
... 1

�an(t) 0 0 . . . 0

37775X +

26664
b0(t)
b1(t)
...

bn�1(t)

37775u
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y = [1; 0; . . . ; 0]X (2:18)

where X : R+ 7! Rn is the state vector and u; y : R+ 7! R is the input and the output of the system

respectively. By di�erentiating y in (2.18) and letting

D̂(s; t) = sn + sn�1a1(t) + � � �+ an(t)

N̂(s; t) = sn�1b0(t) + sn�2b1(t) + � � �+ bn�1(t)

the I/O relationship (2.18) is described as

D̂(s; t)[y] = N̂(s; t)[u] (2:19)

and therefore, the I/O operator of (2.18) admits a left factorization in terms of PDO's and PIO's, that is

G2(s; t) = D̂�1(s; t)N̂(s; t). It should be noted that as long as (2.19) is interpreted in the sense of (2.18),

the coe�cients of the right PDO's D̂(s; t) and N̂(s; t) are not required to be di�erentiable (e.g., piecewise

continuity and boundedness are su�cient). 55

The properties of PIO's follow from the theory of di�erential equations and the rules of integration and

are summarized below:

P1'. If P (s; t) = Q(s; t) then P�1(s; t) = Q�1(s; t).

P2'. P�1(s; t) +Q�1(s; t) = Q�1(s; t) + P�1(s; t).

P3'. P�1(s; t)c = cP�1(s; t); c is a constant.

P4'. [P (s; t)Q(s; t)]�1 = Q�1(s; t)P�1(s; t).

where P (s; t); Q(s; t) are monic PDO's and, in P4', have smooth UB coe�cients. While the proof of the

above properties is straightforward and is omitted, we note that the de�nition of the PIO as the zero-

state response of a di�erential equation is crucial in concluding P1'. That is, if we consider the di�erential

equation P (s; t)[y] = u with two sets of initial conditions then, not only the corresponding solutions are not

necessarily equal but their di�erence may even be unbounded.10 If, however, we restrict ourselves to the case

of exponentially stable (ES) di�erential equations, we may conclude that the e�ect of the initial conditions

on the solution of the di�erential equation (output) vanishes asymptotically with time. This observation is

quanti�ed in the following discussion.

2.24 De�nition: An LTV PIO, P�1(s; t), is said to be ES (or uniformly asymptotically stable) with

rate �a1, a1 > 0, if there exist some positive constants k; a1 such that the state transition matrix �(t; �),

associated with the linear di�erential equation P (s; t)y = u, satis�es

k�(t; �)k � k exp[�a1(t� �)] 8t � � � 0

55
2.25 Lemma: Let P�1(s; t) be an ES PIO with rate �a1 and consider the LTV systems with I/O

operators P�1(s; t)P (s; t), P (s; t)P�1(s; t) and I/O pairs (y; x), (�y; x) respectively. Then, y = x + �t and

�y = x+ �t where �t denotes exponentially decaying to zero terms with rate at most �a1. Such terms depend

on the initial conditions of the state space realization of the respective I/O operator. 55
Proof: Straightforward, by applying De�nition 2.24 on the solution of the respective di�erential

equations (see De�nition 2.19 and 2.21). 22

10This problem is due to the nature of the solution of an ODE that is a map from the set of inputs and the set of initial
conditions to the set of outputs and it also appears in the LTI case as well.
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Lemma 2.25 shows that If P�1(s; t) is ES, the e�ect of setting

P (s; t)P�1(s; t) = P�1(s; t)P (s; t) = I

is the appearance of exponentially decaying to zero terms �t in the solution of the di�erential equations

associated with these operators. Thus, Lemma 2.25 extends the properties of pole-zero cancellation in the

LTI case, to the LTV one.

To assess the stability of proper LTV I/O operators, described by multiple combinations of PDO's

and PIO's, we note that from De�nitions 2.21, 2.24 it follows that such an I/O operator is ES if all the

PIO's in its description are ES. For example, if P�1(s; t); D�1(s; t) are ES PIO's then a proper LTV I/O

operator described by P�1(s; t)N(s; t)D�1(s; t) is also ES. The last observation together with Lemma 2.25

also indicates that the equality of two TV I/O operators can be interpreted as equality of the output

trajectories of the respective ODE's, modulo terms that depend on the initial conditions and decay to zero

exponentially fast provided that the I/O operators at hand are ES.

2.4 Controllability, Observability and

I/O Descriptions of LTV Systems

In the following, our attention is speci�cally focused on I/O operators that are expressed as a combination

of PDO's and PIO's. Such a description of an LTV system facilitates the analysis and design of controllers

in an I/O framework in both the non-adaptive and adaptive cases. This approach, however, gives rise to two

fundamental, nontrivial problems, especially if a general class of LTV systems is to be considered. These

problems are associated with the class of LTV systems for which the I/O operator admits a PDO/PIO

factorization and their internal stability properties.11

In order to address these questions, we �rst recall some of the basic de�nitions and properties regard-

ing the controllability and observability of LTV systems. In all cases we denote the system matrices by

[A(t); B(t); C(t)] 12 and the corresponding state transition matrix by �(t; �). Furthermore, we assume that

the system parameters are bounded and di�erentiable, as many times as necessary. Although this assumption

can be relaxed, we do not pursue such a generalization at this point.

2.26 Theorem: [S.A.68] Following from the de�nition of [Kal.60], a bounded system [A(t); B(t); C(t)] is

uniformly completely controllable i� there exist dc > 0 such that for all t

Mc(t� dc; t)
�
=

Z t

t�dc
�(t� dc; �)B(�)B

>(�)�>(t� dc; �) d� � a1(dc)I > 0

and uniformly completely observable i� there exists do > 0 such that for all t

No(t; t+ do)
�
=

Z t+do

t

�>(�; t)C>(�)C(�)�(�; t) d� � a1(do)I > 0

where a1(�) is used to denote a constant solely determined by its argument. The matrices Mc(t; �) and

No(t; �) are referred to as controllability and observability grammians respectively. 55

2.27 De�nition: [Sil.68] A system representation [A(t); B(t); C(t)] is said to be uniform if it is continuous,

bounded and uniformly completely controllable and observable. An impulse response H(t; �) which can be

11The need to consider these problems arises from the fact that in the LTV case, I/O equivalent systems do not necessarily
share the same internal stability properties.

12 _x = A(t)x+B(t)u ; y = C(t)x.
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realized by a uniform system representation, is said to be uniformly realizable. 55

2.28 De�nition: [Sil.68] The representation [A0(t); B0(t); C 0(t)] is said to be algebraically equivalent to

[A(t); B(t); C(t)] if there exists a nonsingular matrix T with continuous derivative such that

A0(t) = (TA(t) + _T )T�1; B0(t) = TB(t); C 0(t) = C(t)T�1

If T is a Lyapunov transformation, (i.e., T; T�1; _T are continuous and UB) then the two representations are

said to be topologically equivalent. 55

2.29 Theorem: [Sil.68] a. If [A(t); B(t); C(t)], [A0(t); B0(t); C 0(t)] are uniform realizations of the same

impulse response, then they are topologically equivalent.

b. If [A(t); B(t); C(t)] is a uniform realization of an impulse response and topologically equivalent to

[A0(t); B0(t); C 0(t)] then [A0(t); B0(t); C 0(t)] is a uniform realization of the same impulse response. 55

2.30 De�nition: [S.M.67] The state-space representation [A(t); B(t); C(t)], with dim[A] = n� n is said

to be uniformly controllable if the controllability matrix

Qc = [p0; p1; . . . ; pn�1] ; pk+1 = �A(t)pk + _pk ; p0 = B(t)

is nonsingular for all t. Dually, [A(t); B(t); C(t)] is said to be uniformly observable if the observability matrix

Q>o = [q0; q1; . . . ; qn�1] ; qk+1 = A>(t)qk + _qk ; q0 = C>(t)

is nonsingular for all t. 55

2.31 Theorem: [Sil.66, S.A.68] For single input systems,

a. The controllable (phase-variable) canonical form is uniformly controllable.

b. A system representation is algebraically equivalent to the phase variable canonical form i� it is

uniformly controllable.

c. A bounded realization for which Qc is a Lyapunov transformation, is uniformly completely controllable.

d. The phase variable canonical form with bounded coe�cients is uniformly completely controllable.

The dual statements are also true for the observable canonical form of single output systems. 55

We therefore note that it is possible to write the I/O operator of a single-input single-output (SISO) LTV

system in terms of PDO's and PIO's if [A(t); B(t); C(t)] is algebraically equivalent with the controllable (ob-

servable) canonical form, as shown in Example 2.22 (Example 2.23). Under the assumption that the original

system is uniformly controllable (uniformly observable), such a transformation can be obtained in terms

of the entries of [A(t); B(t); C(t)] and their derivatives after some straightforward recursive computations

[Sil.66]. However, we must also require that this transformation is a Lyapunov one |so that the internal

stability properties of the system are preserved| and that it leads to a canonical form with UB coe�cients,

needed for the well-posedness of the control problem studied in the subsequent chapters.

In other words, the system representation whose states are the internal signals of interest must be a uni-

form realization and, in addition, the corresponding controllable and observable canonical representations

must also be uniform realizations of the same impulse response. The di�culty in obtaining a simple charac-

terization of such systems stems from the fact that, in general, uniform controllability/observability (required

for the transformation to a canonical form) neither implies, nor is implied by, uniform complete controlla-

bility/observability. It is, however, possible to give su�cient conditions which guarantee both the uniform

and uniform complete controllability/observability for SISO systems with bounded and smooth parameters.
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Although only a �nite number of derivatives is required to exist for the analysis, we avoid counting the

number of di�erentiations and assume that all necessary derivatives are UB. A generalization of the results

to the case of piecewise continuous parameters is discussed separately in the forthcoming chapters.

2.32 Lemma: Consider a SISO system representation [A(t); B(t); C(t)] which is bounded and smooth and

such that the controllability and observability matrices are strongly nonsingular, i.e., there exists a constant

c > 0 such that

jdet[Qc(t)]j ; j det[Qo(t)]j � c ; 8 t 2 R+

Such representations are termed strongly controllable and observable. Then [A(t); B(t); C(t)] is a uniform

realization, topologically equivalent to its controllable and observable canonical forms which exist and are

uniform realizations with smooth coe�cients of the same impulse response. Furthermore, the controllability

and observability matrices of the corresponding canonical forms are also strongly nonsingular. 55

Proof: From [Sil.66] the nonsingularity of the controllability matrix guarantees the existence of a

transformation that puts [A(t); B(t); C(t)] in the controllable (phase-variable) canonical form. The trans-

formation, given explicitly in terms of the parameters of [A(t); B(t); C(t)], is a Lyapunov one since the

controllability matrix is strongly nonsingular and the system parameters are smooth and UB functions of

time. Furthermore, the parameters of the canonical form are also smooth and UB. Hence the system realiza-

tion [A(t); B(t); C(t)] is uniformly completely controllable and topologically equivalent to its canonical form.

For the last part of the theorem, observe that if [A(t); B(t); C(t)] and [ �A(t); �B(t); �C(t)] are algebraically

equivalent state-space realizations with a similarity transformation x = P (t)�x, then the corresponding con-

trollability and observability matrices satisfy

�Qc(t) = P�1(t)Qc(t) ; �Qo(t) = Qo(t)P (t)

Since the transformation of [A(t); B(t); C(t)] into the phase-variable form is a Lyapunov one, P (t); P�1(t)

are strongly nonsingular and the result follows. (Dually for the transformation into the observable canonical

form.) 22

Thus, a strongly controllable and observable SISO LTV system that admits a bounded, smooth realization

can be described by an I/O operator with a PDO/PIO factorization that preserves the internal stability

properties of the original system. Consequently, the PDO/PIO description can be used for a quite general

class of LTV systems and does not require overly restrictive assumptions, especially for practical cases

where physical considerations assure the boundedness and smoothness of the system parameters at least in

a piecewise sense.

It is worth mentioning at this point that the notions of uniform (strong) controllability and observability

of linear systems bear a close relationship with the notions of uniform (strong) right and left coprimeness

of PDO's. As reported in [INS.84], for analytic systems, uniform left coprimeness is equivalent to uniform

controllability in a closed interval (dually for observability and right coprimeness). In our case, however, we

are more interested in the relationship between the strong versions of left/right coprimeness and controlla-

bility/observability. The reason is that for the systems under consideration13 these properties ensure that

the system realization is uniform and that controllers designed via a Diophantine equation have bounded

parameters.

2.33 Lemma: Let Qc be the controllability matrix of the system (2.18), which is in the observable

canonical form, with smooth parameters and I/O operator D�1(s; t)N(s; t) and let SL(t) be the left TV

Sylvester matrix of D(s; t) and N(s; t). Then, j det[Qc(t)]j = jdet[SL(t)]j. (Dually for observability and the

right TV Sylvester matrix). 55
13SISO, bounded, smooth realizations.
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Proof: In Appendix II.

2.34 Corollary: The LTV system (2.16) with I/O operator N(s; t)D�1(s; t) and smooth UB coe�cients,

is strongly observable in R+ i� D(s; t); N(s; t) are strongly right coprime PDO's in R+. The LTV system

(2.18), with I/O operator D̂�1(s; t)N̂(s; t) and smooth UB coe�cients, is strongly controllable in R+ i�

D̂(s; t); N̂(s; t) are strongly left coprime PDO's in R+. 55

Proof: Straightforward from Lemmas 2.13 and 2.33. 22

2.5 On the Internal Stability of LTV Feedback Systems

Next, we address the issue of internal stability of a closed-loop system. This is necessary in order to estab-

lish that a controller designed to guarantee bounded-input bounded-output (BIBO) stability, also guarantees

bounded-input bounded-state (BIBS) stability of the closed loop. As in the LTI case, such a design fails to

ensure BIBS stability if there are any cancellations of unstable modes in the closed-loop system. This pos-

sibility is avoided by using the techniques of [DLMS.80] to design the controller I/O operator, via fractional

representations and an appropriate Diophantine equation. In the LTV case, an additional subtlety of the

BIBS stability problem lies in the fact that algebraically equivalent representations do not necessarily share

the same internal stability properties unless, for example, they are both uniform realizations of the same

impulse response [S.A.68]. However, if the closed-loop system contains uncontrollable/unobservable modes,

BIBS stability cannot be simply concluded from BIBO stability as in [S.A.68]. This issue is addressed in the

subsequent chapters through the following lemmas.

2.35 Lemma: Consider an LTV system �p : u 7! y described by a continuous, bounded and uniformly

completely observable realization

�p :

�
_x = Ax+ bu

y = c>x

�
Also consider the control law

�c :

8<:
_w = Fw + �[u1; y]

>

u1 = p>1 w + p2y

u = p>3 w + p4[u1; y]
>

9=; (2:20)

where, the state transition matrix associated with F is ES, �c is a bounded, piecewise continuous realization

and the various matrices are assumed to have compatible dimensions. Further, assume that for all bounded

initial conditions of �p and �c there exist constants k; a > 0, with k depending on the size of the initial

conditions, such that

k[u1; y](t)k � k exp[�a(t� t0)]

for all t � t0 and all initial times t0 � 0. Then the feedback system of �p, �c is ES and, therefore, BIBS

stable and its state transition matrix satis�es

k�(t; �)k � K exp[�a(t� �)]

for some positive constant K and for all t � � � 0. 55

Proof: In Appendix II.

The value of the above lemma is that, under some mild conditions on the controller realization, it

establishes the exponential and therefore internal stability of the closed-loop system from its I/O properties.

In other words, it is possible to conclude the internal stability of a closed-loop system despite the possible

cancellation of certain modes between the plant and the controller as long as the latter is realized with ES



u y
N1 (s,t) D-1 (s)

_
N2 (s,t) D-1(s)

D (s) N2
-1(s,t)

2.6. REALIZATIONS OF TV I/O OPERATORS 25

Figure 2.1: Realization of the I/O operator N1(s; t)N
�1
2 (s; t) with ES �lters.

�lters in the form of (2.20). A weaker result relating BIBO and BIBS stability of the system considered in

Lemma 2.35 can be stated as follows:

2.36 Lemma: For the closed-loop system described in Lemma 2.35, let x be the state vector of a

continuous, bounded and uniformly completely observable realization of �p and assume that u1 and y are

UB. Then x and w are also UB. 55

Proof: The proof can be obtained along the lines of the proof of Lemma 2.35 and is omitted. 22

In the following chapters we employ a wide class of control laws that can be expressed in the form of

(2.20) and use Lemmas 2.35 and 2.36 to assess the internal stability properties of closed-loop systems based

on their I/O stability properties.

2.6 Realizations of TV I/O Operators

We now present some examples on the realization of TV I/O operators. This issue deserves some additional

attention in the TV case where, due to the non-commutativity of TV I/O operators, some care should be

exercised when the realization rules for LTI �lters are extended to the TV case.

2.37 Example:

a. Realization of a left-factorized I/O operator.

To realize

y = D�1(s; t)N(s; t)[u]

in state space with deg[N(s; t)] < deg[D(s; t)] and D(s; t) monic we �rst express both D(s; t); N(s; t) as

right PDO's and then set

_x = A(t)x+ b(t)u ; y = c>x

where A(t) contains the coe�cients of D(s; t) in the left companion form, b(t) contains the coe�cients of

N(s; t) and c> = [1; 0; . . . ; 0] (see Example 2.23).

b. Realization of a right factorized I/O operator.

To realize

y = N(s; t)D�1(s; t)[u]

with the same assumptions as in (a.), we �rst express both D(s; t); N(s; t) as left PDO's and then set

_x = A(t)x+ bu ; y = c>(t)x

where A(t) contains the coe�cients of D(s; t) in the bottom companion form, c(t) contains the coe�cients

of N(s; t) and b> = [0; . . . ; 0; 1] (see Example 2.22). 55
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Figure 2.2: Realization of the I/O operator N�1
2 (s; t)N1(s; t) with ES �lters.

Another issue of special interest in our analysis |especially in view of Lemma 2.35| is the realization

of an I/O operator by using ES, preferably TI, �lters with TV input or/and output vectors and �xed system

matrices.14 The following two examples deal with this problem when the I/O operators are given in a left

or right factorization.

2.38 Example: Let us consider the I/O operatorN1(s; t)N
�1
2 (s; t) withN2(s; t) monic and deg[N1(s; t)] <

deg[N2(s; t)] = n. By Lemma 2.25 we can write N1(s; t)N
�1
2 (s; t) = N1(s; t)D

�1(s)D(s)N�1
2 (s; t) with

D�1(s) being an ES nth order PIO, i.e., the polynomial D(s) being Hurwitz. We may now use the building

blocks of Example 2.37 to realize the I/O operators G1(s; t) = N1(s; t)D
�1(s) and G2(s; t) = D(s)N�1

2 (s; t)

in cascade as shown in Fig. 2.1 and described below:

a. G1(s; t) can be realized in state-space as in Example 2.37.b with A, b being constant and c(t) being

TV.

b. G2(s; t) can be realized with a constant system matrix (A) by considering the feedback system

u1 = u+ �N2(s; t)D
�1(s)[u1]

whose I/O operator u 7! y is D(s)[D(s) � �N2(s; t)]
�1. Since N2(s; t) is a monic nth degree PDO we can

select �N2(s; t) = D(s) � N2(s; t) and realize the operator �N2(s; t)D
�1(s) as in Example 2.37.b with A; b

constant and c(t) a TV vector of the coe�cients of �N2(s; t). 55
2.39 Example: Let us now consider the I/O operator N�1

2 (s; t)N1(s; t) and write N�1
2 (s; t)N1(s; t) =

N�1
2 (s; t)D(s)D�1(s)N1(s; t) with the operators D�1(s), N1(s; t) and N2(s; t), as in Example 2.38. In this

case we realize in cascade the I/O operators G1(s; t) = N�1
2 (s; t)D(s) and G2(s; t) = D�1(s)N1(s; t) as

shown in Fig. 2.2 and described below:

a. G2(s; t) can be realized as in Example 2.37.a with A; c being constant and b(t) being TV.

b. G1(s; t) can be realized by considering the feedback system

y = u1 +D�1(s) �N2(s; t)[y]

whose I/O operator u1 7! y is [D(s) � �N2(s; t)]
�1D(s). Since N2(s; t) is a monic nth degree PDO we can

select �N2(s; t) = D(s) � N2(s; t) and realize the operator �N2(s; t)D
�1(s) as in Example 2.37.a with A; c

constant and b(t) a TV vector of the coe�cients of �N2(s; t). 55
14This problem can also be viewed as a special case of �nding a stable, proper factorization of an LTV I/O operator.
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2.7 Linear Slowly TV Systems

In the previous sections the development of the mathematical background was carried out for LTV systems

with �nite but otherwise arbitrary speed of variation of their parameters. Motivated by the important place

the slowly TV systems have in the adaptive control problem, the possibility of a simpli�cation of the previous

general results in the case of linear systems with smooth slowly TV parameters deserves special attention. In

this case it is intuitively expected that `robust properties' of LTI systems e.g., exponential stability, strong

coprimeness, strong controllability/observability can be extended to slowly TV systems by assuming that

the parameter variations are `su�ciently' slow so that the LTV system behaves at each time instant almost

as an LTI one. The bene�t of such an approach would be that the relatively simple tests for stability or

coprimeness and methods for controller design, available in the LTI case, can be used in a pointwise fashion

in the LTV case as well. These arguments and observations are quanti�ed in the rest of this section where,

in order to simplify the various statements, we use the notation �P (t) to denote a vector containing the TV

parameters of an I/O operator P (s; t).

Let D(s; t) be a PDO with coe�cients fai(t)gn0 , t 2 R+. Then, at any �xed time instant � 2 R+,

we can de�ne a polynomial D� (s) with constant coe�cients fbign0 such that bi = ai(�); i = 0; 1; . . . ; n:

Consequently, the PDO D(s; t) can be associated with a family of polynomials with constant coe�cients,

denoted by fDt(s)gt, with the de�nition that the polynomialD� (s) with coe�cients fbign0 belongs to fDt(s)gt
if

bi = ai(�); i = 0; 1; . . . ; n

for some �xed � 2 R+.

2.40 De�nition: We say that the PDO's D(s; t) and N(s; t) are pointwise coprime at time t = t0 if the

corresponding members Dt0(s) and Nt0(s) of the families fDt(s)gt and fNt(s)gt are coprime polynomials.

Further, we say that the PDO's D(s; t) and N(s; t) are pointwise strongly coprime in R+ if there exists

a constant c > 0 such that the Sylvester matrix S(�) of the polynomials D� (s) 2 fDt(s)gt and N� (s) 2
fNt(s)gt satis�es jdet[S(�)]j � c, 8 � 2 R+ 55

The strong right or left coprimeness of two slowly TV PDO's D(s; t), N(s; t) can be deduced from their

pointwise strong coprimeness, as described in the following lemma.

2.41 Lemma: Consider the PDO's D(s; t); N(s; t) of degree n; m respectively, with �D(t); �N (t) smooth

and UB. Suppose that D(s; t); N(s; t) are pointwise strongly coprime inR+ and there exists a constant � � 0

such that

k d
i

dti
�D(t)k � � ; k d

j

dtj
�N (t)k � � ; 8 t 2 R+

for i = 1; . . . ;m � 1, j = 1; . . . ; n � 1. Then there exists a �o > 0 such that 8� 2 [0; �o), the PDO's

D(s; t); N(s; t) are strongly right and left coprime in R+. 55

Proof: In Appendix II.

In a similar fashion, su�cient conditions for the stability of slowly TV systems or TV systems that can

be considered as perturbations of ES ones can be given in terms of the speed of the parameter variations or

the `size' of the perturbation e.g., see [Vid.78, Pra.85].

2.42 Lemma: Consider the system _x = A(t)x with A(t) Lipschitz continuous and UB on R+ and suppose

that there exist constants �; c � 0 such that one of the following conditions is satis�ed:

1. ess.supt�0 k _A(t)k � �;

2.
R t0+T
t0

k _A(t)k dt � c+ �T , 8T � 0, 8 t0 � 0;
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3.
R t0+T
t0

k _A(t)k2 dt � c+ �T , 8T � 0, 8 t0 � 0.

Furthermore, let �i(t) denote the ith eigenvalue of A(t) and assume that there exists a constant a > 0 such

that Re[�i(t)] � �a, 8 i and 8 t 2 R+. Then, 8 � 2 (0; a), there exists �o(�) > 0 such that 8 � 2 [0; �o), the

system _x = A(t)x is ES with rate at most �a+ �. 55

Proof: In Appendix II.

A straightforward application of the above lemma can serve to establish stability properties of a PIO

with slowly TV coe�cients, as follows.

2.43 Corollary: Consider the PIO P�1(s; t) with �P (t) Lipschitz continuous and UB on R+ and suppose

that there exist constants �; c � 0 such that one of the following conditions is satis�ed:

1. ess.supt�0 k _�P (t)k � �;

2.
R t0+T
t0

k _�P (t)k dt � c+ �T , 8T � 0, 8 t0 � 0;

3.
R t0+T
t0

k _�P (t)k2 dt � c+ �T , 8T � 0, 8 t0 � 0.

Furthermore, let �i(�) denote the ith root of the polynomial P� (s) 2 fPt(s)gt and assume that there exists

a constant a > 0 such that Re[�i(�)] � �a, 8 i and 8 � 2 R+. Then, 8 � 2 (0; a), there exists �o(�) > 0 such

that 8 � 2 [0; �o), P
�1(s; t) is ES with rate at most �a+ �. 55

It cannot be overemphasized at this point that a condition on the speed of parameter variations is rather

essential, in order for the pointwise asymptotic stability to imply uniform asymptotic stability of a TV linear

system. In view of the state-space interpretation of PIO's, fast parameter variations may cause a pointwise

stable operator to be unstable, as mentioned in Section 1.1. Consider for example the LTV system

P (s; t)[y] = 0

where

P (s; t) = s2 + 0:1s+ 10(1� cos�t) + 0:1

It can be veri�ed that the PDO P (s; t) is associated with the family of polynomials fPt(s)gt for which

Pt(s) =
�
s2 + 0:1s+ 10(1� cos�t) + 0:1

�
; 8t

Clearly, the roots of Pt(s)

�0:05� j

p
0:39 + 40(1� cos�t)

2

are in the left half-plane for all t and, in fact, their real part is constant and equal to �0:05. However, as
it can be seen from Example 1.3, the PIO P�1(s; t) is unstable since the zero equilibrium of its state-space

realization (1.8) is unstable.

Lemma 2.42 can be further generalized to linear systems with TV elements which, in addition, are

functions of slowly TV parameters. In this case, if the LTV system is (uniformly) ES for every frozen value

of the parameters, then it is ES provided that the speed of variation of the additional parameters is small or

small in the mean-square sense. Notice, however, that the overall LTV system is not restricted to be slowly

TV. More precisely,

2.44 Lemma: Consider the system _x = A(t; �)x with A(t) Lipschitz continuous in both t; � and UB on

R+ and � is a vector of UB, Lipschitz continuous TV parameters (i.e., �(t) 2 M, 8t 2 R+ where M is

a bounded set). Suppose that for every frozen �� 2 M the system _x = A(t; ��)x is ES, uniformly in ��, i.e.,
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there exist positive constants k; a, independent of the value of �� such that the state transition matrix ��(:; :)

associated with A(t; ��) satis�es

k��(t; �)k � ke�a(t��) ; t � �

Further, suppose that there exist constants �; c � 0 such that one of the following conditions is satis�ed:

1. ess.supt�0 k _�(t)k � �;

2.
R t0+T
t0

k _�(t)k dt � c+ �T , 8T � 0, 8 t0 � 0;

3.
R t0+T
t0

k _�(t)k2 dt � c+ �T , 8T � 0, 8 t0 � 0.

Then, 8 � 2 (0; a), there exists �o(�) > 0 such that 8 � 2 [0; �o), the system _x = A(t; �(t))x is ES with rate

at most �a+ �. 55

Proof: In Appendix II.

Finally, the stability of TV perturbations of LTV or LTI systems can be established in a similar manner,

provided that the perturbation is small or small in the mean.

2.45 Lemma: Consider the system _x = A(t)x+�(t)x where A(t);�(t) are UB and piecewise continuous,

_x = A(t)x is ES with rate �a, and suppose that there exist constants �; c � 0 such that one of the following

conditions is satis�ed:

1. ess.supt�0 k�(t)k � �, 8 t � 0;

2.
R t0+T
t0

k�(t)k dt � c+ �T , 8T � 0, 8 t0 � 0;

3.
R t0+T
t0

k�(t)k2 dt � c+ �T , 8T � 0, 8 t0 � 0.

Then 8 � 2 (0; a) there exists �o(�) > 0 such that 8 � 2 [0; �o), the system _x = A(t)x + �(t)x is ES with

rate at most �a+ �. 55

Proof: In Appendix II.

The above results indicate that pointwise techniques can be used in the design of compensators for slowly

or slowly in the mean LTV plants. In the subsequent chapters, their use allows us to conclude that such

compensators can guarantee closed-loop stability and good performance provided that the plant is slowly

TV most of the time.

2.8 More I/O Properties

In this section we focus our interest in certain I/O properties of linear time-varying systems which relate the

magnitude of the output with that of the input. We begin our discussion with some standard results on Lp

theory, exponentially weighted Lp spaces and operator gains.

2.8.1 Elements of Lp Theory

Let us consider a function f : R+ 7! R which is locally integrable. Following standard de�nitions (e.g.,

[D.V.75]), for any �xed p 2 [1;1), we say that f 2 Lp i�
R1
0
jf(t)jp dt <1. It follows that Lp, the space of

such functions, with norm

kfkp =
�Z 1

0

jf(t)jp dt
�1=p
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is a Banach space. Further, we say that f 2 L1 i� ess.supt�0 jf(t)j <1 or, in other words, inffa : jf(t)j �
a almost everywhereg <1. Again, L1 with norm15

kfk1 = ess. sup
t�0

jf(t)j

is a Banach space. Similar de�nitions and properties are also applicable for vector valued functions, i.e.,

f : R+ 7! Rn, with j � j being replaced (or denoting) a vector norm in Rn. Unless otherwise stated, a vector

norm is the standard Euclidean norm.

Next, let us consider the normed linear spaces (E; k � kE) and (F; k � kF ) and let A be a linear map from

E to F . With appropriately de�ned addition and scalar multiplication, the space of such maps is a linear

space [D.V.75]. Then the function k � ki (or simply k � k when its meaning is clear from the context):

kAki = sup
x 6=0

kAxkF
kxkE

is called the induced norm (or gain) of A, induced by k � kE ; k � kF .
The concept of the gain of an operator can be generalized as follows. Let f : R+ 7! R, T 2 R+ and let

PT denote the truncation operator:

PT f(t)
�
= fT (t) =

�
f(t); t � T

0; t > T

�
Then, for any p 2 [1;1] we say that f belongs to the extended Lp space, denoted as Lep, i� 8T 2 R+,

fT 2 Lp. Note that the p-norms, de�ned above, satisfy the properties

1. 8 f 2 Lep, the map T 7! kfT kp is a nondecreasing function of T ;

2. 8 f 2 Lp, kfT kp ! kfkp, as T !1.

The truncation operator is used to de�ne the causality of an operator as follows: A map H : Lep 7! Lep is said

to be causal i� PTHPT = PTH, 8T 2 R+.

For a causal operator H, the only kind of operators considered here, we de�ne the Lp-gain of H by


p(H) = inff
 2 R+ : 9� 2 R+ s.t. kHxkp � 
kxkp + �; 8x 2 Lpg

Such operators are said to be Lp stable if they have �nite Lp-gain. In the following we use the notation


p(H) to denote the Lp gain of H, that is the induced norm kHki from Lp to Lp.

Similarly, we de�ne the gain of an operator induced by k � kp; k � kq. In particular we are interested in

gains of operators which map an Lp space into L1. In this case we use the notation gp(H) to denote the

gain of a causal operator H : Lp 7! L1, that is

gp(H) = inff
 2 R+ : 9� 2 R+ s.t. kHxk1 � 
kxkp + �; 8x 2 Lpg

An immediate consequence of causality of an Lp stable operator H : u 7! y is that the p-norm of the

truncated output is directly related with the p-norm of the truncated input through the Lp gain of the

operator. That is, 8 t � 0

kytkp = kPtHukp = kPtHPtukp � 
p(H)kutkp + �

where we used the facts that ut 2 Lp and that the restriction of Pt on Lp has induced norm less than or

equal to one (similarly for operators H : Lp 7! L1).

15In this context we simply write sup instead of ess.sup.
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Some frequently used expressions for the gains of LTV integral operators are given in the following lemma.

2.46 Lemma: [Vid.78] Assume that H is a causal operator de�ned by

H : u 7! y ; y(t) =

Z t

0

h(t; �)u(�) d� (2:21)

where u : R+ 7! R, h : R2
+ 7! R is measurable and locally integrable. U.t.c.:

.a. Suppose that

t 7!
Z t

0

jh(t; �)j d� 2 Le1 (� 7! h(t; �) 2 L1; 8 t � 0)

Then H : Le1 7! Le1. Further, H is L1 stable i�


1(H)
�
= sup

t�0

�Z t

0

jh(t; �)j d�
�
<1

In such a case, kyk1 � 
1(H)kuk1, 8u 2 L1.

.b. Suppose that

� 7!
Z 1

�

jh(t; �)j dt 2 Le1 (t 7! h(t; �) 2 L1; 8 � � 0)

then H : Le1 7! Le1. Further, H is L1 stable i�


1(H)
�
= sup

��0

�Z 1

�

jh(t; �)j dt
�
<1

In such a case, kyk1 � 
1(H)kuk1, 8u 2 L1.

.c. Suppose that for the operator H, both 
1(H) and 
1(H) are �nite. Then H is Lp stable for all p 2 [1;1]

and

kykp � 

1=p
1 (H)
1=q1 (H)kukp ; 8u 2 Lp

where q = p=(p� 1) is the conjugate exponent of p. 55

These results extend, in a quite straightforward manner, to the case of operators with direct throughput,

i.e., y(t) = (H 0u)(t)
�
= (Hu)(t) + h0(t)u(t) where h0(t) 2 Le1; in this case the corresponding 1 and 1 gains

of the operator are given by


1(H
0) = sup

t�0

�
jh0(t)j+

Z t

0

jh(t; �)j d�
�


1(H
0) = sup

��0

�
jh0(�)j+

Z 1

�

jh(t; �)j dt
�

(For details and proofs see [Vid.78, D.V.75].)

In the case of LTI operators, simpler expressions are obtained, as indicated by the next lemma.

2.47 Lemma: [D.V.75] Let p 2 [1;1] and consider the linear map H de�ned on Lp in terms of an

integrable function h : R+ 7! R as

H : u 7! y ; y(t) =

Z t

0

h(t� �)u(�) d� ; 8 t 2 R+ (2:22)

and assume that khk1 <1. Then, H : Lp 7! Lp and 8u 2 Lp

kykp � khk1kukp

55
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Proof: The proof is quite straightforward, using either Tonelli's theorem (p = 1), or Holder's inequality

(1 < p <1), or, for p =1, by just pulling kuk1 out of the convolution integral (see [D.V.75] for details).

22

It should be noted that the inequality kykp � khk1kukp is sharp only for p = 1;1, i.e., 
1(H) = 
1(H) =

khk1. For p = 2 and using Parseval's theorem we have a sharp bound in terms of the Fourier transform of

h, denoted by ĥ, that is 
2(H) = supwfjĥ(jw)jg. In other words, if the operator H is de�ned via a transfer

function ĥ(s), analytic and bounded in the open right half-plane, then the induced L2-norm of H is equal

to the H1 norm of ĥ(s).

kHki2 = 
2(H) = kĥ(s)k1 �
= sup

Re s>0

fjĥ(s)jg

The above results can be generalized to the vector case, i.e., when u and y are vector valued [D.V.75].

For example, consider the causal LTI operator H : u 7! y
�
= h � u where u; y : R+ 7! Rn and h is a matrix

impulse response with elements hij 2 L1. Slightly abusing the notation, when x : R+ 7! Rn we denote by

jxjp the function t 7! jx(t)jp where j � jp is the usual p-norm in Rn. Then, the following induced norms of H

can be obtained:

1. For H : Ln1 7! Ln1 with the Ln1 norm k(jxj1)k1 for a vector valued function x,


1(H) = max
i

Z 1

0

nX
j=1

jhij(�)j d� = max
i
k(jhij1)k1

where hi is the vector valued function denoting the ith row of h.

2. For H : Ln2 7! Ln2 with the Ln2 norm k(jxj2)k2 for a vector valued function x,


2(H) =
h
max
w

max
i

�i[ĥ(jw)
�ĥ(jw)]

i1=2
�
= kĥ(s)k1

where �i(M) is the necessarily real ith eigenvalue of the Hermitian matrix M .

3. For H : Ln1 7! Ln1 with the Ln1 norm k(jxj1)k1 for a vector valued function x,


1(H) = max
j

Z 1

0

nX
i=1

jhij(�)j d� = max
j
k(jhj j1)k1

where hj is the vector valued function denoting the ith column of h.

Let us now suppose that we would like to describe the properties of the operator H, considered in Lemma

2.46, when viewed as a map Lp 7! L1, p 2 [1;1). Such a description is particularly useful in adaptive

control where, due to the nonlinear nature of the adaptive closed-loop system, it is often necessary to relate

the magnitude of the output signals with the energy of the input. Expressions for the corresponding operator

gains are given by the next lemma.

2.48 Lemma: Consider the causal operator H given by (2.21) and

.a. Suppose that t 7! R t
0
jh(t; �)jp d� 2 Le1, p 2 (1;1). Then H : Lep 7! Le1 and

jy(t)j � kh(t; �)kqkutkp ; 8 t � 0

where (�) is used to indicate the integration argument and q is the conjugate exponent of p. Furthermore, if

the quantity

gp(H)
�
= sup

t�0

�Z t

0

jh(t; �)jq d�
�1=q
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is �nite, we have that 8u 2 Lp,

kyk1 � gp(H)kukp
and gp(H) is exactly the induced gain of H : Lp 7! L1.

.b. Suppose that t 7! sup��0 jh(t; �)j 2 Le1. Then H : Le1 7! Le1 and16

jy(t)j � sup
��0

jh(t; �)jkutk1 ; 8 t � 0

Furthermore, if the quantity

g1(H)
�
= sup

t;��0
jh(t; �)j

is �nite, we have that 8u 2 L1,

kyk1 � g1(H)kuk1
and g1(H) is exactly the induced gain of H : L1 7! L1. 55

Proof: From the Holder's inequality we have that for any �xed t

jy(t)j �
�Z t

0

jh(t; �)jq d�
�1=q �Z t

0

ju(�)jp d�
�1=p

where the equality holds for u(�) s.t. h(t; �)u(�) = jh(t; �)u(�)j and ju(�)jp = const:jh(t; �)jq. Similarly,

for part (.b), by pulling the sup��0 jh(t; �)j out of the integral we obtain that jy(t)j � sup� jh(t; �)jkutk1.
Taking the supremum with respect to t, we obtain the inequalities of the lemma. Note that in both cases, it

is quite straightforward to construct u 2 Lp such that kyk1 is arbitrarily close to gp(H)kukp and therefore,

gp(H) is actually the Lp 7! L1 induced gain of H. 22

Although in our analysis we are primarily interested in the properties of operators mapping L2 or L1 to

L1 it is worth mentioning that other maps and the corresponding gains may have interesting applications

as well (e.g., in�nite dimensional systems). Further, in the special case of LTI systems h(t; �) = h(t � �)

and g2(H) = khk2 can be calculated in a straightforward manner from the controllability (or observability)

grammian which is found as the solution of a Lyapunov equation. Using Parseval's theorem, we may also

obtain g2 as a quantity related to the frequency response of the operator, i.e., if khk2 < 1 then it is equal

to the H2 norm of ĥ(s) that is,

g2(H) = khk2 = kĥ(s)k2 �
=

�
1

2�

Z 1

�1
jĥ(jw)j2 dw

�1=2
:

As in the previous case of Lp 7! Lp-gains, similar statements can be made for vector valued inputs and

outputs, using appropriate induced norms for the matrix valued impulse response of the operator H. For

example, the following induced norms can be obtained for the causal LTI operator H : u 7! y
�
= h � u where

u; y : R+ 7! Rn and h is a matrix impulse response with elements hij 2 L2 (see [Wil.88]).

1. For H : Ln2 7! Ln1 with the Ln2 norm k(jxj2)k2 and the Ln1 norm k(jxj1)k1 for a vector valued function

x,

g2(H) = d1=2max

�Z 1

0

h(t)h>(t) dt

�
where dmax(M) is the maximum diagonal entry of the nonnegative matrix M .

16Note that the causality of H implies h(t; �) = 0 almost everywhere when � > t.
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2. For H : Ln2 7! Ln1 with the Ln2 norm k(jxj2)k2 and the Ln1 norm k(jxj2)k1 for a vector valued function

x,

g2(H) = �1=2max

�Z 1

0

h(t)h>(t) dt

�
where �max(M) is the maximum eigenvalue of the nonnegative matrix M .

It should be noted that although the gp-gains are not submultiplicative, they do, however, possess some

interesting properties in relation to the corresponding 
p (Lp) gains.

2.49 Lemma: Let H;G : L1 7! L1, p 2 [1;1).

.a. If G : Lp 7! Lp and H : Lp 7! L1 then

gp(HG) � gp(H)
p(G) � gp(H)[
1(G)]
1=p[
1(G)]

1=q

where q is the conjugate exponent of p.

.b. If G : Lp 7! L1 then

gp(HG) � 
1(H)gp(G)

whenever the various right-hand side gains exist. 55

Proof: Observe �rst that (HG)u = H(Gu). Thus, for the �rst case, u 2 Lp ) Gu 2 Lp ) y 2 L1 and

therefore kyk1 � gp(H)kGukp � gp(H)
p(G)kukp. Hence, the inequalities follow from the fact that gp(HG)

is the induced norm of HG from Lp to L1. Further, from Lemma 2.46, the quantity
p

1(G)
1(G) is simply

an upper bound of 
p(G) for which an exact value is given for p = 2 and LTI plants only, in terms of the

H1 norm of the associated transfer function. Next, for the second case, u 2 Lp ) Gu 2 L1 ) y 2 L1 and

therefore kyk1 � 
1(H)kGukp � 
1(H)gp(G)kukp and the inequalities follow from the fact that gp(HG)

is the (Lp ! L1)-gain of HG. 22

2.8.2 Exponentially Weighted Lp Spaces

In the spirit of the above, well-known results, several variations of the Lp theory can be found|or formulated.

In our development we are primarily interested in the so-called exponentially weighted Lp spaces and their

relation to L1 and R. Several of the results mentioned below can be found in the literature e.g., [D.V.75,

Vid.81, Zam.65] to name a few. However, due to the important role these methods play in our analysis and

in order to establish the notation, some of the key results and their proofs are repeated here.

Consider a function f : R+ 7! R and let E�, � 2 R, denote the multiplication operator de�ned by

(E�f)(t) = e�tf(t); t 2 R+

With this de�nition, we say that a locally integrable function f : R+ 7! R belongs to Lp(�) (or L
e
p(�)) i�

E�f 2 Lp (L
e
p) where p 2 [1;1]. 17 It follows that (Lp(�); k � kp;�) with

kfkp;� �
= kE�fkp

is a normed linear space. We now show that it is actually a Banach space. Let fn 2 Lp(�); n = 1; 2; . . . be

a Cauchy sequence with respect to k � kp;�; then E�fn 2 Lp is Cauchy with respect to k � kp. Hence, E�fn
converges in Lp to, say, f�. It follows that E��f� 2 Lp(�) and limn!1 kfn�E��f�kp;� = 0, i.e., fn converges

in Lp(�) with respect to k � kp;� and thus (Lp(�); k � kp;�) is a Banach space.

17Note that since e�t is continuous, if x 2 Lep then x 2 Lep(�) and vice-versa.
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Following the previous development, it is easy to verify that, with respect to the truncation operator,

the (p; �)-norms inherit the properties of the p-norms and that if H : Lep 7! Lep is a causal operator then

E��HE� : Lep(�) 7! Lep(�) is also causal. Furthermore, if H : Lp 7! Lq then E��HE� : Lp(�) 7! Lq(�).

Next, for p 2 [1;1], the Lp(�)-gain of an operator H : Lp(�) 7! Lp(�), is similarly de�ned by


p;�(H) = inff
 2 R+ : 9� s.t. kHxkp;� � 
kxkp;� + �; 8x 2 Lp(�)g

and the gain of H : Lp(�) 7! L1(�) by

gp;�(H) = inff
 2 R+ : 9� s.t. kHxk1;� � 
kxkp;� + �; 8x 2 Lp(�)g

Some useful properties of operators in exponentially weighted Lp spaces and the relationship between Lp

and Lp(�)-gains are discussed in the following lemmas.

2.50 Lemma:

.a. Let p 2 [1;1], H : Lep 7! Lep and assume that E�HE�� : Lp 7! Lp and 
p(E�HE��) < 1. Then

H : Lp(�) 7! Lp(�) and


p;�(H) = 
p(E�HE��)
.b. Let p 2 [1;1), H : Lep 7! Le1 and assume that E�HE�� : Lp 7! L1 and gp(E�HE��) < 1. Then

H : Lp(�) 7! L1(�) and

gp;�(H) = gp(E�HE��)
.c. The converse (.a) and (.b) statements are also true, i.e., if H : Lep 7! Leq and H : Lp(�) 7! Lp(�) (L1(�))

has �nite gain, then E�HE�� : Lp 7! Lq (L1) and the Lp-gain of E�HE�� is equal to the Lp(�)-gain of H.

55

Proof: Consider u 2 Lp(�). Then y = Hu 2 Lep and E�y = E�HE��E�u; since u 2 Lp(�) we have that

E�u 2 Lp which implies that E�y 2 Lp and therefore y 2 Lp(�). Furthermore, kE�ykp � 
p(E�HE��)kE�ukp+
� which can be rewritten as kykp;� � 
p(E�HE��)kukp;� + �. Since u 2 Lp(�) is arbitrary, 
p;�(H) �

p(E�HE��). Next, for u 2 Lp, let y = E�HE��u(2 Lp). It follows that E��y = HE��u and kE��ykp;� �

p;�(H)kE��ukp;� + �0. Hence kykp � 
p;�(H)kukp + �0 and 
p(E�HE��) � 
p;�(H) which, together with

the previously obtained converse inequality, completes the proof of part (.a); the proof of parts (.b) and (.c)

follow along the same lines and are omitted. 22

2.51 Lemma: Let � � 0 and suppose H : Lp(�) 7! Lp(�) is a causal, Lp(�)-stable operator and such that

kHukp;� � 
p;�(H)kukp;�, for any u 2 Lp;�. Then H : Lp 7! Lp and 
p(H) � 
p;�(H).

Similarly, if H : Lp(�) 7! L1(�), � � 0 is a causal operator and such that gp;�(H) <1 then H : Lp 7! L1
and gp(H) � gp;�(H). 55

Proof: Let u 2 Lp, p < 1. Then u 2 Lep(�) and therefore, y = Hu 2 Lep(�) and for any t � 0,

kytkp;� � 
p;�(H)kutkp;�. Multiplying both sides by e��t, raising to the p-power and integrating in an

interval [0; T ] we obtain after some straightforward calculations,

kyT kpp � e�p�T kyT kpp;� � 

p
p;�(H)

�
kuT kpp � e�p�T kuT kpp;�

�
Since kyT kpp;� � 


p
p;�(H)kuT kpp;�, we obtain that kyT kp � 
p;�(H)kuT kp. Thus, u 2 Lp implies y 2 Lp and

by the de�nition of the gain 
p(H) � 
p;�(H).

Further, for p 2 [1;1] and from kytk1;� � gp;�(H)kutkp;� + � we obtain

jy(t)j � gp;�(H)e��tkutkp;� + e��t� � gp;�(H)kutkp + �
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Since u 2 Lp we have that H : Lp 7! L1 and gp(H) � gp;�(H) (note that g1(H) is, by de�nition, identical

to 
p(H)). 22

For an application of Lemma 2.50, let us consider the SISO LTV system

_x = A(t)x+ b(t)u ; y = c(t)x (2:23)

where A(t); b(t); c(t) have entries UB, piecewise continuous functions of time. Furthermore, suppose that

(2.23) is ES, i.e., there exist constants K; a > 0 such that the state transition matrix associated with A(t)

satis�es

k�(t; �)k � K exp[�a(t� �)] ; 8 t � � � 0

It follows that the I/O operator H : u 7! y is given by

y(t) = (Hu)(t) =

Z t

0

h(t; �)u(�) d�

where h(t; �) = c(t)�(t; �)b(�) is the impulse response of the operator H.

2.52 Corollary: Under these conditions, for any � 2 [0; a), p 2 (1;1) and 1
p
+ 1

q
= 1, the Lp(�)-gains of

H are well de�ned and given by:


1;�(H) = sup
t�0

Z t

0

jh(t; �)je�(t��) d�


1;�(H) = sup
��0

Z t

0

jh(t; �)je�(t��) d�

gp;�(H) = sup
t�0

�Z t

0

h
jh(t; �)je�(t��)

iq
d�

�1=q

g1;�(H) = sup
t��

n
jh(t; �)je�(t��)

o
If, in addition, we have that A(t); b(t); c(t) are constant, the impulse response of H is of the form h(t� �)

and the corresponding transfer function ĥ(s) is rational and analytic in the half-plane Re(s) > �a. In this

case the following simpler expressions are obtained:


1;�(H) = 
1;�(H) =

Z 1

0

jh(t)je�t dt = kE�hk1


2;�(H) = kĥ(s� �)k1

gp;�(H) =

�Z 1

0

�jh(t)je�t�q d��1=q

= kE�hkq

g2;�(H) = kE�hk2 = kĥ(s� �)k2
g1;�(H) = sup

t�0

�jh(t)je�t	 = kE�hk1

55

Proof: Straightforward application of Lemma 2.50 and the lemmas of the previous subsection. 22

The properties of operators in Lp(�) spaces are subsequently used to obtain Le1 bounds of an output

signal using Lep(�) bounds of the input signal. Such an approach has the advantage that past values of the

input and the output are exponentially de-weighted and consequently the results are more appropriate to

describe the `steady-state' behavior of the signals. An additional advantage is that, in general, it is easier
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to solve design and optimization problems in L2(�), which is a Hilbert space, rather than L1. It should

be pointed out, though, that the transformation of an L1 stability problem to an L2(�) one introduces a

degree of conservatism in the �nal solution, a trade-o� that should be addressed in a quantitative design.

2.53 Lemma: Consider a causal operator H : Lep 7! Le1, p 2 [1;1), for which gp;�(H) < 1 and let

y = Hu. Then, for any u 2 Lep (or u 2 Le1),

jy(t)j � gp;�(H) (E��kutkp;�) (t) + �E��(t); 8 t � 0 (2:24)

(E��kytkp;�) (t) � 
p;�(H) (E��kutkp;�) (t) + �E��(t); 8 t � 0 (2:25)

where the subscript t denotes truncation. 55

Proof: The proof follows directly from

j(E�y)(t)j � kPtyk1;� � gp;�(H)kPtukp;� + �

and the de�nition and properties of the (p; �)-norms. 22

The expressions (2.24) and (2.25) can also be written in an easier to visualize form

jy(t)j � gp;�(H)

�Z t

0

h
e��(t��)ju(�)j

ip
d�

�1=p

+ �e��t; 8 t � 0 (2:26)

�Z t

0

h
e��(t��)jy(�)j

ip
d�

�1=p

� 
p;�(H)

�Z t

0

h
e��(t��)ju(�)j

ip
d�

�1=p

+�e��t; 8 t � 0 (2.27)

2.54 Corollary: Let H : Lep 7! Le1, p 2 [1;1), be a causal operator and suppose that gp;�(H) < 1 for

some � > 0. Then H : L1 7! L1 and


1(H) � 1

(p�)1=p
gp;�(H)

i.e., H is L1-stable. 55

Proof: Immediate from (2.26) by taking the supremum of both sides with respect to t and pulling

kuk1 out of the integral. 22

Note that the inequalities (2.24) and (2.25) are valid when u; y exist locally, i.e., u; y 2 L1[0;T ] provided

that t is restricted to the interval [0; T ]. This observation can be useful in establishing existence and

uniqueness of solutions of di�erential equations. Furthermore, Corollary 2.54 o�ers an upper bound of

the 
1 gain of an operator in terms of the |easier to calculate| g2;� gain.

Finally, it is sometimes necessary to establish the L1 boundedness of a signal based on information

related to its (p; �)-norm and the (p; �)-norm of its derivative. There are several ways to approach this

problem, one of which is described by the following lemma.

2.55 Lemma: Let x : R+ 7! R be an absolutely continuous function on [0; T ], T > 0 and let p 2 [1;1).

Then, 8 t 2 [0; T ),

jx(t)jp � [jx(0)jE��]p(t) + p�[E��kxtkp;�]p(t)
+p[E��kxtkp;�]p�1(t)[E��k _xtkp;�](t)

where the subscript t denotes, as usual, truncation at t. 55
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Proof: In Appendix II.

It should be noted that some applications of special interest of the above lemma include the cases of x

being locally Lipschitz on [0; T ] and x; _x 2 Le1 where T may be taken as 1.

2.8.3 Normalization Signals

An immediate application of Lemma 2.53 is the construction of the so-called normalization signals. The use

of such signals has been an instrumental part of most of the recent studies of the robustness properties of

adaptive controllers. Qualitatively speaking, normalization signals should have the following properties:

� they should provide an upper bound of the output of an operator;

� the normalized output should be small in some sense when the operator gain is small in some sense;

� they should have exponentially fading memory of past inputs.

To illustrate the reasoning behind the last property, let us consider kutk1 as a normalization signal. This

signal would indeed normalize the output of an operator H : u 7! y = Hu, i.e., jy(t)j=kutk1 � 
1(H) +

�=kutk1. Suppose also that, in a control systems setup, it is desired that y ! 1 and that, due to initial

conditions, y and u may attain some `large' values during the transient period. In such a case, it is quite

apparent that kutk1 is a poor normalizing signal for y(t) as t!1, although it does provide a sharp bound

for kyk1.
Normalization signals of the form described below have been used quite frequently in adaptive control

to guarantee boundedness of the parameter estimates at least as early as [Ega.79], while their robustness

properties with respect to unmodeled dynamics and, in general, state dependent disturbances were �rst

observed by Praly [Pra.83]. The typical properties and design guidelines of such signals are given as follows.

2.56 Lemma: Consider a causal operator H : Lep 7! Le1, p 2 [1;1), and let y = Hu and mp(t) be the

signal de�ned by

_mp = �p�mp + jujp + qe; t � 0; m(0) > 0

where �; qe are positive constants and assume that u 2 Lep on an interval J � R+, (0 2 J).

a. If gp;�(H) is �nite then there exists a constant �0 > 0 such that

jy(t)j
[mp(t)]1=p

� gp;�(H) + �0e
��t; 8 t 2 J

b. If 
p;�(H) is �nite then there exists a constant �0 > 0 such that(R t
0

�
e��(t��)jy(�)j�p d�

mp(t)

)1=p

� 
p;�(H) + �0e
��t; 8 t 2 J 55

Proof: The proof follows directly from (2.26) and (2.27) with the observation that the positive constant

qe and the initial condition m(0) > 0 ensure that 1=mp(t) is well de�ned for all t 2 J . 22

It goes without saying that the results of the lemma are also applicable in the vector case with j�j denoting
vector norms18 and the Lp(�) gains of the operator H calculated using the appropriate induced norm of the

impulse response h (or its Laplace transform).

The normalization signal mp has the previously described properties with the bound of the normalized

output being a Lp(�)-gain of the operator H. The requirement that this gain should be �nite imposes some

restrictions on the class of operators for which the above lemma can be applied; a linear system whose state

18Such norms can be weighted by a symmetric, positive de�nite matrix Q e.g., juj �= (u>Qu)1=2.
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transition matrix has exponential rate of decay greater than �� and an operator containing arbitrarily large

time delays are typical examples violating the assumptions of the lemma. These restrictions are the price

paid for normalization with fading-memory signals. In the same vein, however, it should be pointed out that

variations of the previous lemma can be employed to somewhat relax the assumptions on the operator H as

indicated by the following corollary.

2.57 Corollary: Let Ĥ be a causal operator Ĥ : Lep 7! Le1 and suppose that there exists a causal operator

F : Lep 7! Le1 such that (1 + F )�1 : Le1 7! Le1 exists (p 2 [1;1)). Further, let y = Ĥû. Then Lemma 2.56

can be applied with H = [(1+F )�1Ĥ; (1+F )�1F ], u = [û; y]> and gp;�(Ĥ); 
p;�(Ĥ) evaluated according to

the vector norm juj used in the de�nition of mp. 55

Proof: Immediate, from y = Ĥu+ Fy � Fy and the observation that x 2 Le1 implies x 2 Lep. 22

2.58 Example: To demonstrate the results obtained by the application of the last corollary, consider

the LTI y = Ĥu de�ned by

_x = Ax+ bu ; y = cx

and assume that (c; A) is completely observable. Hence, there exists a vector k such that the eigenvalues of

L = A+ kc have real parts less than ��. It follows that y = Ĥu can be expressed as

_x = (A+ kc)x+ bu� ky ; y = cx

Thus, we can apply Corollary 2.57 with Ĥ, F , (1 + F )�1H and (1 + F )�1F being given in terms of their

transfer functions as c(sI � A)�1b, �c(sI � A)�1k, c(sI � L)�1b and �c(sI � L)�1k respectively. This

example illustrates how the assumptions of Lemma 2.56 can be relaxed, using some observability conditions

on the state representation of the operator Ĥ. 55

2.8.4 Swapping and Operator Inversion Lemmas

In this subsection we present two technical lemmas which are used to simplify the derivations of the sub-

sequent analysis. The �rst one involves compositions of an LTV dynamical operator and a TV multiplier.

Consider for example the case of an LTV operator H : u 7! y = H(u) and the multiplier � : w 7! u = w�.

If � is constant, it follows that H� � �H = 0. This is not necessarily true, however, if � is a function of

time. The precise nature of the di�erence between the operators H� and �H |caused by the `swapping'

between the dynamical operator H and the multiplier �| is assessed by the following lemma.

2.59 Lemma: (`Swapping') Consider the LTV system with piecewise continuous, bounded representation

_x(t) = A(t)x(t) +B(t)u(t) ; y(t) = C(t)x(t) ; x(t0) = 0

and suppose that u(t) = w(t)�(t) where � is absolutely continuous, w is (absolutely) integrable on an interval

J = [t0; t0 + T ], T > 0 and A;B;C; u; w; � are TV matrices of compatible dimensions. Further, de�ne the

(causal) operators

H : v 7! z : z(t) =

Z t

t0

C(t)�(t; �)B(�)v(�) d�

H1 : v1 7! z1 : z1(t) =

Z t

t0

C(t)�(t; �)v1(�) d�

H2 : v2 7! z2 : z2(t) =

Z t

t0

�(t; �)B(�)v2(�) d�
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where �(�; �) is the state transition matrix associated with A(�) and t 2 J . Then,

y(t) = (H[w�])(t) = (H[w])(t)�(t)�
�
H1

n
H2[w] _�

o�
(t)

for all t 2 J . 55

Proof: Let N(�) denote a fundamental solution of _X = A(t)X; then, N is continuous and nonsingular

on J and �(t; �) = N(t)N�1(�). Further,

y = C(t)N(t)

Z t

t0

N�1(�)B(�)w(�)�(�) d�

Since w is integrable on J , so is f = N�1Bw; then, F (t) =
R t
t0
f(�) d� is absolutely continuous on J and

F (t0) = 0. Next, since F , � are absolutely continuous on a compact interval F� is also absolutely continuous

and d
dt
(F�)(t) = _F (t)�(t) +F (t) _�(t) almost everywhere on J . Further, _F (t) = f(t) almost everywhere on J .

Hence, Z t

t0

d

d�
(F�)(�) d� =

Z t

t0

f(�)�(�) d� +

Z t

t0

F (�) _�(�) d�

for all t 2 J . Also, F� being absolutely continuous on J , the left hand-side of the above equation is equal to

(F�)(t)� (F�)(t0) = F (t)�(t). Hence, y can be written as

y(t) = C(t)N(t)

�Z t

t0

N�1(�)B(�)w(�) d�

�
�(t)

�C(t)N(t)

Z t

t0

N�1(�)N(�)

�Z �

t0

N�1(s)B(s)w(s) ds

�
_�(�) d�

from which the result follows. (Notice that H[w�] and H[w] need not be of the same dimension.) 22

In other words, the Swapping Lemma shows that the di�erence H���H can be expressed as an operator

H1
_�H2 where _� denotes a multiplier _� : w 7! w _� and H1; H2 are operators whose stability properties are

directly related to those of H. Moreover, invoking the results of the previous subsections, one may easily

verify that if the original LTV system is ES with rate �a then for � < a, the 
p;� and gp;�-gains of the

swapping operator H1
_�H2 are O( _�).

The Swapping Lemma can be further generalized to cases where � contains an additional jump-function

component. The result follows quite easily as an extension of the previous lemma and is stated as a corollary

below.

2.60 Corollary: Suppose that in Lemma 2.59, � = �s + �J where �s is absolutely continuous on J and

�J is a jump function, i.e.,

�J(t) =
X
tj�t

�Jj

where tj is a strictly increasing sequence such that limj!1 tj = 1 and �Ji are constant matrices of appro-

priate dimension. Then

(H[w�])(t) = (H[w])(t)�(t)�
�
H1

n
H2[w] _�

s
o�

(t)

�
X
tj�t

C(t)�(t; tj)(H2[w])(tj)�
J
j

for all t 2 J . 55
Proof: Straightforward, following the same steps as in Lemma 2.59 and using the linearity of H. 22
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The second lemma of this subsection deals with the derivation of properties and bounds for the input of

a linear �lter based on information given on its output. This inversion problem can be handled in a straight-

forward manner (e.g., see [Kai.80]) when the �lter has a non-zero throughput term. In our case, however,

we are interested in the inversion of strictly proper �lters which, strictly speaking, involves di�erentiation of

the output. Since di�erentiators do not possess �nite Lp gains, we follow a di�erent approach whereby an

anticipated bound on the derivative of the input is used to essentially limit the frequency range of the �lter

inversion and yield �nite gains for the restriction of the inverse �lter. This procedure proves su�cient for

our purposes and is summarized in the following lemma (for simplicity we only consider the LTI version of

this result).

2.61 Lemma: (`Operator Inversion') Suppose W (s) is a stable, minimum phase transfer function of

relative degree n� and let � 2 [0; 1] be an arbitrary constant and

� �(s) denote an arbitrary transfer function such that �(s) is stable, with relative degree � n� and unity

D.C. gain (�(0) = 1);

� �1(s) denote the transfer function such that �1(s)s = 1� �(s); 19

Further, let (u; y) be the I/O pair of W (s) and suppose that in an interval [0; T ], u is absolutely continuous.

Then, in the same interval,

u = �1(s)[ _u] + (1� �)�(s)W�1(s) fW (s)[u]g+ ��(s)[u]

55

Proof: Straightforward from the operator identity

[1� �(s)] + (1� �)�(s)W�1(s)W (s) + ��(s) = 1

22

From the above lemma it immediately follows that for any t 2 [0; T ]

kutkp;� � 
p;�(�1)k _utkp;� + (1� �)
p;�(�W
�1)kytkp;� + �
p;�(�)kutkp;�

where, for simplicity, we use �;�1;W to denote the respective operators and assume that � is chosen such

that the corresponding gains are �nite. The last inequality shows that the (p; �)-norm of the input can be

written as a weighted sum of the (p; �)-norms of _u and y. The two weights can be made arbitrarily small,

but not simultaneously, as it can be readily seen with the simple choice

�(s) = [a=(s+ a)]n
�

Then 
p;�(�1) = O(1=a) 
p;�(�W
�1) = O(an

�
). The freedom to choose the parameter a is used in the

subsequent chapters to reduce the conservatism in estimating an upper bound of kutkp;�. Intuitively speaking,
a represents the frequency range over which _u is large and the operator W needs to be inverted.

Finally, the free parameter � serves the same purpose (reduction of conservatism) and approaches one

when additional considerations allow us to conclude that u itself is small. Further details and one application

of this lemma are given in Chapter 7.

19Notice that from the assumptions on �(s) it follows that �1(s) and �(s) have the same �nite poles.
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2.8.5 The Bellman-Gronwall Lemma

The following lemma, due to Bellman [Bel.53], is extensively used throughout the following chapters.

2.62 Lemma: Suppose c � 0, r(�) and k(�) are nonnegative valued continuous functions and

r(t) � c+

Z t

0

k(�)r(�) d� ; 8 t 2 [0; T ]

Then

r(t) � c exp

�Z t

0

k(�) d�

�
; 8 t 2 [0; T ]

55

Proof: [Vid.78] Let s(t) = c+
R t
0
k(�)r(�) d� . Then r(t) � s(t), 8 t 2 [0; T ]. Further,

_s(t) = k(t)r(t) � k(t)s(t) ; 8 t 2 [0; T ]

Hence, _s(t)� k(t)s(t) � 0, 8 t 2 [0; T ] and therefore,

[ _s(t)� k(t)s(t)] exp

�Z t

0

�k(�) d�
�
� 0 ; 8 t 2 [0; T ]

d

dt

�
s(t) exp

�Z t

0

�k(�) d�
��

� 0 ; 8 t 2 [0; T ]

s(t) exp

�Z t

0

�k(�) d�
�
� s(0) = c

s(t) � c exp

�Z t

0

k(�) d�

�
The proof now follows immediately from the last inequality and the de�nition of s(t), whereby r(t) � s(t).

22

Note that, using analogous arguments, the lemma is also applicable for initial times other than 0 (replac-

ing, of course, 0 by t0) and for piecewise continuous, UB functions k(�). 20 A more general version of this

lemma, given in [D.V.75], is stated as follows.

2.63 Lemma: Let

1. f; g; k: R+ 7! R and locally integrable;

2. g � 0, k � 0;

3. g 2 Le1;

4. gk is locally integrable on R+.

Under these conditions, if u : R+ 7! R satis�es

u(t) � f(t) + g(t)

Z t

0

k(�)u(�) d� ; 8 t 2 R+

then

u(t) � f(t) + g(t)

Z t

0

k(�)f(�)

�
exp

Z t

�

k(�1)g(�1) d�1

�
d� ; 8 t 2 R+

55

Proof: In [D.V.75].

20In this case the previous arguments are applied inside each interval where k(�) is continuous and the �nal expression is

obtained by using the continuity of
R
k(�).
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2.8.6 Smooth Approximations of Continuous Functions

We conclude this section of mathematical preliminaries with a lemma on the smooth approximation of

continuous functions. Smooth approximations allow us to extend the results given in this chapter for smooth

functions, to a class of functions that are not everywhere di�erentiable encompassing most of the practically

interesting cases.

2.64 Lemma: Let u(t) : R+ 7! R be an absolutely continuous function on an interval [0; T ] for some

T > 0. Then for any a 2 R+, there exist functions un(t), n = 1; 2; . . ., such that un(t) is n-times continuously

di�erentiable in [0; T ) and for any t 2 [0; T ), p 2 [1;1]

k(un � u)tkp �
�n
a

�
k( _u)tkp

k(u(i)n )tkp � (2a)i�1k( _u)tkp ; i = 1; 2; . . . ; n

where, as usual, the subscript t denotes truncation and the superscript (i) denotes the ith derivative of the

function. 55

Proof: In Appendix II.

We note that smooth approximations of piecewise continuous functions with discontinuities of the �rst

kind (in this case, delta-distributions appear in _u ) or continuous functions with cusp points (where _u is

square integrable but not UB) can be derived in a similar manner. The resulting approximations, however,

are not uniform |in the sense that jun(t)� u(t)j may not be arbitrarily small everywhere; for this reason it

is more convenient in our analysis to treat any such cases in a di�erent way.

APPENDIX II

Proof of Lemma 2.8:

Let D(s; t); N(s; t) be the PDO's of degree n; m respectively with D(s; t) monic and SR(t) be the corre-

sponding right TV Sylvester matrix.

(if) Consider the equation

Q1(s; t)D(s; t) + P1(s; t)N(s; t) = 1

in the interval (t1; t2), which by De�nition 2.6 can be written as SR(t)x(t) = a where a = [0; . . . ; 0; 1]> and

x is a vector of the coe�cients of Q1(s; t), P1(s; t). Assuming that SR(t) is nonsingular in (t1; t2), the last

equation can be solved uniquely for the coe�cients of Q1(s; t), P1(s; t) which are smooth functions of time.

Further, since SR(t) is nonsingular in (t1; t2), we can similarly solve the equation

Q̂0(s; t)D(s; t) + P̂0(s; t)N(s; t) = �snN(s; t)� n0(t)s
mD(s; t)

with deg[Q̂0(s; t)] = m�1, deg[P̂0(s; t)] = n�1 and n0(t) being the leading coe�cient of N(s; t) respectively.

Then the PDO's Q0(s; t) = Q̂0(s; t) + n0(t)s
m, P0(s; t) = P̂0(s; t) + sn have smooth coe�cients and satisfy

Q0(s; t)D(s; t) + P0(s; t)N(s; t) = 0

in (t1; t2). Hence, D(s; t) and N(s; t) are right coprime in the same interval.

(only if) Assume that there exist PDO's P0(s; t) |monic of degree n| Q0(s; t), P1(s; t) and Q1(s; t)

with smooth coe�cients such that

Q1(s; t)D(s; t) + P1(s; t)N(s; t) = 1 (2:28)
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Q0(s; t)D(s; t) + P0(s; t)N(s; t) = 0 (2:29)

for t 2 (t1; t2). From (2.28), (2.29) it follows that deg[P1(s; t)] � deg[Q1(s; t)] = n �m, deg[Q0(s; t)] = m

and

n0(t) = �q00(t) ; p10(t)n0(t) = �q10(t)
where n0(t), q00(t), q10(t), p10(t) denote the leading coe�cients of the PDO's N(s; t), Q0(s; t), Q1(s; t),

P1(s; t) respectively. Hence, we can assume without loss of generality that deg[P1(s; t)] < n, deg[Q1(s; t)] <

m. Furthermore, we can construct the PDO's

Qk+1(s; t) = sQk(s; t) + �k(t)Q0(s; t) ; Pk+1(s; t) = sPk(s; t) + �k(t)P0(s; t) (2:30)

where k = 1; . . . ; n + m and �k(t) is such that deg[Qk+1(s; t)] < m and deg[Pk+1(s; t)] < n respectively.

Operating on (2.28) with sk from the left, we obtain

skQ1(s; t)D(s; t) + skP1(s; t)N(s; t) = sk

inside (t1; t2). Using (2.30) it follows that the PDO's Qk(s; t); Pk(s; t) satisfy

Qk(s; t)D(s; t) + Pk(s; t)N(s; t) = sk�1 ; k = 1; . . . ; n+m (2:31)

inside (t1; t2). Comparing (2.31) with SR(t)x(t) = a and using De�nition 2.6 we can write (2.31) as

SR(t)X(t) = I where X(t) is a matrix of the coe�cients of Qk(s; t); Pk(s; t) and I is the (n+m)� (n+m)

identity matrix. Hence, in the interval (t1; t2), rank[SR(t)] = n+m and therefore det[SR(t)] 6= 0.

The proof for the case of left coprime PDO's follows similar steps and is omitted. 22

Proof of Lemma 2.13:

Using the same notation as in the proof of Lemma 2.8 we have:

(if) Since j det[(SR(t)]j � c > 0, SR(t) is nonsingular and therefore D(s; t), N(s; t) are right coprime.

Furthermore, the PDO's P0(s; t), Q0(s; t) and P1(s; t), Q1(s; t) can be found as in the proof of Lemma

2.8, by solving equations of the form SR(t)xi(t) = ai(t), i = 0; 1; hence, the uniform boundedness of their

coe�cients is guaranteed by the smoothness and uniform boundedness of the coe�cients of D(s; t); N(s; t)

and the strong nonsingularity of SR(t).

(only if) Following the second part of the proof of Lemma 2.8, the smoothness and uniform boundedness

of the coe�cients of all the considered PDO's guarantees that the PDO's Qk(s; t); Pk(s; t) have also smooth,

UB coe�cients. Hence, from (2.31), jdet([SR(t)]�1)j = j det[X(t)]j � c1 for some c1 > 0, which implies that

jdet[SR(t)]j � 1=c1
�
= c > 0. The proof for the case of strongly left coprime PDO's follows similarly. 22

Proof of Corollary 2.16:

(a.) Let us �rst consider (2.9) with m > 0 and all the PDO's in the left form. Expressing the left-

hand side as a single PDO in the left form and equating the coe�cients of equal powers of s (2.9) can be

written as a system of linear algebraic equations Ŝ(t)X(t) = A(t) where X(t) is the vector of unknown

coe�cients and A(t) is the vector of coe�cients of k1(t)A�(s; t)� sn1k1(t)D(s; t), where n1 = deg[Q(s; t)] =

deg[A�(s; t)]� deg[D(s; t)]. The matrix Ŝ(t) is of the form

Ŝ(t) = [�1; . . . ;�n1 ;�1; . . . ;�n]

where �i; �j are vectors of the coe�cients of s
n1�ik1(t)D(s; t), sn�jN(s; t) respectively, expressed as (n+

n1 � 1)-degree left PDO's. Comparing Ŝ(t) with SR(t), given in De�nition 2.6, it follows that

Ŝ(t) =

�
L(t) 0
? SR(t)

�
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where L(t) is a lower triangular matrix with diagonal entries k1(t). Since D(s; t) and N(s; t) are strongly

right coprime in R+ and jk1(t)j � c > 0, 8 t 2 R+, it follows by Corollary 2.14 that SR(t) is strongly

nonsingular, i.e., there exists a constant c1 > 0 such that j det[SR(t)]j � c1, 8 t 2 R+. Furthermore, L(t)

is strongly nonsingular since jk1(t)j � c > 0, 8 t 2 R+. Hence, Ŝ(t) is strongly nonsingular and (2.9) has a

unique solution for Q(s; t); P (s; t) with smooth, UB coe�cients and deg[P (s; t)] � deg[D(s; t)]� 1.

Notice that in the case m = 0 the coe�cients of Q(s; t) can be simply found by forward substitution

so that k1(t)A�(s; t) � Q(s; t)k1(t)D(s; t) is a n � 1-degree PDO. P (s; t) is then chosen to satisfy P (s; t) =

k1(t)A�(s; t) � Q(s; t)k1(t)D(s; t). It follows by inspection that the uniform boundedness of k1(t) and the

coe�cients of D(s; t); N(s; t); A�(s; t) together with the assumption jk1(t)j � c > 0, 8 t 2 R+, guarantee

the uniform boundedness of the coe�cients of Q(s; t) and consequently of P (s; t).

(b.) The proof of Corollary 2.16 for the case of equation (2.10) follows by using similar arguments as in

(a.) where the PDO's are now expressed in the right form instead of the left. 22

Proof of Lemma 2.33:

The idea of the proof is to use column operations to write the left TV Sylvester matrix as21

SLU =

�
L 0
? Qc

�
(2:32)

where U is a unimodular matrix with j det[U ]j = 1, L is an m � m lower triangular matrix with ones in

the diagonal and ? denotes irrelevant terms. The appearance of L is quite obvious from the de�nition of

the Sylvester matrix (2.6) since D(s; t) is a monic PDO. For the rest, we need to take advantage of the

recursiveness in the Sylvester and Controllability matrices. First, the controllability matrix is written as

Qc = [p0; p1; . . . ; pn�1] ; pk+1 = �Apk + _pk ; p0 = B

and A is in the left companion form

A =

�
�a I

0

�
and [1; a>], B> are the vectors of coe�cients of D(s; t) and N(s; t) respectively. On the other hand, the left

TV Sylvester was de�ned as

SL = [Cm�1; . . . ; C0; Bn�1; . . . ; B0]

where Ci; Bj are vectors of the coe�cients of D(s; t)s
i, N(s; t)sj respectively, expressed as (n+m�1)-degree

right PDO's (the order of the subscripts is reversed for convenience). Since x(t)s = sx(t) � _x(t), we may

write the following recursions for the non-identically zero parts of the columns of SL

Bk+1 =

�
Bk

0

�
+

�
0
_Bk

�
; B0 = B (2:33)

Ck+1 =

�
Ck
0

�
+

�
0
_Ck

�
; C0 =

�
1
a

�
(2:34)

The proof of the lemma now follows by induction.

1. We have that p0 = B0

2. Assume that22

Bk =
k�1X
0

�i

�
0i

Ck�1�i

�
+

�
0k
pk

�
(2:35)

21The time dependence arguments are suppressed for simplicity.
22The form of the recursion is easily deduced by performing a couple of iterations.
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where 0i denotes a column of i-zeros and �i are some functions of time. This form of Bk indicates that it

can be reduced to pk by adding to this column a linear combination of the Ci columns, the latter being

represented in a matrix notation as a left multiplication with a unimodular matrix with determinant �1.
3. Show that

Bk+1 =
kX
0

�i

�
0i

Ck�i

�
+

�
0k+1
pk+1

�
(2:36)

It is now straightforward to obtain equation (2.36) by substituting (2.35) in the recursion of Bk (2.34) and

using the recursions of Ak and pk to regroup the various terms. Note that a useful identity in this procedure

is �
pk
0

�
+

�
0
_pk

�
� � pk0C0

�
= �

�
0

Apk

�
+

�
0
_pk

�
=

�
0

pk+1

�
where pk0 denotes the top element of pk. Thus, equation (2.32) holds and consequently j det[Qc]j = jdet[SL]j.
The proof of the dual statement for the observability and right TV Sylvester matrices follows similarly and

is omitted. 22

Proof of Lemma 2.35:

Let x, A(t); B(t); C(t) be the state vector and matrices of a uniform realization of �p with a corresponding

STM �(t; �). It then su�ces to show that there exist constants K; a > 0 such that for all bounded initial

conditions (e.g., kx(t0)k; kw(t0)k � K0 for some K0 > 0) and all t0 � 0, kx(t)k; kw(t)k � K1 exp[�a(t� t0)].

We have that for all t � t0 and � > 0

k2e�2a(t�t0)� �
Z t+�

t

ky(�)k2 d� =
Z t+�

t

x>(�)C>(�)C(�)x(�) d� (2:37)

x(�) = �(�; t)x(t) +

Z �

t

�(�; s)B(s)u(s) ds ; � 2 [t; t+ �]: (2:38)

Furthermore, since A(t) is UB, we have that23

k�(t; �)k � f1(�) ; � 2 [t; t+ �]

and since B(t) and p3; p4 are UB,

k
Z �

t

�(�; s)B(s)u(s) dsk � f2(�)ke
�a(t�t0)�

for all � 2 [t; t+ �]. Thus, using the previous inequalities in (2.38), we obtainZ t+�

t

x>(�)C>(�)C(�)x(�) d� � x>(t)No(t; t+ �)x(t) (2.39)

� 2�2 sup
t

�kC(t)k2� f1(�)f2(�)ke�a(t�t0)kx(t)k
where No(t; �) is the observability grammian of �p. Since �p is assumed to be uniformly completely

observable, there exists a constant do > 0 such that for � = do its observability grammian satis�es

N(t; t + �) � f0(�)I > 0, for all t. Completing the squares in the right-hand side of (2.39) and substi-

tuting the result in (2.37) we obtain that

kx(t)k � K1e
�a(t�t0)

23We use the notation fi(x) to denote a nonnegative constant, solely determined by x.
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for some constant K1, independent of t0. Note that the size of the initial conditions enters K1 implicitly,

through the bounds on u and y. That is, K can be expressed as K 0k where K 0 is a constant depending on

the system parameters and k is the proportionality constant in the exponential bound of u1 and y, which

re
ects the size of the initial conditions.

The proof of the lemma now follows by observing that the same inequality also holds for the states w(t)

of �c since the STM of F is ES, �c is a bounded realization and its inputs u1; y are bounded by decaying

exponential. 22

Proof of Lemma 2.41:

Let S0(t) denote the Sylvester matrix of the polynomials Dt(s) 2 fDt(s)gt and Nt(s) 2 fNt(s)gt at
time t. Thus, the entries of S0(t) depend on �D(t); �N (t) but not on their derivatives. Also let SR(t)

denote the right TV Sylvester matrix of the PDO's D(s; t); N(s; t) and let S1(t) = SR(t) � S0(t) (similar

arguments can be used for the left TV Sylvester matrix). Then the matrix S1(t) has entries depending only

on the derivatives, at time t, of �D(t); �N (t) up to m � 1; n � 1 order respectively. Hence, we can write

S1(t) = �Ŝ1(t) where Ŝ1(t) is UB. Assuming that D(s; t); N(s; t) are pointwise strongly coprime in R+, we

have that, for some constant c1 > 0, jdet[S0(t)]j � c1, 8t 2 R+ and therefore,

jdet[SR(t)]j = jdet[S0(t)]j jdet[I + �Ŝ1(t)S
�1
0 (t)]j (2:40)

By taking � 2 [0; �o) with 0 < �o < 1= supt kŜ1(t)S�10 (t)k we have that, for some constant c2 > 0, j det[I +
�Ŝ1(t)S

�1
0 (t)]j � c2, 8t 2 R+. Hence, using Lemma 2.13, the proof follows. 22

Proof of Lemma 2.42:

Let Â(t) = A(t)+(a��)I for some �xed � 2 (0; a). Then, the eigenvalues �̂i(t) of Â(t) satisfy Re(�̂i(t)) �
�� 8t � 0. Furthermore, if �(t; �); �̂(t; �) are the STM's corresponding to A(t); Â(t) respectively then, due

to the commutativity of Â(t) and (a� �)I, we have

�(t; �) = e(�a+�)(t��)I�̂(t; �) (2:41)

Let us now consider the system

_z = Â(t)z (2:42)

From Lemma 2.64 and since Â(t) is Lipschitz continuous and UB, for any � > 0 there exists a UB, continuously

di�erentiable approximation, say �A(t), such that k �A(t)� Â(t)k � �, 8t 2 R+. It follows that for su�ciently

small �, the eigenvalues of �A(t) |being �-close to those of Â(t)| are in the left half of the complex plane.

Hence, there exists a UB matrix R(t) = R(t)> > 0 which satis�es the Lyapunov equation

�A>(t)R(t) +R(t) �A(t) = �I (2:43)

for all t � 0. The matrix R(t) can be evaluated as [Vid.78]

R(t) =

Z 1

0

exp[ �A>(t)s]I exp[ �A(t)s] ds

Further, by di�erentiating both sides of (2.43), we have that _R(t) satis�es a similar Lyapunov equation,

namely

�A>(t) _R(t) + _R(t) �A(t) = � _�A
>
(t)R(t)�R(t) _�A(t)

which, again, has a unique solution given by

_R(t) = �
Z 1

0

exp[ �A>(t)s]

�
_�A
>
(t)R(t) +R(t) _�A(t)

�
exp[ �A(t)s] ds
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Hence, k _R(t)k is UB and O(k _�A(t)k).
Consider next the positive de�nite function V = z>R(t)z. Taking the derivative of V along the trajec-

tories of (2.42) with respect to t we get

_V = �z>z + z> _R(t)z + z>Ez (2:44)

where E = (Â� �A)>R+R(Â� �A) is a matrix that can be made arbitrarily small since kEk = O(�).

If condition 1 of the lemma holds, it follows from the pointwise properties of _�A(t) (see Lemma 2.64) that

there exist constants �; �1 > 0, depending on the choice of � and �, such that

_V � �(�� �1�)z
>z (2:45)

Hence, V is UB and exponentially decaying (0 is a uniformly asymptotically stable equilibrium of (2.42))

8� 2 [0; �o) with �o = �=�1.

Further, from (2.44), there exist constants �; �2 > 0, depending on the choice of � and �, such that

V � V0e
��(t�t0) + �2

Z t

t0

e��(t��)V k _R(�)k d� (2:46)

where V0 = V (t0) is bounded for bounded initial conditions.

If condition 2 of the lemma holds, (2.46) and the Bellman-Gronwall Lemma yield

V � V0e
��(t�t0) exp

�
�2

Z t

t0

k _R(�)k d�
�

(2:47)

which, using the mean-absolute properties of _�A(t), becomes

V � V0e
��2ce�(�����2)(t�t0)

for some constant � > 0. Thus, V is UB and exponentially decaying 8� 2 [0; �o) with �o = �=��2.

If condition 3 of the lemma holds, then by using the Cauchy inequality to square both sides of (2.46) and

applying the Schwarz inequality we obtain

V 2 � p1(�
0)V 2

0 e
�2�(t�t0)

+p2(�
0)�22

�Z t

t0

e��(t��) d�

Z t

t0

e��(t��)V 2k _R(�)k2 d�
�

� p1(�
0)V 2

0 e
�2�(t�t0) +

p2(�
0)�22
�

Z t

t0

e��(t��)V 2k _R(�)k2 d� (2.48)

where �0 is an arbitrary positive constant and p1(�); p2(�) are the Cauchy constants

p1(�
0) =

�
1 +

1

�0

�
; p2(�

0) = 1 + �0 (2:49)

Again, applying the Bellman-Gronwall Lemma on (2.48) and using the mean-square properties of _�A(t), we

obtain that V 2 and therefore V is UB and exponentially decaying provided that � < �2=�0�22(1 + �0), where

�0 is a positive constant; since �0 is arbitrary, the latter holds 8� 2 [0; �o) with �o = �2=�0�22 .

Thus, in all three cases, �̂(t; �) is UB for � su�ciently small and the proof of Lemma 2.42 follows

immediately from (2.41). 22

Proof of Lemma 2.44:
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The proof of the lemma is obtained along the lines of the proof of Lemma 2.42 with the following

di�erences.

As in Lemma 2.42, we de�ne Â(t; �) = A(t; �) + (a � �)I for some �xed � 2 (0; a), and consider the

frozen-� system

_z = Â(t; ��)z (2:50)

where �� 2 M is constant. From the assumptions of the lemma we have that (2.50) is ES, so there exists a

UB matrix R(t; ��) = R>(t; ��) > 0 satisfying the TV Lyapunov equation

@R

@t
(t; ��) + Â>(t; ��)R(t; ��) +R(t; ��)Â(t; ��) = �I

and can be evaluated as [Vid.78]

R(t; ��) =

Z 1

t

�̂>(�; t)I�̂(�; t) d�

where �̂(:; :) is the STM corresponding to Â(t; ��). Moreover, @R

@��
(t; ��) satis�es a similar TV Lyapunov

equation, with the solution being UB and given as

@R

@��
(t; ��) = �

Z 1

t

�̂>(�; t)

"
@Â>

@��
R+R

@Â

@��

#
(�; ��)�̂(�; t) d�

Hence, considering the positive de�nite function V = z>R(t; �)z, its derivative along the trajectories of

(2.50) is

_V = �z>z + z>
@R

@�
(t; �) _�(t)z

The rest of the arguments are identical to the corresponding ones in the proof of Lemma 2.42 and are

omitted. 22

Proof of Lemma 2.45:

The proof of Lemma 2.45 can also be obtained as an application of the Bellman-Gronwall Lemma, similar

to the proof of Lemma 2.42. We start by considering the ODE

_x = A(t)x+�(t)x (2:51)

Since _x = A(t)x is ES with rate �a we have that there exists a constant � > 0 such that the STM �A(t; �),

corresponding to A(t) satis�es

k�A(t; �)k � �e�a(t��) ; 8 t � � � 0

Hence,24

kx(t)k � �kx(t0)ke�a(t�t0) + �

Z t

t0

e�a(t��)kx(�)kk�(�)k d� (2:52)

Furthermore, applying the Cauchy and Schwarz inequalities on (2.52) we obtain

kx(t)k2 � p1(�)�
2kx(t0)k2e�2a(t�t0) + p2(�)�

2

a

Z t

t0

e�a(t��)kx(�)k2k�(�)k2 d� (2:53)

where p1(�); p2(�) are as de�ned in (2.49) and � is an arbitrary positive constant. Using the Bellman-Gronwall
Lemma and condition 1 or 2 with (2.52) or condition 3 with (2.53) we get that kx(t)k � kkx(t0)k exp[(�a+
��1)(t� t0)] where k is a positive constant and �1 = 1=� if 2 holds or �1 = a=�2 + �0 if 3 holds, with �0 > 0

being arbitrarily small. The proof of the lemma now follows directly from the last observation and the STM

24Since A(t) is piecewise continuous, x and �A(�; �) are only piecewise di�erentiable; consequently, for a formal derivation of
(2.52), we should consider the solution inside the intervals where A(t) is continuous and combine the pieces using the continuity
of x as a boundary condition.
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property x(t) = �(t; t0)x(t0). 22

Proof of Lemma 2.55:

Let z = jxjp for p > 1 and z = x for p = 1. Notice that z is also absolutely continuous on [0; T ] and

therefore _z is bounded almost everywhere on [0; T ] [K.F.70] (for p > 1, _z = p sign(x)jxjp�1 _x a.e.). Further,

z being bounded on [0; T ], ep�tz(t) is absolutely continuous on [0; T ]. Thus, for any t 2 [0; T ),

ep�tz(t) = z(0) +

Z t

0

p�ep��z(�) d� +

Z t

0

ep�� _z(�) d�

Hence,

jx(t)jp � [jx(0)jE��]p(t) + p�[E��kxtkp;�]p(t)

+E��
Z t

0

pep�� jx(�)jp�1j _x(�)j d�

Using Holder's inequality, the last term of the above expression becomes

pE��
�Z t

0

e(p�1)q�� jx(�)j(p�1)q d�
�1=q �Z t

0

ep�� j _x(�)jp d�
�1=p

where q is the conjugate index of p and therefore (p�1)q = p from which the inequality of the lemma follows.

22

Proof of Lemma 2.64:

Observe �rst that since u is absolutely continuous on [0; T ], _u exists and is bounded almost everywhere

in [0; T ] [K.F.70]. It follows that the right-hand sides of the inequalities of the lemma are well de�ned.

Next, de�ne the functions un : R+ 7! R by the recursion

_un = �aun + aun�1 ; un(0) = un�1(0); t 2 [0; T ] (2:54)

where n = 1; 2; . . . and u0 = u. It follows that

un(t) = e�atun(0) + a

Z t

0

e�a(t��)un�1(�) d� ; t 2 [0; T ]

and since un�1 is continuous and therefore bounded in [0; T ], the integrand in the previous equation is

absolutely continuous on the same interval. Hence, [K.F.70],

un(t) = e�atun(0) + un�1(t)� e�atun�1(0)�
Z t

0

e�a(t��) _un�1(�) d� ; t 2 [0; T ]

and, since un(0) = un�1(0),

un(t)� un�1(t) = �
Z t

0

e�a(t��) _un�1(�) d� ; t 2 [0; T ]

Next, invoking Lemma 2.47 we obtain

k(un � un�1)tkp � 1

a
k( _un�1)tkp

while, from the recursive de�nition of un (2.54), we have

k( _un)tkp � k( _un�1)tkp
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Thus, using the triangle inequality for k � kp the �rst inequality of the lemma follows.

Further, since both sides of (2.54) can be di�erentiated at least n� 1 times with continuous derivatives,

un is n-times continuously di�erentiable. Hence, from (2.54),

k(u(i)n )tkp � ak(u(i�1)n�1 )tkp + a2k(u(i�2)n�1 )tkp + � � �+ ai�1k(u(1)n�1)tkp
+ai�1k(u(1)n )tkp

The second inequality of the lemma now follows with a simple induction argument. 22



Chapter 3

The LTV Plant

3.1 Introduction

In this chapter we de�ne the class of LTV plants for which we subsequently formulate and study certain

control problems in the progressively harder cases of complete and incomplete a priori knowledge of parameter

variations.

The choice of the control objective, for which the control problem has a meaningful solution, depends of

course on the underlying structure of the plant and, conversely, for the control problem to be well-posed the

plant should satisfy certain assumptions depending on the selected control objective. An issue of particular

interest in our study is the control of plants whose TV parameters are only partially known. In such a case,

one may attempt to meet the control objective by combining a parameter estimator or adaptive law with

a particular controller structure. The underlying intuitive idea behind this approach is that the parameter

estimator uses I/O information to estimate the unknown parameters on-line while the updated parameter

estimates are used in the calculation of the control input signal.

Inherent in this approach is the concept of plant parametrization, that is, a description of the plant I/O

operator in terms of some parameters. However, not all possible parametrizations of LTV I/O operators are

convenient for the identi�cation of the I/O operator via a parameter estimation algorithm. For example, if

we consider an arbitrary state-space description of an LTV system _x = Ax + bu, y = c>x and its natural

parametrization in terms of the triple [A; b; c], it may not be possible to design an estimator which determines

the parameters [A; b; c] uniquely from I/O information. In order to achieve such an objective, we need to

impose certain conditions on the values and structure of the triple [A; b; c].

In this chapter we provide the conditions ensuring that a general class of LTV plants admits a convenient

parametrization for estimation and control purposes. We begin with Section 3.2 where we discuss the

analytically simpler case of plant representations with smooth parameter variations. In Section 3.3 we

consider LTV plants with non-smooth, possibly discontinuous parameter variations. Finally, convenient for

parameter estimation plant parametrizations are studied in Section 3.4, for both smooth and non-smooth

parameter variations.

3.2 Smooth Parameter Variations

Consider a SISO LTV plant described by the di�erential equation

_x(t) = A(t)x(t) + b(t)up(t) ; x(t0) = x0

yp(t) = c>(t)x(t) (3.1)

where t0 2 R+, (up; yp)(t) 2 R�R and x(t) 2 Rn, satisfying the following assumptions:

52
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3.1 Assumption: A(t); b(t); c(t) are smooth, UB functions of time with UB derivatives.

3.2 Assumption: The triple [A(t); b(t); c(t)] is strongly controllable and observable in [t0;1).

3.3 Assumption: The order of the plant, denoted by n, is constant and �nite.

Under these assumptions, Lemma 2.32 ensures that the plant I/O map is described by a topologically

equivalent state-space representation which is in either the controllable canonical form, i.e.,

_xc =

2
6664

0 1 0 . . . 0
0 0 1 . . . 0
...

...
... 1

�an(t) �an�1(t) �an�2(t) . . . �a1(t)

3
7775xc +

2
6664

0
0
...
1

3
7775up

yp = [bn�1(t); bn�2(t); . . . ; b0(t)]xc (3:2)

or the observable canonical form, i.e.,

_xo =

2
6664
�a01(t) 1 0 . . . 0
�a02(t) 0 1 . . . 0
...

...
... 1

�a0n(t) 0 0 . . . 0

3
7775xo +

2
6664

b00(t)
b01(t)
...

b0n�1(t)

3
7775up

yp = [1; 0; . . . ; 0]xo (3:3)

We refer to (3.2) as the PR form and to (3.3) as the PL form of the plant. As noted in Example 2.22, a plant

in the PR form has I/O operator

yp = GR
p (s; t)[up] ; GR

p (s; t) = Np(s; t)D
�1
p (s; t) (3:4)

where

Dp(s; t) = sn + a1(t)s
n�1 + � � �+ an(t)

Np(s; t) = b0(t)s
n�1 + b1(t)s

n�2 + � � �+ bn�1(t)

are PDO's in the left form with smooth, UB coe�cients. Furthermore, due to Assumption 3.2 and from

Corollary (2.34), Dp(s; t), Np(s; t) are strongly right coprime PDO's in [t0;1).

Similarly, using Example 2.23 we obtain that a plant in the PL form has I/O operator

yp = GL
p [up] ; GL

p (s; t) = D�1
p (s; t)Np(s; t) (3:5)

where

Dp(s; t) = sn + sn�1a01(t) + � � �+ a0n(t)

Np(s; t) = sn�1b00(t) + sn�2b01(t) + � � �+ b0n�1(t)

are PDO's in the right form with smooth, UB coe�cients. Also, due to Assumption 3.2 and from Corollary

(2.34), Dp(s; t), Np(s; t) are strongly left coprime PDO's in [t0;1).

For simplicity, we use the same notation for the PDO's and PIO's of the plant I/O operator in either the

PR or PL form; their meaning is clear from the context. Moreover, we denote the coe�cients of the plant

PDO and PIO (ai(t); bi(t) or a
0
i(t); b

0
i(t)) by the vector �p(t).

Further, the relative degree of the plant GR
p or GL

p

n� �
= deg[Dp(s; t)]� deg[Np(s; t)]
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is equal to one on any interval where b0(t) 6= 0. If, for some constant integer m � n� 1 we have that

b0(t) = b1(t) = � � � = bn�m�2(t) = 0 ; bn�m�1 6= 0

for all t 2 [t01), then the relative degree of the plant is n �m. In this case, the I/O description (3.4) can

be written as

yp = GR
p [up] ; GR

p (s; t) = kp(t)Np(s; t)D
�1
p (s; t) (3:6)

where, now, Np(s; t) is a monic PDO of degree m and with coe�cients �bi(t) = bi(t)=bn�m�1(t) and kp(t) =

bn�m�1(t) is the so called high-frequency gain. Similarly, if the plant has relative degree n � m, the I/O

description (3.5) can be written as

yp = GL
p [up] ; GL

p (s; t) = D�1
p (s; t)Np(s; t)kp(t) (3:7)

where Np(s; t) is a monic PDO of degree m and with coe�cients �b0i(t) = b0i(t)=b
0
n�m�1(t) and kp(t) =

b0n�m�1(t).
The above assumptions capture some of the essential properties that are required for the well-posedness

of the control problem. To clarify the meaning and give an interpretation of the assumptions we invoke the

results of Chapter 2 to make the following observations.

In the plant representation (3.1) we have tacitly assumed that the state x(t) includes the physical quanti-

ties, e.g., voltage, displacement, temperature etc., whose properties, such as continuity, boundedness etc., are

of interest. Since in the LTV case algebraically equivalent systems do not necessarily share the same internal

stability properties, the properties of the state x(t) may not be deduced, in general, from the properties

of the I/O operator of the plant. For this purpose, Assumption 3.2 introduces a notion of minimality and

ensures that the plant is uniformly controllable and observable. Consequently, all states can be accessed

with bounded inputs and no state can grow unbounded without being observed at the output.

Assumption 3.2 also guarantees that the plant can be brought to any of the canonical forms via a Lyapunov

transformation and hence described by an I/O operator, factorized in terms of PDO's with smooth, UB

coe�cients (eqns. (3.4){(3.7)). In addition, Corollary 2.34 shows that these PDO's are strongly (right or

left) coprime.

3.3 Non-Smooth Parameter Variations

Among the critical assumptions about the plant, discussed in the previous section, were the smoothness of

the plant parameters and the strong controllability/observability of the plant. Despite their generality, such

assumptions exclude an important class of LTV plants with discontinuous or non-di�erentiable parameters.1

In addition to the discontinuities, it may be possible that our assumptions are violated inside `short' time

intervals, e.g., during a transition between two di�erent modes of operation of the plant. In such cases of non-

smooth parameter variations one of the major points of concern, particularly for continuous time systems, is

that it may not be possible at all to describe the LTV system by a convenient PDO/PIO factorization and/or

perform the necessary PDO operations. The reason is that parameter smoothness is a property associated

with the physical variables that a�ect the system behavior. Such variables are not necessarily related in a

simple way with the parameters of a canonical form. For example, consider the PDO's [s+a(t)] and [s+b(t)]

where a(t); b(t) are discontinuous functions. Any attempt to express the product [s+a(t)][s+b(t)] as a single

PDO of degree two would cause the appearance of delta distributions in its coe�cients.

1Although it is straightforward |and tedious| to derive the exact number of required di�erentiations, such calculations
are omitted since they depend critically on the assumed state-space representation of the plant.
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In our formulation we avoid any unnecessary further complications caused by such a description, by

considering plants in the general state-sace representation (3.1). In order to handle discontinuous as well as

non-di�erentiable system parameters we decompose, without loss of generality, the representation (3.1) as

_x = Ao(t)x+ bo(t)up + ~A(t)x+~b(t)up

yp = c>o (t)x+ ~c>(t)x (3.8)

where Ao(t), bo(t), co(t) are referred to as the `nominal' part of the plant and ~A(t), ~b(t), ~c(t) as the `per-

turbation' part of the plant. Thus, instead of Assumptions 3.1{3.3, the LTV plant (3.8) is assumed to

satisfy:

3.4 Assumption: The entries of Ao(t); bo(t); co(t) are piecewise smooth, UB functions of time and the

entries of ~A(t), ~b(t), ~c(t) are piecewise continuous,2 UB functions of time, satisfyingZ t0+T

t0

k~�k2 � C + �0T

where C; �0 � 0 are some constants, for all t0 � 0 and T � 0.3 Furthermore, let us denote by tj,

j = 1; . . . ;1, the points of discontinuity of Ao(t), bo(t), co(t) where ftjg11 is a strictly increasing

sequence 2 R+ with tj !1 as j !1.4 That is, Ao(t); bo(t); co(t) are smooth for all t except tj.

3.5 Assumption: The triple [Ao(t); bo(t); co(t)] satis�es Assumptions 3.1{3.3 inside each interval (tj ; tj+1),

j 2 N, uniformly in j.

3.6 Assumption: There exist constants C; � such that in any interval (t0; t0 + T ) the number of discon-

tinuities nI of the nominal plant parameters satis�es

nI � C + �T

8t0 � 0, 8T � 0.

In other words, we consider LTV plants which are perturbations of `well-behaved' plants, i.e., plants

with smooth parameters satisfying our strong controllability and observability assumption as stated in the

previous section. Such perturbations can have the form of a small-in-the-mean non-di�erentiable part, or

infrequent discontinuities (jumps) added to the nominal parameters.

Of course, given a general non-smooth state-space representation of a plant, its decomposition into a

nominal and a perturbation part is not unique and can be performed in several di�erent ways. For example,

a discontinuity in a parameter (or its derivative) can be included directly in the nominal part of the plant or

a smooth approximation can be considered as a nominal part and the di�erence as a perturbation. Needless

to say, although di�erent representations of the same plant a�ect the conservatism in estimating regions of

stability, the �nal result is qualitatively the same.

We must emphasize at this point that for the class of plants described by (3.8) to be a non-trivial

extension of the smooth parameter case, we must allow for discontinuities in the nominal parameters. This

is necessary in order to admit plants whose parameters cross a controllability/observability boundary. In

such a case, the nominal part of the state-space description should either contain a jump or a loss in strong

2Without loss of generality, both the nominal and perturbation part are assumed to be continuous from the right.
3Similar results can be obtained if

R
t0+T

t0
k~�k � C + �0T holds.

4If the number of discontinuities is �nite, we may consider a sequence ftjg padded with points at in�nity.
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controllability/observability for a short time interval. As a simple example to illustrate this concept, let us

consider the plant

_x = b(t)u ; y = x

where b(t) = 1, t 2 [2n; 2n + 1), n 2 N and b(t) = �1 otherwise. Clearly, although b(t) is discontinuous, it

can be approximated within a small error in the mean-square sense resulting in an alternative description

for the plant

_x = bo(t)u+~b(t)u ; y = x

where bo is a smooth function and ~b = b�bo is small in the mean-square. For this example, the controllability

matrix of the nominal plant is Qc(t) = bo(t) and must be equal to zero at some time instants tj since bo(t)

is continuous. This implies loss of uniform controllability at those time instants and consequently loss of

strong controllability in an interval around each tj .

Thus, in our formulation, we admit a quite general class of plants with piecewise Lipschitz continuous

parameters, including cases where smoothness and/or strong controllability/observability are lost during

short time periods. Moreover, inside each interval (tj ; tj+1) the nominal part of the plant [Ao; bo; co] satis�es

Assumptions 3.1{3.3, uniformly in j. Therefore, inside each (tj ; tj+1), the nominal plant admits an I/O

operator description of the form (3.4) or (3.5) in a piecewise sense. This enables us to extend any results

obtained for smooth parameters to the case of non-smooth ones, by expressing the e�ects of the perturbation

part [ ~A;~b; ~c] and the discontinuities at tj as a small in-the-mean-square error.

We note, however, that the stability analysis for systems with discontinuous parameters becomes con-

siderably harder since piecewise stability does not, in general, guarantee closed-loop stability unless some

additional conditions are imposed on the average frequency of the discontinuity points.5 To establish and

make this statement precise we use the following notation.

ftjg11 , a strictly increasing sequence in R+ with tj !1 as j !1;

J , a subset of the natural numbers N;

UJ(t), the characteristic function of the set
S
j2J [tj ; tj+1), de�ned as:

UJ(t) =
�

1 if t 2 [tj ; tj+1) for some j 2 J
0 otherwise

�
nJ , �nJ 2 N, the number of subintervals (tj ; tj+1) of an interval [t0; t0 + T ] for which j 2 J and the

number of transitions from an interval for which j 2 J to one for which j 62 J , respectively.6 More precisely,

for T; t0 � 0, let m, n 2 N such that t0 2 [tm; tm+1) and t0 + T 2 (tn; tn+1]. Then,

nJ =
nX

j=m

UJ(tj) ; �nJ = [1� UJ(tm)] +
nX

j=m+1

max f[UJ(tj�1)� UJ(tj)]; 0g

3.7 Lemma: Consider the system _x = A(t)x where A(t) is a matrix with piecewise continuous, UB

elements. Further, assume that there exist two positive constants k; a such that 8 j 2 J � N

k�(t; �)k � ke�a(t��) ; 8 t; � 2 (tj ; tj+1); t � �

where �(:; :) is the state transition matrix associated with A(t). Then, the system _x = A(t)x is ES with rate

��, for some constant � > 0, if there exists a constant C � 0 such that

� a

Z t0+T

t0

UJ(t) dt+ b

Z t0+T

t0

[1� UJ(t)] dt+ nJ ln(k) + �nJ ln(k
0) � ��T + C (3:9)

5This issue is of particular interest in our study where we intend to design controllers for systems with jump parameters in
a piecewise sense, i.e., design the controller as to make the closed-loop ES, inside every interval (tj ; tj+1).

6That is, consecutive intervals for which j 62 J count as one.
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8 t0 � 0, 8T � 0. 55
Proof: It su�ces to show that, under the conditions stated above, if x satis�es the ODE _x = A(t)x,

then for some constant K > 0 and for all T � 0, t0 � 0,

kx(t0 + T )k � Ke��T kx(t0)k (3:10)

Let t 2 (tj ; tj+1). If j 2 J we have that

kx(t)k � ke�a(t�tj)kx(tj)k (3:11)

On the other hand, since A(t) is UB, there exist constants k0; b such that

k�(t; �)k � k0eb(t��) ; 8t � �

Hence, if j 62 J ,

kx(t)k � k0eb(t�tj)kx(tj)k (3:12)

Further, from (3.11), (3.12) and the continuity of x(t) we obtain, grouping together consecutive intervals for

which j 62 J ,

kx(t0 + T )k � knJk0�nJ exp

"
b

Z t0+T

t0

[1� UJ(t)] dt� a

Z t0+T

t0

UJ(t) dt
#
kx(t0)k

In view of (3.9), the last inequality implies (3.10) with K = exp[C]. 22

Despite its complicated appearance, the condition of Lemma 3.7 is nothing more than an upper bound

on the average size (measure) of intervals where �(:; :) may not be exponentially decaying with rate �a and

the average number of discontinuities, such that the overall state transition matrix �(:; :) is exponentially

decaying with rate ��. This situation may arise in a control systems framework when, for example, there is

loss of strong controllability/observability of the plant state-space representation inside short time intervals.

In such a case, there may not exist a control law which internally stabilizes the plant in those intervals.

However, in view of (3.8) and in order to simplify the presentation, we may describe such a situation by an

appropriate selection of the modeled and perturbation parts of the plant. That is, without loss of generality,

we may select the nominal part of the plant to be piecewise strongly controllable and observable even if

the actual plant fails to be so and incorporate the di�erence in the perturbation part. Consequently, the

following simpler version of Lemma 3.7 is adequate for our purposes.

3.8 Corollary: The result of Lemma 3.7 holds if J = N and for some constant � > 0, there exists a

constant C � 0 such that

nJ ln(k) � (a� �)T + C

8 t0 � 0, 8T � 0. 55
Again, a condition on the average number of discontinuities is essential in order to guarantee that piecewise

ES implies ES (compared with the slowly TV case where pointwise stability implies stability). It is actually

quite straightforward to construct counter-examples of piecewise LTI systems which are ES inside every

interval but overall unstable, if there is no constraint on the number of discontinuities. A typical and quite

illustrative example is given below.

3.9 Example: Consider the system

_x = A(t)x ; A(t) =

�
A0 if t 2 [2k; 2k + 1)
A>0 if t 2 [2k + 1; 2k + 2)

; k = 0; 1; . . .
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Figure 3.1: Example of instability, occuring when the average number
of discontinuities is too large.

where

A0 =

� �1 5
0 �1

�
Applying Floquet analysis on the above system, we have that

x(2k) =
�
eA

>

0 eA0

�k
x(0)

and the eigenvalues of the matrix eA
>

0 eA0 are easily found to be 0:005 and 3:649. Hence the system is

unstable, despite the fact that it is ES inside every interval (k; k + 1).

At this point, it is very interesting to perform a simulation of the response of this system. As shown

in Fig. 3.1, starting with initial conditions x(0) = [1; 1]>, inside every interval (k; k + 1), one of the states

decays as e�t+k while the other decays as e�t+k and (t� k)e�t+k. Since, for small positive values of (t� k),

the latter is an increasing function of (t�k), the corresponding state increases in magnitude at the beginning

of every interval. Thus, if the frequency of discontinuities is too high, the decrease in the magnitude of the

states inside each interval may be insu�cient to counteract the magnitude increase at the beginning of the

interval and instability may occur. 55

3.4 Parametric Models of TV I/O Operators

An issue of particular interest in the case of plants with partially known parameters is the design of parameter

estimation algorithms, used to identify an unknown I/O operator on-line, from I/O measurements. Such

estimators, discussed in more detail in Chapter 6, rely on the ability to describe the unknown operator in

an inner product form between a vector of unknown parameters and a vector of signals, often referred to

as the regressor vector, which are available for measurement. In this section, our objective is to establish a

basic parametrization of certain types of I/O operators having the inner product form that is convenient for

parameter estimation.

The following lemma gives a parametric model of a plant in the PL-form that allows for the identi�cation

of the plant I/O operator via parameter estimation.

3.10 Lemma: Consider a plant described by a strictly proper I/O operator D�1
p (s; t)Np(s; t), i.e.,

Dp(s; t)[yp] = Np(s; t)[up] (3:13)

where (up; yp) is the I/O pair, Dp(s; t); Np(s; t) are PDO's in the right form with piecewise continuous, UB

coe�cients and Dp(s; t) is monic of degree n. Then there exists �� : R+ 7! R2n such that, with zero initial

conditions,

yp = G(s)[up�1�] +G(s)[yp�2�] (3:14)
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where

G(s) = q>(sI � F )�1 ; �>� = [�>1�; �
>
2�] (3:15)

F is an n� n Hurwitz matrix and (q>; F ) is a completely observable pair. 55
Proof: Let DF (s) = det(sI � F ) and operate on (3.13) from the left with D�1

F (s). Then,

yp = D�1
F (s)Np(s; t)[up] +D�1

F (s)fDF (s)�Dp(s; t)g[yp]

Noting that deg[DF (s) � Dp(s; t)] � n � 1, a realization of the above equation as in Example 2.37 yields

(3.14) and (3.15).

At this point it is worthwhile to perform the state-space analog of this proof. Consider the state-space

realization of (3.13) as in Example (2.37):

_x = A(t)x+ b(t)up ; yp = c>x (3:16)

where A(t) contains the coe�cients of Dp(s; t) in the left-companion form, b(t) contains the coe�cients of

Np(s; t) and c> = [1; 0; . . . ; 0]. Further, suppose that F is in the left companion form. (There is no loss

of generality in such an assumption since (q>; F ) is a completely observable pair and hence we can always

�nd a (constant) similarity transformation to put it in the left companion form.) We may therefore rewrite

(3.16) as

_x = A(t)x+ b(t)up + �(t)yp � �(t)c>x

yp = c>x

where �(t) is arbitrary. Since (c>; A(t)) is uniformly observable (Theorem 2.31), there exists �(t) such that

A(t) � �(t)c> = F ; in fact it is quite straightforward to construct � component-wise by taking �i(t) =

Ai1(t)� Fi1, with obvious notation. Using again Example 2.37 and noting that I/O operators are invariant

under similarity transformations the proof follows. Finally, it is interesting to observe that a by-product

of this analysis is that any initial conditions of the original system are transferred to the modi�ed one,

indicating that for arbitrary initial conditions, (3.14) is still valid modulo an exponentially decaying term,

depending on the initial conditions. 22

We should note that the direct analog of this result for plants in the PR-form is not convenient for

estimation purposes since in that case the parametric model contains an internal signal which, in general, is

not available for measurement.

A generalization of Lemma 3.10 to systems with the general state-space description (3.8) is given below.

3.11 Lemma: Consider an LTV plant satisfying Assumptions 3.4{3.6. Then, for any completely observable

n-dimensional pair (q>; F ) there exists a UB, piecewise smooth vector �� = [�>1�; �
>
2�]

>, �1�; �2� : R+ 7! Rn

with possible discontinuities at ftjgj such that the plant is described by the state-space model

_xF = FxF + �1�(t)up + �2�(t)yp + ~AF (t)xF +~bF (t)up

xF (t
+
j ) = �P (tj)xF (t

�
j )

yp = q>xF + ~c>F (t)xF (3.17)

with the same internal stability properties as the original plant and such that:

� ~AF ;~bF ; ~cF are UB, piecewise continuous matrices for which there exist constants C;K > 0 such thatZ t0+T

t0

j~�j2 � C +K�0T

for all t0; T � 0 and �0 as in Assumption 3.4.
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� �P is a UB piecewise smooth matrix with UB inverse and derivative everywhere except at t = tj ,

j = 1; 2; . . .. Furthermore, as the size of jumps of the nominal plant parameters and their derivatives

approaches zero, j �P (tj)� Ij and j��(t+j )� ��(t�j )j approach zero.

where t+; t� are used to denote right and left limits respectively. It follows that yp can be expressed as

yp(t) = fG(s)[up�1�]g(t) + fG(s)[yp�2�]g(t)
+fG(s)[ ~AFxF +~bFup]g(t) + ~c>F (t)xF (t)

+
X
tj�t

q>�F (t; tj)[ �P (tj)� I]xF (t
�
j ) + q>�F (t; t0)xF (t0)

where G(s) = q>(sI � F )�1 and �F (:; :) is the state transition matrix associated with F .

Further, for any � > 0 there exist �0; �
0
0 > 0 such that, for any � 2 [0; �0), �

0 2 [0; �00) and for as long

as (up)t 2 L1, xF =m
1=p
p is UB, where mp is a normalization signal as in Lemma 2.56 with u = [up; yp]

>.
55

Proof: Since the nominal part of the plant is strongly observable in all intervals (tj ; tj+1), uniformly

in j, there exist (Lyapunov) similarity transformations Pj(t) putting the nominal plant in its observable

canonical form inside (tj ; tj+1) and such that Pj(t); P
�1
j (t) and _Pj(t), t 2 (tj ; tj+1) are UB with respect to

t and j. Hence, the plant is described by

_xo = Ao(t)xo + bo(t)up + ~Ao(t)xo +~bo(t)up ; t 2 [tj ; tj+1)

yp = c>o x+ ~c>o (t)x (3.18)

with boundary conditions arising from the continuity of the state vector of the original state-space description

of the plant7

xo(tj) = P�1j (t+j )Pj�1(t
�
j )xo(t

�
j )

and [Ao(t); bo(t); co] being in the observable canonical form. Since Pj ; P
�1
j are UB, Assumption 3.4 implies

that the perturbation part in (3.18) also satis�esZ t0+T

t0

j~�j2 � C +Ko�
0T

for some C;Ko > 0, for all t0; T � 0.

Further, there exists a possibly discontinuous vector �o such that Ao(t) � �o(t)co is the left-companion

matrix which is similar to F . Thus, with (q; F ) being an n-dimensional completely observable pair, (3.18)

can be written in the form of (3.17) after a (constant) similarity transformation, xo = PFxF where

�1� = P�1F bo ; �2� = P�1F �o

~AF = P�1F [ ~A� �o~c
>
o ]PF ; ~bF = P�1F

~bo ; ~c
>
F = ~c>o PF

and
�P (t) = P�1F P�1j (t+)Pj�1(t�)PF ; t 2 [tj ; tj+1)

It is now quite straightforward to integrate (3.17) and obtain the expression for yp given above. Notice

that as the discontinuities in the nominal plant parameters and their derivatives vanish, Pj(t
+
j ) approaches

Pj�1(t�j ) and hence, the discontinuities in �� vanish and �P approaches the identity matrix.

7Notice that the state of the canonical form (3.18) may be discontinuous.
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Finally, for the last part of the lemma, consider the state-space description of the plant (3.8). Since

(co; Ao) is strongly observable inside every (tj ; tj+1), uniformly in j, it follows that for any �0 > � there exists

a piecewise smooth, UB �0 such that the STM �0(:; :) of

_x = [Ao(t)� �0(t)c>o (t)]x

satis�es

j�0(t; �)j � ke��
0(t��) ; 8 t � � 2 (tj ; tj+1); 8 j

where k is a positive constant. For example, such a �0 can be constructed as in the �rst part of the proof.

Hence, choosing �00 2 (�; �0), Corollary 3.8 and Assumption 3.6 imply that there exists �0 > 0 such that for

all � 2 [0; �0) �
0(:; :) is exponentially decaying with rate at most ��00. Further, rewriting (3.8) as

_x = [Ao(t)� �0(t)c>o (t)]x+ [ ~A(t)� �0(t)~c>(t)]x+ [b(t) + ~b(t)]up + �0(t)yp

yp = c>o (t)x+ ~c>(t)x (3.19)

and invoking Lemma 2.45 and Assumption 3.4 we have that there exists �00 > 0 such that for all �0 2 [0; �00),
the system

_x = [Ao(t)� �0(t)c>o (t)]x+ [ ~A(t)� �0(t)~c>(t)]x

is ES with rate at most ��. Since the plant is described by a bounded state-space representation, (yp)t is

in L1 for as long as (up)t 2 L1. Hence, from Lemma 2.56 and Corollary 2.52 we obtain that x=m
1=p
p is

UB which, in turn, implies that xF =m
1=p
p is UB since xF (t) = P�1F P�1j (t+)x(t) inside [tj ; tj+1) and P�1j (t),

t 2 (tj ; tj+1) is UB, uniformly in j. (Also compare with Corollary 2.57). 22

Lemmas 3.10 and 3.11 show that plants satisfying Assumptions 3.4{3.6 or plants with I/O operator

D�1
p (s; t)Np(s; t) can be described by a parametric model of the form

yp(t) = fG(s)[up�1�]g(t) + fG(s)[yp�2�]g(t) + ~�(t) (3:20)

where ~� is a term appearing in the non-smooth parameter case and whose magnitude depends on the

perturbation parameters �; �0. The properties of ~� are discussed in some more detail in Chapter 6. Although

the plant parametrization (3.20) is not in the inner product form required for the application of standard

gradient-based estimators, it can be readily modi�ed invoking the `Swapping' Lemma 2.59 or Corollary 2.60

to yield

yp = fG(s)[up]; G(s)[yp]g�� + � + ~�
�
= w>�� + � + ~� (3.21)

where, w> = fG(s)[up]; G(s)[yp]g is a vector of signals which can be constructed from purely I/O information.

When �� is absolutely continuous, an expression for � is directly obtained from Lemma 2.59 as

� = G(s)fG0(s)[up�1]
_̂
��g+G(s)fG0(s)[yp�2]

_̂
��g (3:22)

where G0(s) = (sI � F )�1. When �� contains a jump function, an analogous expression for �, with an

additional term describing the e�ect of the jumps, is obtained from Corollary 2.60.

In a typical parameter estimation problem, the vector �� is unknown but up; yp are continuously measured

and therefore their �ltered values w can be constructed and used to estimate ��. Of course, since �� is

unknown, �; ~� are also unknown and cannot be constructed from available measurements. Therefore, �; ~�

must be treated as `noise' or modeling error when the parametrization (3.21) is used to estimate �� and

they must be small in some sense in order for the estimation to be successful. As shown in Chapter 6, ��
and consequently the unknown I/O operator of the plant in the PL form can be identi�ed within a small

mean-square error in an I/O sense, provided that
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� the absolutely continuous part of ��, say �s�, is slowly varying in the mean,

� the average number of discontinuities in an interval, �, is small and

� the parameter �0, characterizing the perturbation part of the plant, is small.

Since in typical applications the plant parameters contain very few discontinuity points inside long time

intervals, the most critical parameter of the three is expected to be the speed of variation of �s�. It is

therefore desirable to avoid the estimation of any a priori known fast-varying components of �s�, for example,

by decomposing the parameter variations into a `structured' and an `unstructured' part; such a decomposition

of �s� is discussed in the following subsection.

3.4.1 Structured Parameter Variations

Parametric models of the form (3.21) have been widely used for the on-line estimation of the unknown

parameters �� |resulting in the identi�cation of the unknown plant I/O operator| in the LTI as well as

the LTV case [G.S.84, N.A.89, S.B.89, M.G.88, Kre.86, A.J.83]. Naturally, the performance of a parameter

estimator based on the linear model (3.21) depends heavily on the size of the `noise' terms �; ~� as well as

the speed of variations of the unknown parameters ��. It is therefore of interest to exploit any available a

priori knowledge about the form or structure of variations of the unknown parameters in order to decrease

the size of the e�ective perturbation and, in particular, the speed of variation of the absolutely continuous

part of the unknown parameters. This idea is illustrated in the following example.

3.12 Example: Let us assume that, for the plant of Lemma 3.10, the time variations of ��(t) are of
the form

��(t) = �̂� sinw0t (3:23)

where the frequency w0 is constant and known and �̂� is an unknown but constant vector. If we parametrize

the plant according to (3.21), we obtain

yp = w>�� + �

where �, given by (3.22), is an unknown signal. It now follows that if we were to use the last equation as a

parametric model to estimate ��, we should require w0 to be small in order for the estimation to be successful.

Note that in this approach, we e�ectively treat �� as a constant, making no use of the a priori available

knowledge about its structure of variation. On the other hand, using the available a priori information on

the time-dependence of �� in (3.20) we obtain

yp = G(s)[up�̂1� sinw0t] +G(s)[yp�̂2� sinw0t]

which, by virtue of the Swapping Lemma, becomes

yp = G(s)[up sinw0t]�̂1� +G(s)[yp sinw0t]�̂2�

= w>�̂� (3.24)

where w> = fG(s)[up sinw0t]; G(s)[yp sinw0t]g is a signal which can be constructed from available mea-

surements and �̂� = [�̂1�; �̂2�] is unknown but constant. Equation (3.24) is now of the same form as the

parametrizations obtained in the LTI case without modeling errors or noise. It is therefore possible, using

standard estimation techniques, to estimate �̂� within an asymptotically converging to zero error (in an I/O

sense). Once the estimate of �̂� is available, we can obtain the estimate of ��(t) from (3.23). Note that,

in contrast to the previous case where the parametric model (3.21) was used for estimation, the parametric

model (3.24) results in zero estimation error for any value of w0 (i.e., slow or fast parameter variations).

(For details see Chapter 6, Theorem 6.6.) 55
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Let us now generalize the previous example by assuming that the plant parameters and consequently

��(t) are decomposed as

��(t) = �(t)�̂�(t) (3:25)

where �̂�(t) is the unknown, or `unstructured' part of ��(t) of dimension l 2N and �(t) is a known matrix

with piecewise smooth UB elements. The 
exibility of (3.25) in describing fully or partially structured or

even unstructured parameter variations is demonstrated by the following simple examples.

1. `Fully structured variations': Assume that ��(t) = A0 + sin(wt)A1 where w is known and A0; A1 are

unknown constants. Then,

�(t) = [I; sin(wt)I] ; �̂� = [A>0 ; A
>
1 ]
>

2. `Partially structured variations': Assume that ��(t) = A0+ sin[(w+ �)t]A1+ f(t)A2 where w is known,

f(t) is an unknown function and �; A0; A1; A2 are unknown constants. Then,

�(t) = [I; sin(wt)I; cos(wt)I]

�̂�(t) = [A>0 + f(t)A>2 ; cos(�t)A
>
1 ; sin(�t)A

>
1 ]
>

3. `Unstructured variations': Assume that ��(t) = A0f(t) where both A0; f(t) are unknown. Then,

�(t) = I ; �̂�(t) = ��(t)

3.13 Remark: Notice that equation (3.25) can be augmented by an additional term E�(t) to describe
the unknown fast, but small in amplitude, part (`jitter') of the variations of ��(t), i.e.,

��(t) = �(t)�̂�(t) + E�(t)

where kE�(t)k is small or small in the mean. This description may be useful in applications since, by treating

E�(t) as parameter noise, we can avoid the use of high-dimensional �̂�(t) in modeling the time-variations

of ��(t). However, for reasons of clarity and ease of exposition, the discussion of this case is omitted as it

presents no additional di�culty in the subsequent analysis. 55
By incorporating the knowledge of �(t) in the regressor vector, we may estimate �̂�(t) �rst and then

obtain the estimate of ��(t) as �(t) = �(t)�̂(t) where �̂(t) is the estimate of �̂�(t) at time t. The bene�t of

this approach becomes clear when we consider the case where the parameters to be estimated, contain fast

but known TV elements. Due to the �nite speed of adaptation, a general adaptive law is not expected to

yield a small prediction error (w>(t)�(t)� y(t)) when �� is fast TV. However, if a structured decomposition

of the parameters succeeds in achieving a slowly varying �̂�, then, estimating the slowly TV component only,

it is possible to ensure the smallness of the prediction error, despite the fact that the original parameters

may be fast TV.

On the other hand, some caution should be exercised when the structured parameter variations approach

is used. One of the shortcomings of this approach is that, in general, the relation between the actual system

parameters and the vector �� is highly nonlinear, making the derivation of the exact structure of �� from

the structure of the system parameters di�cult. For example, consider an LTV system with I/O operator

D�1
p (s; t)Np(s; t) to be identi�ed. From Lemma 3.10, it follows that the variations of �� would have the same

structure as the coe�cients of Dp(s; t) and Np(s; t). These coe�cients, however, do not necessarily represent

physical quantities and, in general, would be nonlinearly related to parameters with physical meaning through

a similarity transformation. An additional issue of concern is that although, in principle, the speed of the

structured part can be arbitrary, practical considerations put an upper bound on the derivatives of � for
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which the results make sense. The reason is that, in general, the sensitivity of the prediction error bounds on

the practically unavoidable uncertainties in � increases as the derivatives of � become larger. Consequently,

if we allow � to vary arbitrarily fast, we must also require that it is known with a practically unreasonable

degree of accuracy. Thus, it should be emphasized that the intended purpose of the structured parameter

variations approach is to reduce, rather than eliminate, the e�ective size of the perturbation introduced by

the TV nature of the estimated parameters.



Chapter 4

Model Reference Control

4.1 Introduction

A class of feedback control strategies that has attracted considerable interest in the area of control systems

and particularly in adaptive control is Model Reference Control (MRC). The principal idea behind MRC is

to design the control law so as to achieve some prescribed tracking performance characteristics. In a typical

MRC approach, a reference model is selected describing the desired I/O characteristics of the closed-loop

plant, from the reference or command input to the plant output. The control law is then designed so that

the I/O operator of the closed-loop plant, from the reference input to the plant output, matches the I/O

operator of the reference model.

In the case of LTI plants, the MRC approach e�ectively amounts to a pole and zero placement design

whereby feedback is used to place the plant poles at the desired locations while the plant zeros are cancelled

and replaced by the desired zeros. For such a design to be meaningful and feasible, both the plant and

the reference model must meet certain conditions. First, from an internal stability point of view, any

cancellations must occur in the left half-plane, something that is often referred to as the minimum phase

plant condition (or assumption). Second, from a realization/implementation point of view, the controller

I/O operator should be at least proper, something that translates into a matching condition between the

relative degrees of the plant and the reference model.

In this chapter we extend the MRC assumptions and design techniques, which are well understood in

the LTI case, to the more intricate case of LTV plants. In particular, we study the design of MRC for

LTV plants with the objective of forcing the LTV closed-loop plant to have the same (or approximately

the same) I/O operator as a, typically LTI, reference model. We begin with Section 4.2 where we state

the control problem for a class of LTV plants with smooth parameters, de�ned by a set of assumptions

which are an extension of the LTI MRC assumptions. In Sections 4.3 and 4.4 we design and analyze MRC

schemes meeting the MRC objective. The special case of slowly TV plants is treated in Section 4.5 where

we study the applicability of pointwise LTI techniques in the design of (approximate) MRC's. In Section

4.6 we consider a more general class of plants with non-smooth and discontinuous parameters and establish

that the MRC design of Sections 4.3 and 4.4 can be extended to this case as well, at the expense of some

performance deterioration. We conclude this chapter with Section 4.6 where we present simple examples

and simulations illustrating the design and performance of MRC schemes in the LTV case.

65
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4.2 Problem Statement

Consider a SISO LTV plant described by the state-space equations

_xp = A(t)xp + b(t)up

yp = c>(t)xp (4.1)

and satisfying Assumptions 3.1{3.3.

The MRC objective is de�ned as follows:

Determine a control input up such that the closed-loop plant is internally stable and the plant output yp

tracks the output ym of the LTI reference model1

ym =Wm(s)[r] = kmD
�1
m (s)Nm(s)[r] (4:2)

for any UB, piecewise continuous reference input signal r.

In order to design a control law that meets the MRC objective, we need to impose certain additional

conditions on the plant and the reference model. For reasons of convenience, these conditions are stated on the

PDO factorization of the plant, rather than its state space descripion. Note, however, that such a statement

is not restrictive since under Assumptions 3.1{3.2 the plant admits a left or right PDO factorization.

Our �rst condition concerns the high-frequency gain of the plant, as de�ned in Section 3.2, which should

be bounded away from zero. Inherent in this condition is also the requirement that the relative degree of

the plant should be constant.

4.1 Assumption: The sign of the high-frequency gain, kp(t), is constant and kp(t) is smooth, UB and

bounded away from zero. Without further loss of generality we assume that, there exists a constant c

such that

kp(t) � c > 0

8 t � t0.

By virtue of Assumptions 3.1{3.2 and 4.1, the I/O operator of the plant (4.1) admits PDO factorizations

in the right form (PR), i.e.,

yp = kp(t)Np(s; t)D
�1
p (s; t)[up] (4:3)

or the left form (PL), i.e.,

yp = D�1
p (s; t)Np(s; t)kp(t)[up] (4:4)

where Dp(s; t); Np(s; t) are monic PDO's with UB coe�cients and of constant degree, denoted by n;m

respectively. Furthermore, in (4.3) Dp(s; t); Np(s; t) are strongly right coprime while in (4.4) Dp(s; t); Np(s; t)

are strongly left coprime PDO's in [t0;1).

Our second condition on the plant concerns the stability properties of N�1
p (s; t).

4.2 Assumption: N�1
p (s; t) is an ES PIO with rate bounded from above by ��, for some � > 0

In other words, the state transition matrix associated with the di�erential equation Np(s; t)[x] = 0, say

�N (:; :), is assumed to satisfy k�N (t; �)k � ke�a(t��), for some positive constants k; a and all t � � � t0.

The di�erential equation Np(s; t)[x] = 0 describes what is often referred to as the zero dynamics of the plant.

Note that Assumption 4.2 is the LTV generalization of the minimum phase condition in the LTI MRC case.

Further, we assume that the reference model is selected to satisfy:

1The selection of the reference model as an LTI one is done for the simplicity of the analysis and design convenience; LTV
reference models, satisfying similar assumptions, can be accommodated just as well.
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4.3 Assumption: Dm(s) and Nm(s) are monic and Hurwitz (i.e., their inverses are ES PIO's) with

deg[Nm(s)] � deg[Dm(s)]� 1.

4.4 Assumption: Wm(s) is designed so that deg[Dm(s)] � deg[Dp(s; t)], deg[Dm(s)] � deg[Nm(s)] =

deg[Dp(s; t)] � deg[Np(s; t)](= n �m) and km > 0, i.e., the LTV plant and the reference model have

the same (constant) relative degree n� �
= n�m.

In the subsequent sections and chapters, we refer to Assumptions 4.1{4.4 as the MRC assumptions.

The requirement that the plant output yp tracks the output of the reference model ym for any UB

reference input r implies that the control input up should be chosen such that the closed-loop I/O operator

r 7! yp is equal to the I/O operator of the reference model. In the mathematical framework of Chapter 2,

this problem can be cast in an elegant way as the solution of a Diophantine equation. The design and I/O

properties of such an MRC law are presented in the following section.

4.3 TV MRC Design

Employing the techniques of [DLMS.80] we note that for the PR plant, (4.3), a stabilizing controller is

described by an I/O operator with a left factorization

up = N�1
2 (s; t)N1(s; t)[yp] (4:5)

for some PDO's N1(s; t); N2(s; t). Furthermore, a controller with I/O operator

up =
km
kp(t)

N�1
2 (s; t)N1(s; t)[yp] (4:6)

can also be used to stabilize the plant (4.4) in the PL-form by selecting

N2(s; t) =
1

km
~N2(s; t)Np(s; t)km:

With this selection, the PDO Np(s; t)kp(t) is directly cancelled by the controller PIO N�1
2 (s; t); such a

cancellation is permitted since N�1
p (s; t) is assumed to be exponentially stable and kp(t) is bounded away

from zero. Thus, the plant I/O operator becomes e�ectively D�1
p (s; t), which belongs to the class of plants

described by a PR-form and can therefore be stabilized by a controller with a left factorization. In both cases,

we must avoid the appearance of the controller PDO N1(s; t) as a PDO in the closed-loop I/O operator.

This is achieved by writing the controller I/O operator in a proper stable factorization form as

up = N�1
2 (s; t)D(s)D�1(s)N1(s; t)[yp]

where D�1(s) is ES and deg[N1(s; t)] � deg[D(s)] � deg[N2(s; t)] and then implementing N�1
2 (s; t)D(s) in

the forward path and D�1(s)N1(s; t) in the feedback path.

The above discussion motivates the design of a MRC law as given by the following lemma.

4.5 Lemma: Consider the LTV plant (4.3) or (4.4) and suppose that Assumptions 4.1{4.4 hold.

Further, consider the control input de�ned by

up = c0(t)N
�1
2 (s; t)D(s)

�
r +D�1(s)N1(s; t)yp

�
(4:7)

where D(s) is a monic, Hurwitz PDO2 of degree n � 1 and such that Nm(s) is a right factor of D(s), i.e.,

D(s) can be expressed as Dz(s)Nm(s) for some Hurwitz Dz(s); Ni(s; t); i = 1; 2 are PDO's of degree n� 1

2That is, D�1(s) is an ES PIO.
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Figure 4.1: The TV MRC closed-loop plant.

with N2(s; t) monic and c0(t) is a scalar function of time. Then, the controller parameters, i.e., c0(t) and

the coe�cients of Ni(s; t), can be selected so that the closed-loop I/O operator Sry : r 7! yp is BIBO stable

and equal to the reference model I/O operator Wm(s); furthermore, the controller parameters are smooth,

UB functions of time and can be calculated by solving the algebraic design equations

N2(s; t)c
�1
0 (t)Dp(s; t)�N1(s; t)kp(t)Np(s; t) = Dz(s)Dm(s)c0(t)

�1Np(s; t)

for a plant with I/O operator in the PR-form (4.3), or

~N2(s; t)Dp(s; t)� kmN1(s; t) = kmDz(s)Dm(s)k
�1
m

N2(s; t) = k�1m ~N2(s; t)Np(s; t)km

for a plant with I/O operator in the PL-form (4.4). 55
Proof: In Appendix IV.

Lemma 4.5 establishes the existence and provides a design procedure of a MRC law with smooth UB

parameters which achieves the equality of the closed-loop plant and reference model I/O operators. Another

important consideration in the design of control systems is the BIBO stability and I/O properties of the

closed loop with respect to external inputs entering the loop at any break point between the controller and

the plant, as shown in Fig. 4.1. Such external inputs are often used to model the e�ect of input disturbances

(du), output disturbances (dy), sensor noise (dn) as well as e�ects of initial conditions. The properties of

the I/O operators from any of these external inputs to any closed-loop signal, often referred to as sensitivity

operators, are discussed in the following lemma.

4.6 Lemma: Consider the closed-loop system shown in Fig. 4.1 for which c0(t), N1(s; t), N2(s; t) are

designed as in Lemma 4.5. Then the I/O dependence of up, yp on the external signals r, du, dy, dn is

described by �
up
yp

�
=

�
Sru Suu Syu Snu
Sry Suy Syy Sny

�2664
r
du
dy
dn

3
775 (4:8)

where, omitting the PDO/PIO arguments for simplicity, the various sensitivity operators are given by:

1. For plants in the PR-form, (4.3), Sru = [GR
p ]
�1Wm, Sry =Wm and

Sru = DpD
�1
c D ; Sry = kpNpD

�1
c D

Suu = �1 +DpD
�1
c N2c0 ; Suy = kpNpD

�1
c N2c

�1
0

Syu = Snu = DpD
�1
c N1 ; Sny = Syy � 1 = kpNpD

�1
c N1

Dc = N2c
�1
0 Dp �N1kpNp = DzDmc

�1
0 Np (4.9)
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2. For plants in the PL-form, (4.4), Sru = [GL
p ]
�1Wm, Sry =Wm and

Sru = k�1p N�1
p DpD

�1
c kmD ; Sry = D�1

c kmD

Suu = �1 + k�1p N�1
p DpD

�1
c

~N2Npkpc0 ; Suy = D�1
c

~N2Npkp

Syu = Snu = k�1p N�1
p DpD

�1
c kmN1 ; Sny = Syy � 1 = D�1

c kmN1

Dc = ~N2Dp � kmN1 = kmDzDmk
�1
m ; N2 = k�1m ~N2Npkm (4.10)

Furthermore, there exists �� > 0 which in general depends on the stability margin of Dm(s), D(s) and

Np(s; t) such that for any � 2 [0; ��), and any initial time t0, the various sensitivity operators are Lp(�)-

stable, p 2 [1;1], uniformly in t0; also, for the strictly proper sensitivity operators, the corresponding gp;�

gains exist and are �nite, uniformly in t0. 55
Proof: In Appendix IV.

At this point it must be emphasized that, although the MRC objective is originally motivated as a

tracking problem, its practical application should also take into account the e�ect of possible disturbances

and modeling errors on the plant output. As shown in Fig. 4.1, these disturbance e�ects are modeled by the

external inputs du, dy, dn and their contribution to the total closed-loop response is completely determined

by the respective sensitivity operators. These e�ects can be reduced, for example, by an appropriate selection

of the reference model and the auxiliary �lter to partially shape the appropriate sensitivity operators, for

which Wm(s) and D(s) act as `tuning' parameters (eqns. (4.9) and (4.10)). Tracking speci�cations can

then be met by pre�ltering the reference signal. Some additional sensitivity-shaping techniques are brie
y

discussed below where we consider the design of higher order TV MRC's which provide some additional

degrees of freedom. We refer to such controllers as over-parametrized TV MRC's.

4.3.1 Design of Over-Parametrized TV MRC's

A direct consequence of Corollary 2.16 is that the TVMRC solution given by Lemma 4.5 is unique. Its unique-

ness, however, relies heavily on our choice to design a TVMRC for which deg[N2(s; t)] = deg[N1(s; t)] = n�1.
This choice is by no means necessary and, in fact, a variety of higher order TV MRC's can be produced,

all of them satisfying the basic MRC objective as stated above. Despite this obvious disadvantage due to

the increased order and complexity, such a TV MRC may have some important advantages in applications,

resulting from an additional 
exibility of shaping its sensitivity operators to attenuate external disturbances

and improve its robustness properties with respect to modeling errors. In the following we brie
y discuss

this issue by means of two examples.

4.7 Example: Design of a Strictly Proper TV MRC:

In this example we consider the design of a TV MRC whose I/O operator N�1
2 (s; t)N1(s; t): yp 7! up has

relative degree ` � 1. Such a design can be obtained as a direct extension of Lemma 4.5 by choosing

� deg[N2(s; t)] = deg[D(s)] = n+ `� 1;

� deg[N1(s; t)] = n� 1

where, as usual, n = deg[Dp(s; t)]. While it is straightforward to verify that the results of Lemmas 4.5 and

4.6 are still valid |taking of course into account the di�erent degrees of N2(s; t) and D(s)| Corollary 2.16

shows that this TV MRC solution is unique for any �xed ` � 0.

Among the advantages of a strictly proper TV MRC is an improved attenuation of high-frequency sensor

noise, as it can be seen from the expressions for the sensitivity operator Sny in (4.9) and (4.10). Furthermore,

such a design is of particular interest in the adaptive control case, where it contributes to the simpli�cation

of the analysis and possibly improves the closed-loop robustness properties. 55
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4.8 Example: Shaping the Sensitivity Operators:

Let us consider an LTV plant in the PR-form (4.3)3 for which a TV MRC has been designed as in Lemma

4.5. Following the analysis of [DLMS.80], this basic TV MRC can now be used to derive a class of higher-

order controllers which satisfy the same MRC objective and, in addition, allow some 
exibility in shaping

the characteristics of a closed-loop sensitivity operator.

Omitting the arguments for simplicity, let V;W;D0; N0 denote PDO's with UB coe�cients such that

� deg[V ] > deg[W ];

� V is a monic PDO and V �1 is ES;

� D0 is monic and N0Dp +D0kpNp = 0 in R+ (the existence of D0; N0 is guaranteed by Assumptions

3.1{3.3 which imply the strong right coprimeness of Dp, kpNp);

Further, consider the control law

up = c0N
�1
x V D[r + (V D)�1Nyyp]

where

Nx = V N2 +WN0c0 ; Ny = V N1 �WD0

where N2, N1 and D are as in Lemma 4.5. It is quite straightforward to show that the results of Lemma

4.6 are valid for this control law as well, provided that in the expressions (4.9) we replace N2; N1; D;Dz

by Nx; Ny; V D; V Dz respectively. Hence, Sry = Wm(s) and since V �1 is an ES PIO, this control law

also satis�es the MRC objective. It does, however, introduce additional degrees of freedom in the TV MRC

solution (namely the arbitrary PDOW ) which can be used to alter the properties of the sensitivity operators,

other than Sry and Sru.

Suppose, for example, that in addition to the TV MRC objective we would like to reject output distur-

bances dy for which an internal model is available. That is, dy satis�es the di�erential equation L(s)[dy] = 0;

typical examples are constant disturbances (dy = const:, L(s) = s) or sinusoids (dy = sin(w0t + '),

L(s) = s2 + w2
0). For this purpose, we may select W to have degree deg[L] � 1 and satisfy a Diophan-

tine equation of the form

XL+WD0 = V N1 + V DzDm=km

where X is some PDO of appropriate degree. It follows that this equation has a solution for W and X

with UB coe�cients provided that D0 and L are strongly right coprime PDO's. Under this condition, the

sensitivity operator Syy in (4.9) takes the form

Syy = kmD
�1
m D�1

z V �1XL :

Thus, the contribution of dy on the output, given by Syy[dy], is exponentially decaying to zero.

The above procedure is nothing more than the TV version of the so-called Internal Model Principle (IMP)

design which is frequently used to shape the closed-loop sensitivities in the LTI case. Also notice that in

this example, the IMP design was facilitated by the controller structure and the assumption that N�1
p is

ES which may not be available in a general controller design. (For additional comments, see also the next

chapter where an IMP design for PL plants is considered.) 55
In our development and study of the TV MRC problem so far we have dealt with only the I/O operator

properties of the closed-loop plant, having tacitly assumed that all initial conditions are equal to zero. To

account for arbitrary initial conditions in the closed-loop response we �rst need to specify the structure of

the controller realization and then invoke Lemma 2.35 to establish the internal stability of the closed-loop

plant. This problem is discussed in the following section.

3Similar techniques can be used for PL-plants, (4.4), as well.
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4.4 Realization of the TV MRC and Internal Stability of the

Closed-Loop Plant

The �nal issues to be resolved in the MRC problem for LTV plants, as posed in the previous section, are

the state-space realization of the TV MRC compensators and the internal stability of the closed-loop plant.

As mentioned above, the overall TV MRC scheme consists of two compensators, a cascade and a feedback

one, with respective I/O operators c0(t)N
�1
2 (s; t)D(s) and D�1(s)N1(s; t). The realization of the two I/O

operators in state-space follows the guidelines of the Examples 2.37 and 2.23. Note that the PDO's Ni(s; t),

obtained as the solution of the respective Diophantine equations are in the left form and must be converted

to the right form before realized in state-space (see Example 2.23). The state-space realization principles of

the TV MRC scheme are summarized by the following corollary.

4.9 Corollary: To realize in state-space the TV MRC scheme of Lemma 4.5 the plant output yp and

input up are used to generate a (2n� 1)-dimensional auxiliary vector ! as follows:

_!1 = F!1 + �1up ; _!2 = F!2 + �2yp ; !3 = �3yp (4:11)

! = [!>1 ; !
>
2 ; !3]

> ; � = [�>1 ; �
>
2 ; �3]

> is a (2n� 1)-dimensional parameter vector and F 2 R(n�1)�(n�1) is

a stable matrix with det(sI � F ) = D(s). The input to the plant is then taken as

up = c0(t)
�
g>! + r

�
(4:12)

where g = [q>; q>; 1]> is a constant vector such that (q>; F ) is an observable pair and c0 is a scalar

parameter. Then, there exists a control parameter vector [�>� (t); c0�(t)]
> such that the control law (4.11),

(4.12) satis�es the TV MRC objective. Further, [�>� (t); c0�(t)]
> is UB and at least once di�erentiable with

UB derivative, provided that the plant parameters are UB and possess a su�ciently large but �nite number

of UB derivatives. 55
Proof: In Appendix IV.

Given the above realization of the controller, we are now in a position to describe the internal stability

properties of the closed-loop plant. This result is a direct consequence of Lemmas 2.35 and 4.6 and establishes

the well posedness of our solution to the MRC problem. That is, under the MRC assumptions, the TV MRC

meets the MRC objective and guarantees the ES stability of the closed-loop plant for all uniform realizations

of the plant and its BIBS/BIBO stability with respect to all exogenous signals and initial conditions. This

result is made precise by the following theorem.

4.10 Theorem: Under the conditions given in Lemma 4.5 and Corollary 4.9, the closed-loop plant is ES4

and, therefore, BIBS stable for any external UB input. Furthermore, there exist constants c; a > 0 such that

for all t0 � 0 and any bounded initial conditions set at t0, the ZIR of the closed-loop plant is bounded from

above by c exp[�a(t � t0)]; c depends on the bound of the initial conditions and a depends on the location

of the roots of D(s), Dm(s) and the rate of exponential stability of N�1
p (s; t). 55

Proof: In Appendix IV.

Needless to say, the results of the above theorem are also valid for the over-parametrized TV MRC's

presented in the previous section, provided that these controllers are realized according to Corollary 4.9; of

course, some slight di�erences appear due to the increased order of the �lters F and, for a strictly proper

TV MRC, the absence of a direct throughput in the operator N�1
2 (s; t)N1(s; t) : yp 7! up, i.e., �3 = 0.

4.11 Remark: It should be mentioned that a technical, but important, di�erence between the TV

MRC for plants PL and plants PR is that the former involves direct cancellation of the plant PDO, while in

4Note that an LTV system is ES if the corresponding state transition matrix satis�es k�(t; �)k � ke�a(t��), for some
positive constants k; a and all t � � � t0.
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Figure 4.2: The MRC structure for LTV plants (TV MRC).
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Figure 4.3: The standard (PW) MRC structure for LTI plants.

the latter the plant PDO is cancelled by the closed-loop PIO, after an appropriate solution of the Diophantine

equation. The implication of this observation is that the TV MRC state-space structure can be used in both

TV MRC or TV PPC design of PR plants by simply altering the choice of the desired closed-loop PIO. The

same is not true for plants PL for which a TV PPC design requires a di�erent controller structure. 55
Following the results of Lemma 4.5 and Corollary 4.9, the block diagram of the closed-loop plant with

the TV MRC compensator is as shown in Fig. 4.2. We note, however, that the structure of this TV MRC

scheme is essentially di�erent from the standard one, shown in Fig. 4.3, which has been developed and

widely used for LTI plants [N.V.78]. The di�erence between the two controller structures is due to the TV

nature of the plant, for which the desired controller parameters are also TV, and it is discussed below.

Using the standard MRC, the control input is generated by

_!1 = F!1 + qup ; _!2 = F!2 + qyp (4:13)

up = �>! + c0r (4:14)

where ! = [!>1 ; !
>
2 ; yp]

>; � = [�>1 ; �
>
2 ; �3]

> and F; q are as in Corollary 4.9. After some straightforward

manipulations it follows that up can be written as

up = �M2(s; t)D
�1(s)[up] + �M1(s; t)D

�1(s)[yp] + �3(t)yp + c0(t)r

= D(s)M�1
2 (s; t)

�
c0(t)r +M1(s; t)D

�1(s)[yp]
�

(4.15)
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where D(s) = det(sI �F ) and �Mi(s; t) are PDO's such that �Mi(s; t)D
�1(s) = �i(sI �F )�1q. From the last

equation, it becomes apparent that the cancellation of D(s) and D�1(s) from the I/O operator yp 7! up of

the controller is not possible in general, unless the PDO's Mi(s; t) are TI. Hence, the matching condition

cannot be expressed as a PDO equation and this controller does not satisfy the MRC objective in the general

LTV case. Moreover, additional problems arise due to the location of c0(t), when Nm(s) is not identically

one. If, however, we assume that the plant is slowly TV, then we can perform the MRC design in a pointwise

fashion that is, as if the plant were LTI at every time instant. We refer to the resulting MRC scheme as the

pointwise MRC (PW MRC). The properties of the PW MRC as well as those of the TV MRC in the special

but practically interesting case of slowly TV plants are discussed in the following section.

4.5 Slowly TV Plants

Our motivation to consider the case of slowly TV plants lies in the fact that in many practical applications the

speed of the plant parameter variations is `small' in some sense, e.g., the derivatives of the plant parameters

are small for all t 2 R+ or they are small in the mean. For reasons of clarity and ease of exposition, we

�rst discuss the case where the plant parameter variations are slow, uniformly in time. The generalization of

the results for slowly-in-the-mean TV plants or piecewise smooth plant parameters (e.g., `jump' parameter

variations), requires somewhat more involved arguments and is considered separately later in this chapter.

The intuitive idea behind the analysis of the slowly TV case is to consider a MRC law for the frozen

plant (i.e., a pointwise design) for which the resulting frozen closed-loop plant is ES and then use Lemma

2.42 to establish stability for the TV closed-loop. In other words, since ES systems are robust with respect

to `small size' state dependent perturbations, the main di�culty is to establish the appropriate conditions

which guarantee that the size of the closed-loop perturbation caused by the variation of the plant parameters

is small in some sense. We begin with the analytically simpler case of LTV plants whose parameter variations

are slow, uniformly in time. That is, we consider the LTV plant (4.1) which satis�es Assumptions 3.1{3.3

and, therefore, admits an I/O representation of the form (4.3) or (4.4). In addition, we assume that the

plant parameters, denoted by the vector �p, satisfy

4.12 Assumption: k di

dti�p(t)k � �, 8 t 2 R+, i = 1; 2; . . . for some `small' parameter � � 0.

In Assumption 4.12 the parameter � acts as a measure of the speed of variation of the plant parameters, in

terms of the maximum magnitude of their derivatives. When � = 0 the plant parameters are constant and

the plant is LTI. When � is small, the plant parameters change slowly with time and the properties of the

LTV plant can be approximated by the properties of the corresponding sequence of frozen LTI plants. For

example, for su�ciently small �, Assumption 3.2 is implied by

4.13 Assumption: The PW (frozen) controllability and observability matrices of the triple [A(t); b(t); c(t)]

are strongly nonsingular.

Note that, given a plant in the form (4.1), Assumption 4.13 is easier to check than its TV counterpart

3.2, since the construction of the PW controllability and observability matrices is identical to the LTI case

and does not involve the derivatives of the parameters. Similarly, the strong coprimeness of PDO's can

be simply checked by examining the coprimeness of the corresponding families of frozen polynomials (see

Section 2.7, Lemma 2.41). The latter can serve to check the validity of Assumption 4.13 by examining the

strong PW coprimeness of the polynomials in the frozen I/O representation of the plant, i.e., the numerator

and denominator of the PW plant transfer function.

It should be pointed out that Assumption 4.12 is quite strong in the sense that a possibly large |

but �nite| number of derivatives of the plant parameters are required to be small. Later in this chapter
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we discuss how this assumption can be replaced by much weaker versions, e.g., k _�p(t)k is small almost

everywhere or small on the mean-square sense.

Let us now consider the MRC problem for the LTV plant (4.1) satisfying Assumptions 4.12, 4.13, in

addition to 3.1, 3.3. Further, regarding the MRC Assumptions, since the plant is slowly TV, we may replace

Assumption 4.2 by its pointwise counterpart:

4.14 Assumption: The roots �i(�) of the polynomial Np � (s) 2 fNp t(s)gt satisfy
Re[�i(t)] � ��

8 t � 0, for some � > 0.

Notice that Assumption 4.14 is considerably easier to check than 4.2. The former is simply a condition

on the roots of a family of polynomials while the latter requires the calculation of the state transition matrix

associated with the di�erential equation Np(s; t)[x] = 0. Again, for su�ciently small �, if Assumption 4.14

holds then so does 4.2.

4.15 Corollary: Consider the LTV plant 4.1 satisfying Assumptions 4.12, 4.13, 3.1, 3.3, 4.1, 4.14, 4.3,

4.4; then there exists �0 > 0 such that the results of Lemma 4.5 hold for any � 2 [0; �0). 55
Proof: Straightforward from Lemma 4.5, since there exists �0 > 0 such that 8� 2 [0; �0), Assumptions

4.13, 4.14 imply 3.2, 4.2 (see Lemmas 2.33, 2.41 and 2.42). 22

4.16 Remark: It is possible to relax the strong controllability assumption to a `strong stabilizability'

one, without a�ecting the tracking performance of the TV MRC for PL plants, or with an O(�) error for PR
plants. This direction, however, is not pursued here as it imposes certain restrictive conditions on the internal

structure of the plant (e.g., existence of Lyapunov transformations, structure of uncontrollable modes) in

order to assure the internal stability of the closed-loop plant. 55
The stability and tracking properties of the standard PW MRC, designed pointwise in time, can now be

derived from those of the TV MRC and are given by the following theorem.

4.17 Theorem: Consider a slowly TV plant satisfying Assumptions 4.12, 4.13, 3.1, 3.3, 4.1, 4.14, 4.3,

4.4. Then there exists �1 > 0 such that the PW MRC (4.13), (4.14) guarantees that the closed-loop plant is

ES and, therefore, BIBS stable for any � 2 [0; �1). Furthermore, the plant output yp satis�es

yp =Wm(s)[r] + L1(s; t)[up] + L2(s; t)[yp]

where L1(s; t), L2(s; t) are strictly proper, ES I/O operators with UB parameters and rate that depends on

D�1(s), D�1
m (s). In addition, there exists �� > 0 such that for any �xed � 2 [0; ��), 
p;�(Li); gp;�(Li) � O(�)

where p 2 [1;1], i = 1; 2 and �� depends on the stability margin of D�1(s); D�1
m (s). 55

Proof: In Appendix IV.

The signi�cance of the above theorem is that for slowly TV systems, a controller can be designed and

realized in a PW sense. In other words, for the purposes of a control system design, the plant can be assumed

to be LTI at every time instant, something that simpli�es a great deal all the necessary computations, at the

expense of an O(�)-small deterioration in performance and stability margins (see also [S.A.91] for a more

general and quantitative version of this result).

4.6 Non-Smooth Parameter Variations

Let us now consider the design of a MRC for the more general LTV plant

_x = Ao(t)x+ bo(t)up + ~A(t)x+~b(t)up
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yp = c>o (t)x+ ~c>(t)x (4.16)

whose nominal and perturbation part satisfy Assumptions 3.4{3.6.

By virtue of Assumption 3.5, the nominal part of the plant admits an I/O operator with a PDO fac-

torization as in (4.3) or (4.4), inside every interval (tj ; tj+1). That is, for the nominal part of the plant

(4.16)

_xo = Ao(t)xo + bo(t)up

yp = c>o (t)xo

we may write an I/O operator in the form (4.3) or (4.4), inside every interval (tj ; tj+1). Further, let us

assume that, for the nominal part of the plant, the MRC assumptions (4.1{4.4) are satis�ed inside every

interval, uniformly in j.5 Then, the controller design procedures developed in Sections 4.3, 4.4 are applicable

and we can design a TV MRC in a piecewise sense for each interval (tj ; tj+1). Thus, the control input is

determined from (4.7) or its state-space counterpart (4.12) in a piecewise sense.6 In this section we apply

this MRC input to the general LTV plant (4.16) and analyze the closed-loop stability properties.

Note that we should not expect the outcome of such a design procedure to meet the MRC objective

exactly. A simple way to demonstrate this fact is to consider a plant with an output vector containing an

in�nite number of discontinuities. Since the plant output is a discontinuous function of time at an in�nite

number of points, it cannot be forced to track the continuous output of the reference model, no matter what

control input is used (it is assumed, of course, that delta distributions are not admissible as control inputs).

Another issue of concern is that, even if the perturbation matrices ~A;~b; ~c are identically equal to zero, the

piecewise I/O description of the plant is not complete since it does not include the necessary boundary con-

ditions at each discontinuity point. Consequently, a controller which is designed based on such a description

is not necessarily a stabilizing one. However, from Theorem 4.10 we have that the TV MRC guarantees the

closed-loop exponential stability, whenever the pertinent assumptions are satis�ed. In view of Corollary 3.8,

a TV MRC could still preserve the closed-loop stability and achieve `good' tracking in a mean-square sense,

provided that on the average the discontinuities are not too frequent and the perturbation part is su�ciently

small. The latter can be visualized by considering a plant with parameter discontinuities separated by large

time intervals in the time scale of the closed-loop states. In this case, after a parameter discontinuity occurs

the closed-loop plant output may depart from its reference trajectory and then converge to it exponentially

fast. Thus, if the interval between two successive discontinuities is long enough, the plant output follows the

reference trajectory for most of the time. This intuitive idea is made precise in the following theorem where,

as in Chapter 3, � is used to denote the average frequency of parameter discontinuities and �0 to denote

the size of possible state perturbations caused, for example, by smooth approximations of non-di�erentiable

parameters.

4.18 Theorem: Consider the LTV plant (4.16) whose nominal and perturbation parts satisfy Assump-

tions 3.4{3.6. Further, suppose that the nominal part of the plant [Ao; bo; co] satis�es the MRC Assumptions

4.1{4.4 inside every interval (tj ; tj+1), uniformly in j and the TV MRC control input is designed based

on the nominal plant for each interval (tj ; tj+1). Then there exist �0 > 0, �00 > 0 such that 8� 2 [0; �0),

8�0 2 [0; �00), the closed-loop plant is ES. Furthermore, there exist positive constants K;K 0; C such thatZ t0+T

t0

jyp(t)� ym(t)j2 dt � C +K�T +K 0�0T

5For Assumption 4.2 in particular, uniformity in j means that there exist positive constants k; a, independent of j, such
that the state transition matrix associated with the di�erential equation Np(s; t)[x] = 0, say �N (:; :), satis�es k�N (t; �)k �
ke�a(t��), for all t � � 2 (tj ; tj+1) and all j.

6At the points of discontinuity tj the control input and the initial conditions of the �lters in (4.12) can be arbitrary but UB.
For example, a reasonable choice is the respective left limits.
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for all t0; T � 0. 55
Proof: With the results of the previous sections and Corollary 3.8, the proof of the theorem is quite

straightforward. Using a uniform realization of the plant and the appropriate controller realization, we obtain

a state space representation for the closed-loop plant which is decomposed into a nominal and a perturbation

part.

_xc = Ac(t)xc + bc(t)r + ~Ac(t)xc +~bc(t)r

yp = c>c (t)xc + ~c>c (t)xc

where the subscript `c' denotes the closed-loop states and nominal parameters and ~̀�' denotes the closed-loop
perturbation part, having the same properties as ~A(t);~b(t); ~c(t).

From Theorem 4.10 we have that the nominal part is ES inside all intervals (tj ; tj+1) |with rate de-

pending on D�1
m (s), D�1(s), N�1

p (s; t)| and therefore, by Corollary 3.8, the nominal closed-loop plant is

ES for su�ciently small �. Hence, invoking Lemma 2.45, the overall closed-loop plant is ES 8�0 2 [0; �00)
and 8 � 2 [0; �0), for some �00 > 0, �0 > 0. Finally, the expression for y � ym is obtained by integrating the

solutions of the respective di�erential equations:

ym(t) = cm(t)�m(t; tj)xm(tj) + cm(t)

Z t

tj

�m(t; �)bm(�)r(�) d� (4:17)

yp(t) = [cc(t) + ~cc(t)]
>�c(t; tj)xc(tj) (4.18)

+[cc(t) + ~cc(t)]

Z t

tj

�c(t; �)
h
~Ac(�)xc(�) + ~bc(�)r(�)

i
d�

+cc(t)

Z t

tj

�c(t; �)bc(�)r(�) d� + ~cc(t)

Z t

tj

�c(t; �)bc(�)r(�) d�

where �c(�; �) is the nominal state transition matrix associated with Ac(t) and the subscript `m' denotes the

reference model. The result now follows from the equality of the I/O operators of r 7! ym and that of the

nominal part of r 7! yp inside each interval (tj ; tj+1), i.e.,

cm(t)

Z t

tj

�m(t; �)bm(�)r(�) d� = cc(t)

Z t

tj

�c(t; �)bc(�)r(�) d�

and the boundedness of xc. Notice that when discontinuities appear in the plant description, the closed-loop

I/O operator is equal to the desired one only inside the intervals between discontinuities and yp may be

discontinuous. 22

An interesting observation is that yp, given by (4.18), depends now on the complete closed-loop state

vector which, in turn, depends on the zero dynamics of the plant. The appearance of the plant zero dynamics

on the output has some important consequences in the selection of normalizing signals for the adaptive control

case, considered in Chapter 7.

Finally, it should be mentioned that a somewhat more general (and more complicated) version of the

above theorem can be established in the case where strong controllability/observability of the nominal plant

is lost inside some time intervals of small-in-the-mean length. Such a result follows from Lemma 3.7 using

similar arguments as in Theorem 4.18. We omit the details, however, since in our formulation such a

situation can be treated by an appropriate selection of the nominal part of the plant. For example, during

these intervals we may choose the nominal part as a �xed LTI system satisfying all the pertinent assumptions

and incorporate the di�erence in the perturbation part.
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4.6.1 Slowly TV Plants Revisited

In Section 4.5 we established the properties of a PW-designed MRC in the case of slowly TV plants under

the quite restrictive Assumption 4.12. With this assumption we required that all the derivatives of the plant

parameters, needed in our calculations, should be su�ciently small. It is intuitive, however, that since the

frozen closed loop with a PW MRC is ES, the smallness of the �rst derivative of the plant parameters should

su�ce to guarantee the closed-loop stability. (Of course, the argument applies as well to the TV MRC

structure with parameters designed for the frozen plant.) This observation is quanti�ed in the following

corollary.

4.19 Corollary: Consider a slowly TV plant satisfying the MRC assumptions of Theorem 4.17 except

that the plant parameters are only required to be Lipschitz continuous UB functions of time and Assumption

4.12 is replaced by

4.20 Assumption: k _�pk1 � �.

Then there exists �1 > 0 such that

1. a PW-designed MRC guarantees that the closed-loop plant is ES and, therefore, BIBS stable for any

� 2 [0; �1);

2. the plant output yp satis�es

yp =Wm(s)[r] + L1[xc] + L2[r]

where L1; L2 are strictly proper ES operators and xc is the state vector of the closed-loop plant;

3. for any �xed �01 2 [0; �1) there exists �� > 0 which depends on the rate of exponential stability of

D�1(s), D�1
m (s), N�1

p (s; t) and the value of �01 such that for any � 2 [0; ��), 
p;�(Li), gp;�(Li) � O(�) where

� 2 [0; �01], i = 1; 2 and p 2 [1;1]. 55
Proof: In Appendix IV.

Notice that, as in Theorem 4.18, the complete state vector of the closed-loop plant appears in the output

which may now be a�ected by the zero dynamics of the plant. This is an important qualitative di�erence

from the smooth-parameter case where the stability properties of the output perturbation operators were

independent of the rate of exponential stability of N�1
p (s; t) (Theorem 4.17).

4.7 Examples

In the following examples we demonstrate the similarities and di�erences in the design and tracking perfor-

mance of the TV and the PW MRC schemes.

In both examples and the corresponding simulations we consider the LTV plant

d2

dt2
yp + a1

d

dt
yp + a2yp = up (4:19)

where a1; a2 are TV parameters. The MRC objective is to make the plant output yp track the output of the

LTI reference model

[s2 + 3s+ 2]ym = r (4:20)

where r is the reference input signal.

4.21 Example: PW MRC Design for LTV Plants. The standard PW MRC law, used for LTI plants,

is shown in Fig. 4.3 and is summarized below for the plant (4.19).

_!1 = �!1 + up ; _!2 = �!2 + yp ; up = �1!1 + �2!2 + �3yp + r (4:21)
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where �1; �2; �3 are the scalar controller parameters to be chosen for model-plant I/O matching. Using the

properties of the PDO's and PIO's the closed-loop plant may be written as�
(s+ 1� �1)(s+ 1)�1(s2 + a1s+ a2)(s+ 1)� �2 � �3(s+ 1)

�
(s+ 1)�1yp = r (4:22)

For I/O matching, i.e., yp = ym; 8r we should �nd �1; �2; �3 such that

(s+ 1� �1)(s+ 1)�1(s2 + a1s+ a2)(s+ 1)� �2 � �3(s+ 1) = (s+ 1)(s2 + 3s+ 2) (4:23)

As shown in [N.V.78],7 in the special case of LTI plants where a1; a2 are constants, there exist constants ��i
for which (4.23) is satis�ed. In the TV case, however, a1; a2 are functions of time (the argument `t' is dropped

for simplicity). Since the PDO's with TV parameters do not commute with respect to multiplication, i.e.,

(s+ 1)�1(s2 + a1s+ a2)(s+ 1) 6= s2 + a1s+ a2 in general, (4.23) cannot be solved for �1; �2; �3 directly as

it is done in the LTI case. Despite this di�culty, expressions for �1; �2; �3 can be obtained by solving (4.23)

pointwise in time, i.e., by solving

(s+ 1� �1) ? (s
2 + a1s+ a2)� �2 � �3(s+ 1) = (s+ 1)(s2 + 3s+ 2) (4:24)

for �1; �2; �3, where P (s; t) ? Q(s; t) denotes the pointwise multiplication of two PDO's.8 The solution of

(4.24) is then given as

���1 = a1 � 3

���2 = a21 � 4a1 � a1a2 + 3a2 + 3 (4.25)

���3 = 4a1 + a2 � a21 � 5

Using (4.25) in (4.22) the output yp of the plant is expressed as

yp = (s2 + 3s+ 2)�1r + L(s; t)r (4:26)

and the mismatch operator L(s; t) is of the form

L(s; t) = �[(s2 + 3s+ 2)(s+ 1) +X(s; t)]�1X(s; t)(s2 + 3s+ 2)�1

X(s; t) = (a1 � 3)[ _a1 + (s+ 1)�1( _a2 � _a1 � �a1)] (4.27)

In general, the solution (4.25) does not satisfy (4.23), unless _a1 = _a2 = 0, 8 t � 0, i.e., the plant

parameters are time-invariant. That is, due to the time variation of the plant parameters, (4.23) can only

be solved approximately and the plant I/O operator cannot be made exactly equal to the I/O operator of

the reference model with the standard MRC structure. By using an approximate solution of (4.23) (e.g. the

pointwise one) we can guarantee stability and small tracking error provided that the plant parameters vary

slowly with time. Notice that for slowly TV plants the mismatch operator L(s; t) is stable; this can be seen

by writing a, not necessarily minimal, state-space representation of L(s; t) whose a state matrix has diagonal

blocks the state matrices corresponding to (s2+3s+2)(s+1) and (s+1) and at least one of the o�-diagonal

blocks being O( _a1; _a2; �a1). 55
4.22 Example: TV MRC Design for LTV Plants. Using the TV MRC structure, shown in Fig. 4.2,

the control law is given as:

_!1 = �!1 + �1up ; _!2 = �!2 + �2yp ; up = !1 + !2 + �3yp + r (4:28)

7Also follows from Lemma 4.5 and Corollary 4.9 when the plant is LTI.
8That is, s ? a(t) = a(t) ? s = a(t)s.



4.7. EXAMPLES 79

Thus, the closed-loop plant can be written as

(s+ 1)�1
�
(s+ 1� �1)[s

2 + a1s+ a2]� [�2 + (s+ 1)�3]
�
yp = r (4:29)

For model-plant following we should determine �1; �2; �3 such that yp = ym ; 8r, i.e.,

(s+ 1� �1)[s
2 + a1s+ a2]� [�2 + (s+ 1)�3] = (s+ 1)(s2 + 3s+ 2) (4:30)

Comparing (4.30) with (4.23) it is clear that in the former no PIO appears either in the left- or the right-hand

side and therefore no commutativity problem arises. From (4.30) we obtain

(1� �1 + a1 � 4)s2 + [(1� �1)a1 + _a1 + a2 � �3 � 5]s

+(1� �1)a2 + _a2 � �2 � _�3 � 2� �3 = 0

That is, for

�1 = ��1 = a1 � 3

�2 = ��2 = a21 � 4a1 � a1a2 + 3a2 + 3� 5 _a1 + 2a1 _a1 � �a1 (4.31)

�3 = ��3 = 4a1 + a2 � a21 � 5 + _a1

equation (4.30) is satis�ed and the I/O operator of the closed-loop plant is equal to that of the reference

model. We note that, in this case, the controller parameters ��1; ��2; ��3 are well de�ned, bounded, smooth

functions of time for any bounded, smooth functions a1; a2 (i.e., a1; a2 may be fast TV).

Further, to demonstrate the results of Theorem 4.17, let us consider again the PW MRC design of the

previous example. The control law can then be written as

up = ���1(s+ 1)�1[up] + ���2(s+ 1)�1[yp] + ���3yp + r

or, operating on both sides by (s+ 1)

(s+ 1)[up] = ���1[up] + ���2[yp] + (s+ 1)[���3yp] + (s+ 1)[r] +X1

where X1 = _���1(s + 1)�1[up] + _���2(s + 1)�1[yp]. Furthermore, letting ~�i = ���i � ��i, the PW MRC law

becomes

(s+ 1)[up] = ��1up + ��2yp + (s+ 1)[��3yp] + (s+ 1)[r] +X1 +X2

where X2 = ~�1up + ~�2yp + (s+ 1)[~�3yp] and from (4.25) and (4.31), the ~�i's depend only on the derivatives

of the plant parameters. It is now straightforward to verify that

yp =Wm(s)[r] + L1(s; t)[up] + L2(s; t)[yp]

where

L1(s; t) =Wm(s)(s+ 1)�1f _���1(s+ 1)�1 + ~�1g
L2(s; t) =Wm(s)(s+ 1)�1f _���2(s+ 1)�1 + ~�2g+Wm(s)~�3

It is now apparent that the perturbation operators L1(s; t); L2(s; t) are strictly proper, ES and their Lp(�)

gains, � < 1, are O[ _a1; _a2; �a1]. 55
4.23 Simulations: Let us now simulate the response of the plant (4.19) with the PW and TV MRC

for r = 10 sin t, a1 = �6 and a2 = 2 sin�t. The controller parameters are computed using (4.25) for the PW

MRC structure (4.21) and (4.31) for the TV MRC structure (4.28). When � = 0:1 the PW MRC results in

a bounded but nonzero tracking error while for the TV MRC the tracking error converges to zero (Fig. 4.4).
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Figure 4.4: MRC tracking error response. Known, slowly TV plant
parameters; � = 0:1. a. (|) PW MRC law;
b. (- - - ) TV MRC law.
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parameters; � = 1. a. PW MRC law: Unbounded response
due to fast parameter variations; b. TV MRC law.
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Increasing the value of � to one, however, the tracking error for the PW MRC grows unbounded with

time, as shown in Fig. 4.5.a, but the TV MRC still results in a tracking error that converges to zero, as

shown in Fig. 4.5.b.

The unbounded closed-loop response with the PW MRC is due to the larger value of � which results in

an unstable mismatch operator L(s; t), given by (4.27). We should note that for this example the solution ��
for the TV MRC structure is the same as the pointwise solution ��� for the PW MRC structure, i.e., �� = ���
when a1 = constant. This demonstrates that the exact model-plant matching achieved by the TV MRC

structure is a characteristic of the new structure and not only the speci�c choice of ��. 55

APPENDIX IV

Proof of Lemma 4.5:

Plant PR: From (3.4) and (4.7) we obtain that the PIO's involved in the description of the closed-loop

system are D�1(s), which is due to the internal cancellations in the control law and is ES by design and

D�1
c (s; t), where

Dc(s; t) = N2(s; t)c
�1
0 (t)Dp(s; t)�N1(s; t)kp(t)Np(s; t)

and which should be made ES by an appropriate selection of the controller parameters. Further, after some

straightforward calculations, it follows that

yp = kp(t)Np(s; t)D
�1
c (s; t)D(s)r

�
= Sry(s; t)r (4:32)

where Sry(s; t) : r 7! yp is the closed-loop plant I/O operator. To satisfy the model following objective we

need to �nd c0(t) and the coe�cients of N1(s; t); N2(s; t) such that D�1
c (s; t) is ES and Sry(s; t) = Wm(s).

Substituting in (4.32) we get

N2(s; t)c
�1
0 (t)Dp(s; t)�N1(s; t)kp(t)Np(s; t) = Dz(s)Dm(s)k

�1
m kp(t)Np(s; t) (4:33)

which also implies that the closed-loop PIO is ES, since N�1
p (s; t) is ES. For the PDO of the right- and

left-hand side of (4.33) to have the same leading coe�cient c0(t) should be selected as

c0(t) = c0�(t)
�
= k�1p (t)km (4:34)

Thus, invoking Corollary 2.16, the Diophantine equation (4.33) can be solved for Ni(s; t) with smooth, UB

coe�cients. Furthermore, since N�1
p (s; t)k�1p (t), D�1

m (s), D�1
z (s) and D(s) are all ES PIO's (note that

kp(t) is bounded away from zero), it follows that the controller (4.7), with the so-selected parameters, also

guarantees the BIBO stability of Sry(s; t).

Plant PL: From (3.5) and (4.7) we obtain�
N2(s; t)c

�1
0 (t)k�1p (t)N�1

p (s; t)Dp(s; t)�N1(s; t)
	
yp = D(s)r (4:35)

Letting

c0(t) = c0�(t)
�
= k�1p (t)km ; N2(s; t) = k�1m ~N2(s; t)Np(s; t)km (4:36)

where ~N2(s; t) is a monic PDO of degree n�m� 1 to be determined, the PIO's involved in the description

of the closed loop are D�1(s), k�1p (t)N�1
p (s; t), due to direct cancellations and D�1

c (s; t) where

Dc(s; t) = ~N2(s; t)Dp(s; t)� kmN1(s; t)
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Further, the I/O operator Sry(s; t) : r 7! yp is expressed as

Sry(s; t) = D�1
c (s; t)kmD(s)r (4:37)

Note that k�1p (t)N�1
p (s; t) has been cancelled directly by N2(s; t), an operation that is permitted since

N�1
p (s; t) is ES and kp(t), k

�1
p (t) are both UB. Next, in order to meet the control objective ~N2(s; t) and

N1(s; t) are selected so that Sry(s; t) =Wm(s), i.e.,

~N2(s; t)Dp(s; t)� kmN1(s; t) = kmDz(s)Dm(s)k
�1
m (4:38)

As before, the Diophantine equation (4.38) can be solved for N1(s; t) and ~N2(s; t) since both PDO's in the

left- and right-hand side of (4.38) are monic and of the same degree (2n�m�1) and the PDO's Dp(s; t) and

1 are always right coprime. Hence, by Corollary 2.16, (4.38), (4.36) can be solved for Ni(s; t) with smooth,

UB coe�cients. Furthermore, Sry is BIBO stable since all the PIO's involved in its description are ES. 22

Proof of Lemma 4.6:

The part of the lemma regarding the expressions for the sensitivity operators is actually quite straightfor-

ward and follows from linearity and the de�nitions of N2; N1 and c0 as the PDO's satisfying the Diophantine

equations given in Lemma 4.5. For the rest, we must �rst verify that the various expressions make sense as

an LTV system description, i.e., that we can write a state space representation for the given I/O operator.

For plants in the PR-form the operators to be realized are of the form PD�1
c Q where D�1

c is ES and

deg[Dc] � deg[P ] + deg[Q]. From example 2.23, the state space realization of the operator D�1
c Q has an

input matrix with the top deg[Dc] � deg[Q] � 1 elements being identically zero (if deg[Dc] = deg[Q] then

D�1
c Q has a throughput term and deg[P ] = 0). Consequently, the output of D�1

c Q can be di�erentiated at

least deg[Dc] � deg[Q] � deg[P ] times without requiring di�erentiation of its input. Hence, the output of

the operator PD�1
c Q can be obtained as a linear combination of the states of D�1

c Q with weights depending

on the coe�cients of P and Dc as well as the derivatives of the latter. Furthermore, from the boundedness

and smoothness of the coe�cients of the various PDO's, it is apparent that the overall STM is ES with the

rate of D�1
c .

Similar arguments apply in the case of plants in the PL-form. In this case, however, we must also realize

an operator of the form D�1
1 QD�1

2 where D�1
1 ; D�1

2 are ES and deg[Q] � deg[D1] + deg[D2]. The easiest

way to perform such a realization comes from the fact that the set of PDO's with smooth coe�cients is

an associative ring (non-commutative, though). Hence, we can apply the Euclidean algorithm to write

Q = Q1Q2 + R where deg[Q1] � deg[D1], deg[Q2] � deg[D2] and deg[R] � deg[Q1]. Hence, we can realize

D�1
1 QD�1

2 as a cascade combination of Q2D
�1
2 and D�1

1 Q1 plus a cascade combination of D�1
2 and D�1

1 R.

Again, the overall STM is ES with rate which depends on D�1
1 and D�1

2 .

It is also interesting to observe that the form of the various PDO's does not a�ect the result since their

parameters are smooth and UB and they can be converted to the appropriate form. That is, denoting by

DR, DL the right and left form of the same PDO, if the ODE DRx = 0 is ES then DLx = 0 is also ES. An

alternative way of verifying this is by considering the state space descriptions of D�1
R (controllable canonical

form) and D�1
L (observable canonical form). It follows trivially that they are both completely controllable

and observable and thus uniform realizations of the same impulse response and topologically equivalent.

Finally, the boundedness and smoothness of the coe�cients of the various PDO's together with the ES

property of the realizations of the sensitivity operators implies that the associated impulse response h(t; �)

of the strictly proper part is UB and there exist constants k; a > 0 such that kh(t; �)k � k exp[�a(t � �)]

for all t � � � 0 where a depends on the PIO's in the I/O description of the operator. Thus, Lp(�) stability

follows from Corollary 2.52 with �� = a; the same corollary also shows that for the strictly proper sensitivity
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operators, the corresponding gp;� gains also exist and are �nite. 22

Proof of Corollary 4.9:

From (4.11), (4.12) we have

up = c0(t)
�
D�1(s) �N2(s; t)[up] +D�1(s) �N1(s; t)[yp] + �3(t)yp + r

	
(4:39)

where

�N2(s; t) = [Q1(s); . . . ; Qn�1(s)]�1(t)
�N1(s; t) = [Q1(s); . . . ; Qn�1(s)]�2(t) (4.40)

D(s) = det(sI�F ) andQj(s); j 2 n� 1 are TI PDO's such that q>(sI�F )�1 = D�1(s)[Q1(s); . . . ; Qn�1(s)].
From (4.39) and (4.7) �Ni(s; t) should satisfy

�N2(s; t) = [D(s)�N2(s; t)]c
�1
0 (t) ; �N1(s; t) = N1(s; t)�D(s)�3(t) (4:41)

Note that deg[D(s)�N2(s; t)] = n�2 = deg[ �N2(s; t)] and that deg[N1(s; t)�D(s)�3(t)] = deg[ �N1(s; t)] = n�2
implies that ��3(t) is equal to the leading coe�cient of N1(s; t). Thus, from (4.40) and (4.41), �i(t) should

satisfy

[Q1(s); . . . ; Qn�1(s)]�i(t) = �Ni(s; t) ; i = 1; 2 (4:42)

Further, by expressing the PDO's �Ni(s; t) in the right form, (4.42) yields

��i(t) = Q�1 [�ni1(t); �ni2(t); � � � ; �ni n�1(t)]> (4:43)

where Q = [q>
1
; . . . ; q>

n�1]
>, q

j
are vectors of the coe�cients of sn�1�j of Qj(s) and �nij(t) are the coe�cients

of sn�1�j of �Ni(s; t) in the right PDO form, i = 1; 2 ; j = 1; . . . ; n� 1, obtained from (4.41). Note that Q�1

exists due to the observability of (q>; F ) [Kai.80]. Finally, the boundedness and di�erentiability properties

of ��(t) follow by inspection, directly from (4.43) and the respective Diophantine equation (4.33) or (4.38).

22

Proof of Theorem 4.10:

Observe �rst that the control law can be put in the form �c of Lemma 2.35 with u1 = u = up and the

plant is uniformly realizable. It remains to show that for r = 0 and any bounded initial conditions at t0,

8 t0 � 0, the signals up; yp decay exponentially fast, uniformly in t0.

Initial conditions in the auxiliary �lters at t = t0 can be introduced directly as a contribution of a

term �F (t; t0)w0 in the �lter states where �F (�; �) is the STM of F (a matrix exponential if F is TI). It

is straightforward to verify that the e�ect of all such terms can be expressed as an exponentially decaying

external input, denoted by we, entering the closed-loop system at the reference input node (see Fig. 4.1);

consequently, their contribution to up; yp is characterized by the sensitivity operators Sru and Sry. This

approach, however, is not used for initial conditions associated with the plant states since the latter is not

necessarily ES.

To account for the plant initial conditions we �rst note that bounded initial conditions of any uniform

realization correspond to bounded initial conditions of a canonical form. Further, since the plant is uniformly

completely controllable, for any bounded initial conditions x(t0) there exists dc > 0 and a bounded û(t);

t 2 [t0; t0 + dc] such that [S.A.68]Z t0+dc

t0

�(t; �)B(�)û(�) d� = �(t0 + dc; t0)x(t0)
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where kûk � a1(dc; kx(t0)k) and a1(�) is a constant determined by its arguments. Let us now denote by x(t)

the system response with input up and initial conditions x(t0) and by x�(t) the response with input up + û,

for any up. Since û = 0, 8 t > t0 + dc, and employing the linearity assumption, we obtain that x(t) = x�(t),
8 t > t0 + dc. Also, since the plant is in a bounded realization, kx(t)� x�(t)k is UB.

In other words, under uniform complete controllability, the �ctitious input û, emulates the e�ect of

arbitrary initial conditions exactly after some �nite time, before which all signals are bounded. The net

result of the procedure is that the initial conditions of the plant are translated to external inputs which can

be manipulated using I/O techniques. These external inputs are û, entering at the node of input disturbances

(du in Fig. 4.1), and ŷ which is due to the di�erence between x(t) and x�(t) and is a bounded, �nite function;9

ŷ enters the loop at the node of output disturbances (dy in Fig. 4.1).

From Lemma 4.6, it follows that the plant input and output satisfy

up = Sru[û] + Syu[ŷ] + Sru[we] (4.44)

yp = Syy[ŷ] +Wm[we] + Suy[û] (4.45)

where the various sensitivity operators are given in Lemma 4.6 for either PR or PL plants. We observe now

that we is exponentially decaying with the rate ofD
�1(s) and therefore we 2 L1(�) where � 2 [0; ��) and �� is

a positive constant as in Lemma 4.6. Moreover, since û; ŷ are UB functions of bounded support, û; ŷ 2 L1(�).

Using Lemma 4.6, the various sensitivity operators are L1(�) stable and therefore, up; yp 2 L1(�) and there

exist constants k; a > 0, a < �� and k depending on dc and x(t0), w0, such that

k[up(t); yp(t)]k � k exp[�a(t� t0)]

for any initial time t0 � 0. Thus, invoking Lemma 2.35 the proof follows. Notice that since ES implies BIBS

stability, the closed-loop system is internally stable for any external UB input and any initial conditions,

uniformly in t0. Moreover, this property is shared by any other uniform realization of the plant I/O operator.

22

Proof of Theorem 4.17:

The proof of the theorem relies on the use of swapping techniques to express the PW MRC the control

input as

up = c0(t)N
�1
2 (s; t)N1(s; t)[yp] (4.46)

+c0(t)N
�1
2 (s; t)D(s)

h
r + L̂1(s; t)[up] + L̂2(s; t)[yp]

i
where Ni(s; t) are the PDO's corresponding to the TV MRC and L̂i(s; t) are proper, stable perturbation

operators whose gains are O(�). Of course, for the TV MRC design to make sense, � should be in [0; �0)

(see Corollary 4.15). To demonstrate the application of these techniques we derive (4.46) in two ways: one

using an I/O approach and property P4 of PDO's and one using a state-space approach and Lemma 2.59.

� (I/O approach:) Let �Mi(s; t) denote the controller PDO's and ��3(t) the pure gain feedback, corre-

sponding to the standard PW MRC, which are obtained from a pointwise design. Using Property P4

of the PDO's from Chapter 2, the plant input can be written as

up = c0(t)r +D�1(s)D(s) �M2(s; t)D
�1(s)[up]

+D�1(s)D(s) �M1(s; t)D
�1(s)[yp] + ��3(t)yp

9That is, it is a function of �nite (compact) support, vanishing outside a �nite interval.
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and, consequently,

D(s)c�10 (t)[up] = c�10 (t) �M2(s; t)[up] + c�10 (t) �M1(s; t)[yp]

+D(s)c�10 (t)��3(t)[yp] +D(s)[r] (4.47)

+X2(s; t)D
�1(s)[up] +X1(s; t)D

�1(s)[yp]

where c0(t) = km=kp(t) and

Xi(s; t) = D(s)c�10 (t) �Mi(s; t)� c�10 (t) �Mi(s; t)D(s) ; i = 1; 2

Thus, using the properties of PDO's, deg[Xi(s; t)] � 2n� 4 and the coe�cients of Xi(s; t), say �X(t),

are of order of the derivatives of c�10 (t) and �M (t), the coe�cients of �Mi(s; t). Further, in a PW design
��3(t) and �M (t) are obtained from the solution of a PW Diophantine equation which, in turn, can be

expressed as S0(t) ��M (t) = a0(t) where S0(t) is the PW Sylvester matrix of Dp(s; t) and kp(t)Np(s; t),

and S0(t); a0(t) depend only on the plant parameters �p(t) and not on their derivatives.
10 Since, under

Assumption 4.13, S0(t) is strongly nonsingular for all t, the PW controller parameters are smooth, UB

functions of time and therefore,

k�X(t)k � O(�) : (4:48)

Further, (4.47) can be rewritten as

D(s)c�10 (t)up = �N2(s; t)up + �N1(s; t)yp +D(s)��3(t)yp +D(s)r

+X2(s; t)D
�1(s)up +X1(s; t)D

�1(s)yp

+Y2(s; t)up + Y1(s; t)yp (4.49)

where �Ni(s; t); ��3(t) correspond to the TV MRC design and

Y2(s; t) = c�10 (t) �M2(s; t)� �N2(s; t)

Y1(s; t) =
�
c�10 (t) �M1(s; t)� �N1(s; t)

	| {z }
Y11(s;t)

+
�
D(s)[c�10 (t)��3(t)� ��3(t)]

	| {z }
Y12(s;t)

After a straightforward comparison of the Diophantine equations for the TV and PW MRC, it follows

that deg[Y2(s; t)] � n� 2, deg[Y11(s; t)] � n� 2, deg[Y12(s; t)] � n� 1 and

k�Y (t)k � O(�) (4:50)

from which we obtain (4.46) with the input perturbation operators being at least proper, ES with rate

depending on D(s) and given by

L̂1(s; t) = D�1(s)X2(s; t)D
�1(s) +D�1(s)Y2(s; t)

L̂2(s; t) = D�1(s)X1(s; t)D
�1(s) +D�1(s)Y1(s; t)

� (State-Space approach:) Let c0(t) and ��i(t), i = 1; 2; 3, denote the controller parameters of the PW

MRC. Then, the control input is given by

up = G(s)[up]��1(t) +G(s)[yp]��2(t) + ��3(t)yp + c0(t)r

where G(s) denotes the operator

G(s) : u 7! q>(sI � F>)�1[u]

10Note that in a pointwise approach there is no distinction between the PR and PL forms.
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and F is the state matrix and q is the input vector of the state-space representation of the auxiliary

�lters. Letting G0(s) denote the operator

G0(s) : u 7! (sI � F>)�1[u]

and using Lemma 2.59 the term v1 = G(s)[up]��1(t) can be written as

v1 = c0(t)G(s)[up��1=c0] + c0(t)G(s)

�
G0(s)[up](

d

dt
[��1=c0])

�
It now follows from the PW MRC assumptions that k d

dt [
��1=c0]k1 = O(�) (similarly for ��2 and yp).

Further, let �i(t) denote the controller parameters of the TV MRC realized with a state matrix F>

and output vector q>, i.e., the control law for the TV MRC would be given by

u0p = c0(t)
�
G(s)[u0p�1] +G(s)[y0p�2] + �3(t)y

0
p + r

	
Next, de�ne ~�i = �i� ��i=c0. From the respective Diophantine equations for the PW and TV MRC and

Assumption 4.12 it follows that k~�ik1 = O(�).

Thus, the PW MRC control input can be expressed as

up = c0(t) fG(s)[up�1] +G(s)[yp�2] + �3(t)yp + rg
+L̂1(s; t)[up] + L̂2(s; t)[yp]

from which (4.46) follows with the input perturbation operators L̂i(s; t) being at least proper, ES with

rate depending on F and given by

L̂1(s; t)[up] = c0(t)G(s)

�
G0(s)[up](

d

dt
[��1=c0])

�
� c0(t)G(s)[up~�1]

L̂2[yp] = c0(t)G(s)

�
G0(s)[yp](

d

dt
[��2=c0])

�
�c0(t)G(s)[yp~�2]� c0(t)~�3(t)yp (4.51)

In other words, the closed loop of the LTV plant with the PW MRC can be e�ectively described as the

TV MRC loop perturbed by two dynamic operators L̂1 and L̂2, with respective inputs up and yp and outputs

entering the closed-loop system at the node of the reference input (see Fig. 4.1). Furthermore, it is quite

straightforward to verify using the results of Chapter 2 that, for any �xed � 2 [0; ��) (�� as in the Theorem)

and p 2 [1;1], 
p;�[L̂i(s; t)] and gp;�[L̂1(s; t)] are O(�).

Thus, the PW MRC loop without any external inputs is described by�
up
yp

�
=

�
Sru
Sry

�
v ; v = [L̂1(s; t); L̂2(s; t)]

�
up
yp

�
and since Sry =Wm(s) we have that

yp =Wm(s)[r] + L1(s; t)[up] + L2(s; t)[yp]

where Li(s; t) =Wm(s)L̂i(s; t) with the properties stated in the Theorem.11

11Notice that these expressions are slightly di�erent than the ones obtained in [T.I.87] in that the perturbation operators
Li(s; t) do not depend on the zero-dynamics of the plant; this result is of value in the adaptive control case and its derivation
relies heavily on the existence and properties of the TV MRC solution given by Lemma 4.5.
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Further, for any � 2 [0; ��) and p 2 [1;1] a su�cient condition for the closed-loop Lp(�)-stability is

[D.V.75]


p;�

�
Sru
Sry

�

p;�[L̂1(s; t); L̂2(s; t)] < 1 (4:52)

Since 
p;�[L̂i(s; t)] � O(�) it follows that there exists ��1 > 0 (��1 � �0), depending on the particular choice

of p and �, such that for any � 2 [0; ��1) the above inequality is satis�ed. Moreover, from Lemma 2.51, if the

closed-loop plant (without initial conditions) is Lp(�) stable, it is also Lp(�̂) stable for any �̂ � �.

To complete the proof we need to show that there exists �1 > 0 such that 8� 2 [0; �1) the closed-loop

system is ES. Let � 2 (0; ��) and choose, for simplicity, �1 such that (4.52) is satis�ed for p = 1 and all

� 2 [0; �1). Since the closed loop with the TV MRC is ES, in the presence of arbitrary but bounded initial

conditions the truncations of up; yp at t satisfy

k[up; yp]tk1;� � 
1;�(Sr)
1;�(L̂)k[up; yp]tk1;� + � sup
t0���t

h
e��e�a(��t0)

i
where � depends on the size of the initial conditions at t0 (up and yp are taken as 0 for t < t0), �a � ���
is the exponential rate of decay of the closed loop with the TV MRC and

Sr =

�
Sru
Sry

�
; L̂ = [L̂1(s; t); L̂2(s; t)]

Hence, for any � 2 [0; �1),

e�tk[up(t); yp(t)]k � k[up; yp]tk1;� � �e�t0

1� 
1;�(Sr)
1;�(L̂)
<1; 8 t � t0 � 0

Thus, k[up(t); yp(t)]k � ke��(t�t0) for some constant k independent of t0. The proof now follows from Lemma

2.35 and the observations that the PW MRC satis�es the general controller structure requirements of that

lemma and under the given assumptions the plant is uniformly completely observable for � < �1.

It should be pointed out that in an attempt to reduce the conservatism of the result, we should �nd the

supremum of �1 with respect to � and the selection of the |possibly weighted| Lp(�)-norm. For the former,

it is easily obtained that the supremum occurs as � ! 0 which, of course, implies that increased speeds of

parameter variations tend to decrease the exponential stability margin. For the latter, although the selection

of p is not straightforward due to the lack of explicit formulas for the Lp(�)-gains of TV operators, the result

of the theorem is still valid with some modi�cations in the proof. That is, for su�ciently small � such that

(4.52) holds, the closed-loop system is Lp(�)-stable. Furthermore, for t > t0, the derivatives of up; yp can be

expressed as

_up = sSru

n
L̂1(s; t)[up] + L̂2(s; t)[yp]

o
+ "

_yp = sSry

n
L̂1(s; t)[up] + L̂2(s; t)[yp]

o
+ "

with " denoting exponentially decaying terms due to the initial conditions. Since sSruL̂2(s; t) is the only

possibly non-proper term, we substitute the expression for yp in _up to obtain

_up = sSru

n
L̂1(s; t) + L̂2(s; t)SryL̂1(s; t)[up] + L̂2(s; t)SryL̂2(s; t)[yp]

o
+ "

Thus, with the notation being obvious from the previous relationships,�
_up
_yp

�
= SL

�
up
yp

�
+ "

where, now, SL is a proper, Lp(�)-stable operator. Hence, since k[up; yp]tkp;� is UB, we obtain that

k[ _up; _yp]tkp;� is UB and the proof follows as an application of Lemma 2.55. 22
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Proof of Corollary 4.19:

The �rst part of the theorem is a direct consequence of Lemma 2.42 and the ES property of the frozen

closed-loop system with a PW-designed MRC.

To obtain the expression for the plant output, consider a smooth approximation of the plant parameters

so that a su�cient number of derivatives are available for the purposes of the TV MRC design. The plant

is thus brought in the form of (4.16) with the parameters of the perturbation part being O[�=a]-small in

the uniform norm and a being arbitrary as in Lemma 2.64. From the same lemma, the ith derivative of a

parameter approximate is O[�(2a)i�1]; hence, by Assumptions 4.13 and 4.14 we obtain that for su�ciently

small �, we can select a so that the MRC assumptions are satis�ed while nI = 1 in Assumption 3.6 due to

the continuity of the plant parameters. At this point and for simplicity we take �1 such that the closed loop

is ES (from the �rst part of the proof) and MRC assumptions hold. Hence, we can apply Theorem 4.18 from

which the output of the closed-loop plant with the TV MRC designed for the approximate smooth nominal

plant is given by (4.18). Thus, for the TV MRC, there are two output perturbation operators of the form

L01[xc](t) = [cc(t) + ~cc(t)]

Z t

t0

�c(t; �) ~Ac(�)xc(�) d�

L02[r](t) = [cc(t) + ~cc(t)]

Z t

t0

�c(t; �)~bc(�)r(�) d� + ~cc(t)

Z t

t0

�c(t; �)bc(�)r(�) d�

which satisfy the properties stated in the corollary. Finally, similar expressions are valid for a PW-designed

MRC where the di�erence between the controller parameters of the TV MRC and its PW counterpart should

also be taken into account. As in Theorem 4.17 this di�erence is O[�], for a �xed smooth approximation,

and therefore, it can be absorbed in the perturbation part of the closed-loop system leaving the rest of the

proof qualitatively una�ected. 22



Chapter 5

TV `Pole-Placement' Control

5.1 Introduction

One of the main drawbacks of MRC, studied in the previous chapter, is the requirement that the zero

dynamics of the plant are ES. Since this requirement may be quite restrictive in applications, it is desirable

to develop alternative control strategies |based on a di�erent control objective| which do not su�er the

same limitations. In the LTI case, such a strategy is the Pole-Placement Control (PPC) whose objective is

to place the poles of the closed-loop system at prescribed locations usually determined by the stability and

regulation performance speci�cations. On the other hand, PPC is rather limited to LTI plants due to the

absence of the `pole' notion in the TV case. We therefore extend the de�nition of the (TI) PPC objective

as to design a controller such that the PIO's of the closed-loop I/O operator is equal to some prescribed, TV

or TI, PIO's. We refer to this extended objective as the TV PPC objective. For lack of a better name, we

refer to a controller that meets the TV PPC objective for an LTV plant, as a TV PPC. When the plant is

LTI, the TV PPC objective obviously reduces to the classical PPC objective and is met by a standard PPC

scheme. It goes without saying that TI PPC's are a subclass of TV PPC's.

Existing PPC structures for LTV plants (e.g., [M.G.88, Kre.86, G.S.84]), have been derived by pointwise

(PW) calculations, based on the `frozen' plant approach, i.e., under the assumption that the plant is LTI at

each time instant. Such controllers, termed as PW PPC, may yield acceptable closed-loop performance, if

restricted to the case of slowly TV plants. Of course, a TV PPC is not the same as a PW PPC, the latter

being unable to satisfy the control objective or even guarantee stability in the general LTV case.

In this chapter we present the design and analysis of TV PPC schemes for LTV plants. We begin with

Sections 5.2, 5.3 where we design and realize in state-space a TV PPC for LTV plants with smooth parameters

and establish the closed-loop stability properties. In Section 5.4 we discuss the issue of incorporating some

tracking performance features in a TV PPC through the use of internal models. In Section 5.5 we consider

the case of non-smooth parameters and generalize the results of Sections 5.2 and 5.3. The special case of

slowly TV plants and PW designs is analyzed in Section 5.6. Finally, we present some simple examples and

simulations illustrating the design and properties of TV PPC's in Section 5.7.

5.2 TV PPC Design

Consider a SISO LTV plant described by the state-space equations

_xp = A(t)xp + b(t)up

yp = c>(t)xp (5.1)

89
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and satisfying Assumptions 3.1{3.3.

As it was pointed out in Chapter 3, Assumptions 3.1{3.2 imply that the I/O operator of the plant (5.1)

admits PDO factorizations in the right form (PR), i.e.,

yp = Np(s; t)D
�1
p (s; t)[up] (5:2)

or the left form (PL), i.e.,

yp = D�1
p (s; t)Np(s; t)[up] (5:3)

where Dp(s; t) is a monic PDO with UB coe�cients and of constant degree, denoted by n and N(s; t) is

a PDO of degree � n � 1 with UB coe�cients. Furthermore, in (5.2) Dp(s; t); Np(s; t) are strongly right

coprime while in (5.3) Dp(s; t); Np(s; t) are strongly left coprime PDO's in [t0;1).

The TV PPC objective is de�ned as follows:

Determine a control input up such that the closed-loop plant is internally stable and the closed-loop PIO
1

is equal to a prescribed ES PIO A�1� (s; t) where A�(s; t) is a monic PDO of degree 2n� 1 with smooth, UB

coe�cients.

In this section we develop and analyze the I/O properties of controllers that meet the TV PPC objective.

We start with the following lemma which establishes the existence of a TV PPC and provides the design

equations for its construction in an I/O operator form.

5.1 Lemma: Suppose that for the LTV plant (5.1) Assumptions 3.1{3.3 are satis�ed. Then, there exist

two (n � 1)-degree PDO's N1(s; t), N2(s; t) with smooth, UB coe�cients and N2(s; t) monic such that the

closed-loop PIO of

a. the PR plant (5.2) with the controller

up = �N�1
2 (s; t)N1(s; t)[yp] (5:4)

where N1(s; t); N2(s; t) satisfy the Diophantine equation

N2(s; t)Dp(s; t) +N1(s; t)Np(s; t) = A�(s; t)

or,

b. the PL plant (5.3) with the controller

up = �N1(s; t)N
�1
2 (s; t)[yp] (5:5)

where N1(s; t); N2(s; t) satisfy the Diophantine equation

Dp(s; t)N2(s; t) +Np(s; t)N1(s; t) = A�(s; t)

is equal to the desired PIO A�1� (s; t). 55

Proof: Straightforward from the expressions for the I/O operators of the plant and the controller and

Corollary 2.16. 22

The design of the controller I/O operator as given in the above lemma, with A�1� (s; t) being ES, also

ensures the BIBO stability of the closed-loop system with respect to external inputs. To make this statement

more precise, consider the realization of the TV PPC according to Examples 2.38 and 2.39. That is, the

control input from the TV PPC is obtained as

up = �C(s; t)H(s; t)[yp] (5:6)

1Modulo, of course, ES PIO's which are due to internal cancellations in the controller.
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Figure 5.1: The TV PPC closed-loop system.

where, for the PR plant and the control law (5.4)

C(s; t) = N�1
2 (s; t)D(s) ; H(s; t) = D�1(s)N1(s; t)

and for the PL plant and the control law (5.5)

C(s; t) = N1(s; t)D
�1(s) ; H(s; t) = D(s)N�1

2 (s; t)

and D�1(s) is an ES PIO2 of order n � 1. This closed-loop con�guration is depicted in Fig. 5.1 where the

various external signals may represent command inputs (r or v), input disturbances (du), output disturbances

(dy), measurement noise (r) or even e�ects of initial conditions. The total closed-loop response to the various

external inputs is simply obtained using superposition, with each input �ltered by the appropriate sensitivity

operator.

With reference to Fig. 5.1, the following lemma describes the BIBO and Lp(�) stability properties of the

closed-loop plant with the TV PPC and provides expressions of the various sensitivity operators.

5.2 Lemma: The I/O description of the closed-loop plant with the TV PPC (5.6), shown in Fig. 5.1, is

given by 2
4 up
yp
u1

3
5 =

2
4 Sru Svu Suu Syu
Sry Svy Suy Syy
Sr1 Sv1 Su1 Sy1

3
5
2664

r
v
du
dy

3775 (5:7)

where, omitting the PDO/PIO arguments for simplicity,

Syu = �Sru ; Sry = 1� Syy ; Sy1 = �Sr1

and

1: for the plant (5.2) in the PR-form

Sru = DpA
�1� N1 ; Svu = DpA

�1� D ; Suu = 1�DpA
�1� N2

Syy = 1�NpA
�1� N1 ; Svy = NpA

�1� D ; Suy = NpA
�1� N2

Sr1 = D�1N2DpA
�1� N1 ; Sv1 = �D�1N1NpA

�1� D

; Su1 = �D�1N1NpA
�1� N2

(5:8)

2: for the plant (5.3) in the PL-form

Sru = N1A
�1� Dp ; Svu = N1A

�1� DpN2D
�1 ; Suu = �N1A

�1� Np

Syy = N2A
�1� Dp ; Svy = N2A

�1� NpN1D
�1 ; Suy = N2A

�1� Np

Sr1 = DA�1� Dp ; Sv1 = �DA�1� NpN1D
�1 ; Su1 = �DA�1� Np

(5:9)

2D(s) may be TV with smooth UB coe�cients.
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Furthermore, there exists �� > 0 which in general depends on A�(s; t) and D(s) such that for any

� 2 [0; ��), and any initial time t0, the various sensitivity operators are Lp(�)-stable, p 2 [1;1], uniformly

in t0; also, for the strictly proper sensitivity operators, the corresponding gp;� gains exist and are �nite,

uniformly in t0. 55

Proof: Straightforward, following similar arguments as in Lemma 4.6. 22

At this point, it should be noted that under Assumptions 3.1{3.3, a plant in the PL-form can be expressed

in the PR-form and vice-versa. A controller, designed for PR-plants, has the advantage that it can be

implemented so that only �xed PDO's, together with Np(s; t), appear in the closed-loop I/O operator v 7! yp.

Such a property is important when the closed-loop response to command signals is considered. Consequently,

it is desirable |and feasible| to design the TV PPC for plants in the PL-form by �rst converting the plant

in the PR-form and then perform the TV PPC design for the PR-plant. The apparent drawback of this

procedure is an increase in the computational load which may be crucial when the controller calculations

are performed on-line. This issue is further discussed in Chapter 8, where an indirect adaptive controller is

designed by estimating the plant parameters (necessarily in the PL form) and calculating the corresponding

TV PPC parameters.

Further, overparametrized TV PPC designs can be obtained, as in the TV MRC case, with a higher

order controller I/O operator yp 7! up (see Examples 4.7 and 4.8). Such a TV PPC may have strictly

proper I/O operator and/or possess additional degrees of freedom to allow some partial shaping of the

closed-loop sensitivity operators. For example, suppose �N1N
�1
2 is a TV PPC for a PL plant D�1

p Np, and

let V;W;D0; N0 denote PDO's with UB coe�cients such that

� deg[V ] > deg[W ];

� V is a monic PDO and V �1 is ES;

� D0 is monic and DpN0 +NpD0 = 0 in R+.

Then the controller �NyN
�1
x with Ny = N1V +D0W and Nx = N2V +N0W is also a TV PPC. Taking into

account the slight modi�cations in the degrees of the various PDO's and replacing N2; N1; D;A� in Lemma

5.2 by Nx; Ny; DV;A�V respectively, the same results are applicable in this case as well. However, notice

that the improvement of the properties of the closed loop sensitivity operators via an IMP design may not

be as simple as in the TV MRC case, due to the lack of the ES property of N�1
p and, particularly for PL

plants, the di�erent controller factorization.
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Figure 5.2: The TV PPC structure for LTV plants.

5.3 Realization of the TV PPC and Internal Stability

of the Closed-Loop Plant

In order to establish the exponential and, therefore, internal stability of the closed-loop system, we consider

a state-space realization of the TV PPC law of Lemma 5.1 according to the guidelines of Examples 2.39 and

2.38. In the case of plants in the PL-form, the control law is generated by using an auxiliary �lter as follows

_!1 = F!1 + qu1

u1 = p>2 (t)!1 + (r � yp)
up = p>1 (t)!1 + p3(t)u1 (5.10)

where r is the reference (command) signal, u1 2 R is an internal signal, F is a constant Hurwitz matrix

of dimension (n � 1) � (n � 1) and (F; q) is a completely controllable pair. The vectors p1(t), p2(t) and

the scalar p3(t) are the controller parameters which are to be selected such that the controller has the I/O

operator yp 7! up speci�ed in Lemma 5.1. The block diagram of the corresponding closed-loop system is

shown in Fig. 5.2.

Alternatively, in an I/O operator-notation, the control law (5.10) is expressed as

up = fp>1 (t)G(s) + p3(t)g[u1] (5.11)

u1 = p>2 (t)G(s)[u1] + (r � yp)
G(s) = (sI � F )�1q

The existence of parameters pi(t) such that (5.10) or (5.11) represent a TV PPC for a PL-plant is

established in the following corollary.

5.3 Corollary: Let N1(s; t), N2(s; t) be (n � 1)-degree PDO's with smooth, UB coe�cients and with

N2(s; t) monic. Then, there exist smooth, UB parameters pi(t) such that the I/O operator yp 7! up of (5.11)

is equal to �N1(s; t)N
�1
2 (s; t). 55

Proof: Immediate from Example 2.38. Notice that the parameters pi(t) depend on the coe�cients of

the left form of the PDO's Ni(s; t). These PDO's are initially obtained in the right form as the solution of

the corresponding left Diophantine equation (see Lemma 5.1). Consequently, the calculation of the controller

parameters pi(t) involves an additional intermediate step converting right-form PDO's into left-form ones.

22
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5.4 Remark: The TV PPC realization for plants in the PR-form follows similarly by using the results

of Example 2.39 to realize the I/O operators N�1
2 (s; t)D(s) and D�1(s)N1(s; t) as in the TV MRC case and

is summarized below.3

_!1 = F!1 + �1up

_!2 = F!2 + �2yp

!3 = �3yp

up = g>! + v (5.12)

where ! = [!>1 ; !>2 ; !3]> is a (2n�1)-dimensional vector, F 2 R(n�1)�(n�1) is a stable matrix with det(sI�
F ) = D(s) and g = [q>; q>; 1]> is a constant vector such that (q>; F ) is an observable pair.

Then, there exists a control parameter vector [�>1�; �>2�; �3�] such that the I/O operator yp 7! up of (5.12)

is equal to that of the TV PPC (5.6) as given by Lemma 5.1 for a PR-plant. (see Corollary 4.9 for details).

55

Having speci�ed the state-space realization of the controller, it is now possible to describe the exponential

and BIBS stability properties of the closed-loop plant, as well as the e�ects of arbitrary initial conditions,

for the TV PPC designed in Lemma 5.1 and realized according to Corollary 5.3 or Remark 5.4.

5.5 Theorem: The closed-loop plant (5.1) with the TV PPC is ES and, therefore, BIBS stable for any

external UB input. Furthermore, for arbitrary initial conditions set at t0, the ZIR of the closed-loop plant

decays as c exp[�a(t� t0)] where c; a are positive constants independent of t0; c depends on the size of the

initial conditions and a depends on the rate of exponential stability of A�1� (s; t) and D�1(s). 55

Proof: The proof is a direct consequence of Lemmas 2.35 and 5.2 and is obtained along the same lines

as Theorem 4.10. Notice that for PL plants, the main di�erence is that the initial conditions of the �lters

enter as exponentially decaying disturbances at the `r' and `du' nodes of Fig. 5.1, while for PR plants they

enter at the `v' node |same as in the TV MRC case. 22

5.6 Remark: Throughout the development of the TV PPC we have considered a general TV form

of the desired PIO A�1� (s; t) which allows many of the subsequent results to be established in a compact

and uni�ed way. In most practical applications, a TI A�(s) would be su�cient to meet the performance

speci�cations and considerably easier to select and realize. In particular cases, however, it may be possible

to exploit the additional 
exibility, o�ered by a TV A�(s; t), to compensate |at least in part| for time

variations in the closed-loop PDO's and improve the closed-loop performance. 55

5.4 Command Tracking with the TV PPC

Although the design of a TV (or PW) PPC scheme is a very general one, including the MRC design as a

special case,4 it does not guarantee any particular tracking performance capabilities for the associated closed-

loop system. The reason is that the PPC objective deals mainly with the properties of the closed-loop PIO

and state transition matrix, while it is assumed that any tracking performance requirements have already

been incorporated in the selection of the desired closed-loop PIO. In the previous chapter we discussed the

case where the performance objective was de�ned in terms of a reference model. This objective, however,

required the zero dynamics of the plant to be exponentially stable. It is therefore apparent that, in order to

3In this case, it is more convenient to consider v as the command input.
4The TV MRC can be obtained from a TV PPC with A

�
(s; t) containing Np(s; t) as a factor and some minor modi�cations

to adjust the high-frequency gain.
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Figure 5.3: TV internal model principle/pole placement controller design.

avoid imposing any such limitations in a PPC design, it is desirable to consider weaker objectives than the

MRC when tracking performance requirements should be incorporated in the PPC.

A frequently studied tracking performance objective is to achieve exact tracking for a class of reference

inputs whose internal model is speci�ed a priori. In the LTI case the design of a PPC satisfying this objective

is a rather straightforward procedure, involving the so-called internal model principle (IMP) [Bng.77]. Brie
y

described, the essence of this procedure is to introduce certain zeros, corresponding to the internal model,

in the sensitivity transfer function from the reference input to the tracking error. The same procedure

can be extended to the LTV case, where the condition for the TV IMP/PPC design is a skew coprimeness

of the internal model and the plant PDO. This condition is essentially similar to that of [Bng.77] in the

multivariable LTI case and reduces to the well known coprimeness condition of the internal model and the

plant numerator polynomials in the SISO LTI case. In the general LTV case, however, the skew coprimeness

cannot be expressed in terms of algebraic equations, as the right or left coprimeness do, which complicates

the design of a TV IMP/PPC.

Let us begin our discussion of the TV IMP/PPC design by considering the LTV plant (5.1) and its I/O

operator in the PL form (5.3). The TV IMP/PPC objective is de�ned as follows.

Determine the control input up so as to meet the TV PPC objective and force the output yp to track

reference signals r satisfying the di�erential equation

�(s)[r] = 0

where �(s) is an a priori speci�ed TI PDO.

In order to achieve exact tracking, the control input up is generated as the di�erence of the output of

two compensators as shown Fig. 5.3, i.e.,

up = N1(s; t)N
�1
2 (s; t)[r � yp]� P (s; t)Q�1(s)[yp] (5:13)

which is realized in state space using ES �lters as in the TV PPC case of the previous section.

The �rst compensator has an input r � yp and is designed to stabilize the closed loop, while the second

has an input yp and is designed to introduce the internal model of r in the forward path. The properties

and assumptions of such a design are summarized in the following corollary.
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5.7 Corollary:

a. Consider the LTV plant (5.1) and let NR(s; t); DR(s; t) denote the PDO's of the corresponding PR
form of the plant.5 Also let Q�1(s) be an exponentially stable TI PIO of order deg[�(s)]� 1 and such that

Q(s) and NR(s; t) are strongly left coprime in R+ and P (s; t) be a PDO of degree deg[�(s)]�1 with smooth

UB coe�cients. Further, select N2(s; t); N1(s; t) to satisfy the design equations

[Dp(s; t)Q(s) +Np(s; t)P (s; t)] ~N2(s; t) +Np(s; t)N1(s; t) = �A�(s; t) (5:14)

N2(s; t) = Q(s) ~N2(s; t)

where �A�1� (s; t) is an ES PIO of order 2n � 2 + deg[�(s)]. Then, the control law (5.13), realized in state

space according to Examples 2.39 and 2.38, guarantees the exponential stability of the closed-loop plant.

The rate of exponential decay of the closed-loop state transition matrix depends on �A�(s; t), Q(s) and the

auxiliary �lter used in the realization of N1(s; t)N
�1
2 (s; t).

b. Suppose that in (a.) the PDO P (s; t) also satis�es

5.8 Assumption:

X(s; t)�(s)�Np(s; t)P (s; t) = Dp(s; t)Q(s) (5:15)

for some PDO X(s; t) with smooth, UB coe�cients and degree n� 1.

Then, in addition to the result in (a), the tracking error e = r � yp converges to zero exponentially fast.

Such a controller is referred to as TV IMP/PPC. 55

Proof: In Appendix V.

From the above corollary it is apparent that the main limitation in the design of a TV IMP/PPC lies in

the selection of the PDO P (s; t) as to satisfy Assumption 5.8 which is a dynamical equation with respect

to the coe�cients of the unknown PDO's P (s; t); X(s; t). Since for implementation purposes the controller

parameters are required to be UB, we also need to assume the existence of bounded solutions of (5.15).

Notice, however, that the exponential stability of the closed-loop plant is guaranteed even if P (s; t) does not

satisfy Assumption 5.8, provided of course that it has smooth and UB coe�cients.

A general but quite restrictive su�cient condition for (5.15) to have a solution with UB coe�cients, for

any Dp(s; t); Q(s), is that for any UB smooth function f(t), there exist PDO's Y1(s; t); Y2(s; t) with UB

coe�cients such that

Y1(s; t)�(s) +Np(s; t)Y2(s; t) = f(t) (5:16)

which can be interpreted as skew coprimeness of the PDO's �(s); Np(s; t). At this point, it is interesting to

notice that considerably weaker conditions can be developed in several special cases of interest, as discussed

in the following example.

5.9 Example: Consider the case where �(s) = s (similar arguments hold for any �(s) = sk). Then,

P (s; t) = �(t) and by expressing the PDO's in (5.15) in the left form, it follows that a UB solution for � and

the coe�cients of X(s; t) exists, provided that the ODE

Np(s; t)[�] = �(t) (5:17)

has a UB solution, where �(t) is the coe�cient of s0 of the PDO Dp(s; t)Q(s) expressed in the left form.

This is trivially true if � = 0 (in other words, s is a right factor of Dp(s; t)) or if N�1
p (s; t) is an ES

PIO. These conditions can be further relaxed in the case of periodic systems. For example, if �(t) is a

periodic function with period T , then a UB solution of (5.17) can be found, by an appropriate selection of

the initial conditions of �(t0); _�(t0); . . . provided that the state transition matrix �N (�; �) of (5.17) satis�es
det[I � �N (t0 + T; t0)] 6= 0. 55

5That is, yp = NR(s; t)D
�1
R

(s; t)[up].
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5.5 Non-Smooth Parameter Variations

In this section we extend the previous design procedures and results to the more general case where the LTV

plant is described by

_x = Ao(t)x+ bo(t)up + ~A(t)x+~b(t)up

yp = c>o (t)x+ ~c>(t)x (5.18)

whose nominal and perturbation part satisfy Assumptions 3.4{3.6.

Due to the discontinuities in the plant parameters, a PDO/PIO factorization may not be available for the

LTV plant (5.18) and therefore the TV PPC or TV IMP/PPC design procedures (Lemma 5.1 or Corollary

5.7) are not directly applicable in this case. Under Assumption 3.5, however, the nominal part of the

plant possesses a PDO/PIO factorization inside every interval (tj ; tj+1) satisfying Assumptions 3.1{3.3 in

a piecewise sense. It is therefore possible to design a TV PPC or TV IMP/PPC6 for the nominal plant

[Ao; bo; co] inside each interval (tj ; tj+1). Thus, the control input is determined from (5.4) or (5.5) or their

state-space counterparts (5.12) or (5.10) in a piecewise sense while the parameter discontinuities and the

perturbation part of the plant are e�ectively treated as modeling errors. According to Theorem 5.5, this

control input guarantees that the nominal closed-loop is piecewise ES and therefore, invoking Corollary 3.8,

ES for a su�ciently small modeling error. We make this idea precise in the following theorem and corollary

where we establish the stability and performance properties of such TV PPC designs for the plant (5.18).

5.10 Theorem: Consider the LTV plant (5.18) whose nominal and perturbation parts satisfy Assumptions

3.4{3.6 with the TV PPC determined from (5.4) or (5.5) in a piecewise sense. Then, there exist �0 > 0,

�00 > 0 such that 8� 2 [0; �0), 8�0 2 [0; �00), the closed-loop system with the TV PPC (or TV IMP/PPC) is

ES with rate depending on A�1� (s; t) and the values of � and �0. 55

Proof: As in Theorem 4.18.

Notice that, in contrast to the MRC case, the exponential rate of decay of the closed-loop state transition

matrix depends now on A�(s; t) and the values of � and �0. Since A�(s; t) is selected by the designer, the

rate of exponential stability of the closed loop can be determined a priori, for su�ciently small � and �0.
Finally, for the TV IMP/PPC we can give a characterization of the tracking performance deterioration,

due to the parameter discontinuities and the perturbation part of the plant, as stated by the following

corollary.

5.11 Corollary: Under the conditions of Theorem 5.10, suppose that Assumption 5.8 holds inside every

interval (tj ; tj+1), uniformly in j and the TV IMP/PPC (5.13) is used to generate the control input. Then,

in addition to the results of Theorem 5.10, there exist positive constants K;K 0; C such thatZ t0+T

t0

jyp(t)� r(t)j2 dt � C +K�T +K 0�0T

for all t0; T � 0. 55

Proof: As in Theorem 4.18.

5.6 Slowly TV Plants

In the special case where the plant parameters vary slowly with time, the calculation of the controller

parameters is considerably simpli�ed by adopting a pointwise approach in the design of a PPC (PW PPC).

6Of course, for the TV IMP/PPC, Assumption 5.8 should also be satis�ed in a piecewise sense.
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This simpli�cation is obtained at the expense of some deterioration in the closed-loop performance de�ned

by the TV PPC objective.

In order to make this idea precise, let us consider the plant (5.1) satisfying Assumptions 3.1, 3.3 and,

denoting the plant parameters by the vector �p,

5.12 Assumption: k didti�p(t)k � �, 8 t 2 R+, i = 1; 2; . . . for some `small' parameter � � 0.

5.13 Assumption: The PW (frozen) controllability and observability matrices of the triple [A(t); b(t); c(t)]

are strongly nonsingular.

Under Assumption 5.12, the properties of the LTV plant can be approximated by the properties of the

corresponding sequence of frozen LTI plants. For example, for su�ciently small �, Assumption 3.2 is implied

by the easier to check Assumption 5.13. In addition, the validity of Assumption 5.13 may also be checked

by examining the strong PW coprimeness of the polynomials in the frozen I/O representation of the plant,

i.e., the numerator and denominator of the PW plant transfer function.

Therefore, for su�ciently small �, Assumptions 3.1, 3.3, 5.12, 5.13, imply that the LTV plant (5.1) admits

an I/O representation of the form (5.2) or (5.3), i.e.,

yp = Np(s; t)D
�1
p (s; t)[up]

or

yp = D�1
p (s; t)Np(s; t)[up]

where the coe�cients of the PDO's Dp(s; t); Np(s; t) are slowly TV.7 Furthermore, for su�ciently small �,

the PDO's Dp(s; t); Np(s; t) are strongly pointwise coprime and strongly left or right coprime. Consequently,

considering the PL-form of the plant, we may design a PW PPC by taking the controller I/O operator

yp 7! up to be �N1(s; t)N
�1
2 (s; t), i.e.,

up = �N1(s; t)N
�1
2 (s; t)[yp] (5:19)

with N1(s; t); N2(s; t) such that

Dp(s; t) ? N2(s; t) +Np(s; t) ? N1(s; t) = A�(s)

where `?' denotes pointwise multiplication and A�1� (s) is the desired, ES PIO8 of order 2n� 1. The closed-

loop stability properties with such a PW PPC are given by the following theorem (similarly for a PW PPC

corresponding to the PR-form of the plant).

5.14 Theorem: Consider the LTV plant (5.1) satisfying Assumptions 3.1, 3.3, 5.12, 5.13 and its I/O

operator expressed in the PL-form (5.3). Further, consider the PW PPC (5.19), realized in state-space by

(5.10) and applied to the LTV plant (5.1). Then there exists a constant �2 > 0 such that 8� 2 [0; �2),

1. the closed-loop plant is ES and therefore, BIBS and BIBO stable;

2. the closed-loop state transition matrix is exponentially decaying with rate that depends on A�1� (s),

D�1(s) and the value of �;

3. the closed-loop PIO D�1
c (s; t) satis�es

Dc(s; t) = A�(s) + �(s; t)

7Note that, in general, the PDO's Dp; Np of the PR and PL form are not the same but their coe�cients may be di�erent by
O (�).

8In this case we take A
�
(s) to be TI; if otherwise selected, A

�
(s; t) should be slowly TV since the speed of variation of its

coe�cients a�ects the range of � for which closed-loop stability can be guaranteed.



5.6. SLOWLY TV PLANTS 99

where �(s; t) is a PDO of degree at most 2n� 2, with smooth, UB coe�cients O(�). 55

Proof: In Appendix V.

The results of Theorem 5.14 can be extended to a wider class of slowly TV plants and a wider class of

control laws. For example, Assumption 5.12 may be relaxed as

5.15 Assumption: k _�pk1 � �.

5.16 Theorem: Suppose that for the LTV plant (5.1), Assumptions 5.15, 3.1, 5.13 and 3.3 are satis�ed

except that in 3.1 the plant parameters are only required to be Lipschitz continuous. Also suppose that an

LTV controller, of constant order and with a UB parameter vector �c(t) satisfying k _�ck1 � �, 9 is designed
so that the frozen closed loop is ES with rate at most �a� for all t 2 R+. Then there exists a constant

�2 > 0 such that 8� 2 [0; �2),

1. the closed-loop system is ES and, therefore, BIBS stable;

2. the exponential rate of decay the closed-loop state transition matrix depends on a� and the value of �.

55

Proof: Immediate from Lemma 2.42. Also notice that, in view of Theorem 5.10, it is quite straight-

forward to further relax the conditions of the theorem to hold in a piecewise sense and on the average. 22

5.17 Remark: Theorem 5.16 allows the construction of a large class of stabilizing controllers for slowly

TV plants, including most of the controllers that can be designed using LTI techniques. For example, an LTI

PPC, or a Linear Quadratic Gaussian Regulator with guaranteed stability margin (see [Kai.80]), satis�es

the above conditions10 and can be used as PW designs. Furthermore, under Assumption 4.14, a PW MRC

also belongs to the same class as a special case of a PPC. Note that a more general and quantitative version

of these results has been given in [S.A.91] where the properties of the closed-loop TV sensitivity operators

are approximated by the properties of the corresponding operators of the frozen closed-loop plant. 55

5.18 Remark: In the special case of an IMP/PPC design we may select the PDO P (s; t), entering in

equations (5.14) and (5.15), in a PW sense (PW IMP) and then perform a TV PPC design for the augmented

plant. This approach requires less restrictive and easier to check assumptions while preserving the stabilizing

properties of the TV PPC for arbitrarily fast TV plants (see Corollary 5.7). Moreover, it has the advantage

that even if Assumption 5.8 is not satis�ed, small tracking errors can be achieved for slowly TV plants.

For example, assuming that Np(s; t); �(s) are strongly left coprime PDO's in R+,
11 we can solve

�(s)X̂(s; t)�Np(s; t)P̂ (s; t) = Dp(s; t)Q(s) (5:20)

instead of (5.15), by solving a system of linear algebraic equations. Next the TV PPC parameters are

calculated as in Corollary 5.7 with P (s; t); X(s; t) being replaced by P̂ (s; t); X̂(s; t) respectively. In this case

the tracking error becomes

e = N2(s; t) �A
�1
� (s)X̂(s; t)Q�1(s)�(s)[r] (5.21)

+N2(s; t) �A
�1
� (s)[�(s)X̂(s; t)� X̂(s; t)�(s)]Q�1(s)[r]

9Such a condition holds if, for example, the controller parameter vector �c is a Lipschitz continuous function of the plant
parameter vector �p.

10Their order is constant and, under Assumption 5.13, their parameters are Lipschitz continuous functions of the plant
parameters.

11Note that for slowly TV plants, the strong pointwise coprimeness of Np(s; t) and �(s) guarantees the strong left coprimeness
of the PDO's Np(s; t); �(s).
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The coe�cients of the PDO [�(s)X̂(s; t) � X̂(s; t)�(s)] depend on the derivatives of the plant parameters

and, hence, the contribution of the last term of (5.21), for a UB reference input, is O(�)-small if the plant

is slowly TV. However, the PPC objective, i.e., �A�1� (s) is the closed-loop PIO, is still satis�ed for slow and

fast TV plants.

A similar result can also be established by using the conventional approach for SISO LTI plants, whereby

��1(s) is included in the forward path of the loop and the PPC is designed for an augmented plant. Needless

to say, in both cases, the exponential stability of the closed-loop system is guaranteed by the PPC design,

for arbitrarily fast variations should the TV PPC be used or, for su�ciently slow variations with the PW

PPC. Finally, with this approach, an O(�) tracking error is also obtained for slowly TV plants with Lipschitz

continuous parameters. The details of these statements, however, are omitted as completely analogous to

Theorem 5.16. 55

5.7 Examples

The following examples demonstrate the design principles and properties of the TV and PW PPC for LTV

plants. For simplicity we drop the argument t in the expressions of the various TV parameters.

5.19 Example: TV and PW PPC Design. Let us consider the second order plant

d2

dt2
yp +

d

dt
(a1yp) + a2yp =

d

dt
up + bup (5:22)

where a1; a2; b are the TV parameters of the plant and the control objective is to design a controller that

makes the closed-loop PIO equal to (s3 + 6s2 + 11s+ 6)�1. According to the previously presented analysis,

we realize a TV PPC law, choosing F = �2 and q = 1, as follows:

up = p1(s+ 2)�1[u1] + p3u1 ; u1 = p2(s+ 2)�1[u1] + (r � yp) (5:23)

where p1; p2; p3 are the controller parameters to be determined. From (5.23) the plant input can also be

written as

up = (s 2 +  3)(s+  1)
�1[r � yp] ; (5:24)

 1 = 2� p2 ;  2 = p3 ;  3 = p1 + 2p3 � _p3 (5:25)

Combining (5.22) with (5.24) we obtain the PIO of the closed loop�
(s2 + sa1 + a2)(s+  1) + (s+ b)(s 2 +  3)

��1
(5:26)

which is to be made equal to [s3 + 6s2 + 11s + 6]�1. Thus, we obtain the following set of equations that

 1;  2;  3 must satisfy: 0
@ 1 1 0

a1 b 1

a2 �_b b

1
A
0
@  1

 2
 3

1
A =

0
@ 6� a1

11� a2 + _a1
6 + _a2

1
A (5:27)

or, in a compact form with obvious notation,

SL(t) (t) = A(t) (5:28)

Using Cramer's rule, and letting A = (A1; A2; A3)
> we obtain the solution for  

 1 =
A1(b

2 + _b)�A2b+A3

det[SL(t)]

 2 =
A1(a2 � a1b) +A2b�A3

det[SL(t)]
(5.29)

 3 =
�A1(a1 _b+ ba2) +A2(a2 + _b) +A3(b� a1)

det[SL(t)]
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where, for the solution (5.29) to exist and be bounded det[SL(t)] = b2 + _b � a1b + a2 must be bounded

away from zero, for all t � 0 (Left Coprimeness condition). From (5.25), we obtain the desired controller

parameters as

p1 =  3 � 2 2 + _ 2 ; p2 = 2�  1 ; p3 =  2 (5:30)

Thus, the response of the plant (5.22) with the controller (5.23) and the parameters (5.30), (5.29) is

yp = r � (s+ 2� p2)(s3 + 6s2 + 11s+ 6)�1(s2 + sa1 + a2)[r] (5:31)

and, hence, the control objective is satis�ed exactly with no restrictions on the speed of variation of the

plant parameters, other than being �nite.

In contrast to the above solution, the design of a PW PPC proceeds by `freezing' the values of a1; a2; b

in (5.26) at each time instant [Kre.86, M.G.88], i.e., by taking their derivatives to be identically zero. Thus,

the parameters  1;  2;  3 are calculated by solving0
@ 1 1 0

a1 b 1
a2 0 b

1
A
0
@  1

 2
 3

1
A =

0
@ 6� a1

11� a2
6

1
A (5:32)

Furthermore, for a pointwise realization of the PPC we select

p1 =  3 � 2 2 ; p2 = 2�  1 ; p3 =  2

A comparison with (5.25) shows that the e�ective controller parameters  i are now  1,  2,  3 + _ 2. Thus,

using the PW PPC, the PIO (5.26) becomes

[s3 + 6s2 + 11s+ 6� s( _a1 � _ 2)� _a2 � _b 2 + b _ 2]
�1 (5:33)

From (5.33) it becomes apparent that, in general, this solution cannot satisfy the control objective exactly,

unless the plant is TI. Furthermore, the closed-loop stability cannot be guaranteed unless the plant is slowly

TV, i.e., _a1; _a2; _b are small which, together with the assumed strong nonsingularity of the Sylvester matrix,

implies that _~ i is also small. 55

5.20 Simulations: Next, we assign some numerical values for the plant parameters a1; a2; b and

calculate the corresponding PPC parameters. Let

a1 = 20 + 12 sin�t ; a2 = 6 cos�t ; b = �1 (5:34)

where � is a positive constant which determines the speed of variation of a1; a2. Then det[SL(t)] = 21 +

12 sin 2t + 6 cos 2t � 7:5836 8 t and the TV PPC parameters are obtained, in a straightforward way, from

(5.29) and (5.30). Moreover, the PW PPC parameters are similarly calculated from (5.32) by observing that,

for this example, the PW and left TV Sylvester matrices are the same since _b = 0.

In Fig. 5.4 the response of the closed loop system during regulation (r = 0) is shown for the TV and PW

PPC. Notice that due to the `small' value of �, the PW design is able to preserve the closed-loop stability.

On the other hand, while a larger value of � does not a�ect the closed-loop stability for the TV PPC,

it is likely to cause the failure of a PW PPC. Letting � = 2 and using the TV PPC, exact regulation is

achieved, as shown in Fig. 5.5. Using the PW PPC, however, the regulation response of the plant becomes

unbounded, as shown in Fig. 5.6. In fact, it can be shown (via Floquet analysis) that, for this example, the

PIO (5.33) corresponding to the closed-loop with the PW PPC, is unstable. 55

5.21 Example: TV IMP/PPC Design. Let us now consider the case where, in addition to the closed-

loop stability, the control objective is that the output of the plant (5.22) should track constant reference
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Figure 5.4: Slowly TV plant (� = 0:5): Exact asymptotic regulation with
the TV and PW PPC.
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Figure 5.5: Fast TV plant (� = 2): Exact asymptotic regulation with
the TV PPC.
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Figure 5.6: Fast TV plant (� = 2): Unbounded response obtained with
the PW PPC during regulation.
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Figure 5.7: Fast TV plant (� = 2): Poor tracking of step reference inputs
with the TV PPC.
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Figure 5.8: Fast TV plant (� = 2): Exact asymptotic tracking of step
reference inputs with the TV IMP/PPC.

signals. In general, the performance of a simple (TV or PW) PPC scheme with respect to such an objective,

may be very poor. This is demonstrated in Fig. 5.7 where we use the TV PPC of the previous example

(with � = 2) to track a square wave reference input with values alternating between 0 and 10.

In order to enhance the tracking performance of the TV PPC we employ the results presented in Section

5.4 to design a TV IMP/PPC. Thus, according to Corollary 5.7, we take ��1(s) = s�1 and design the plant

input as

up = ��yp + �up ; �up = (s 1 +  2)(s+  3)
�1[r � yp] ; (5:35)

where � is a time-varying gain and �up is realized as in the TV PPC case (eqns. (5.23), (5.24)). We observe

that in this case, we need not increase the order of the controller since deg[�(s)] = 1; deg[Q(s)] = 0. From

Corollary 5.7 we have that � should satisfy

s2 + sa1 + a2 + (s+ b)� = (s+ x)s (5:36)

for some x. Performing the calculations in (5.36) we obtain

_� = �b�� (a2 + _a1) ; x = a1 + � (5:37)

At this point we assume that we can �nd a bounded function of time, �, s.t. (5.37) is satis�ed. Note

that in the LTI case ( _� = 0) this assumption reduces to b 6= 0, i.e., the plant zero should not be a zero of the

internal model �(s). The rest of the TV IMP/PPC design is done as in the PPC case with [s + (a1 + �)]s

in the place of [s2 + sa1 + a2]. The �nal TV IMP/PPC design guarantees the closed-loop internal stability

as well as the exact tracking of constant (step) reference inputs. 55

5.22 Simulations: Using the numerical values of Example 5.19, with � = 2, we obtain

� = �12 sin 2t+ 6 cos 2t ; x = 20 + 6 cos 2t (5:38)

and the plant PIO, for which the TV PPC should be designed, is now [s2 + s(20 + 6 cos 2t) + (12 sin 2t)]�1

and the calculation of the gains p1; p2; p3 is performed in the same fashion as in Example 5.19, by making

the following substitutions:

a1  � 20 + 6 cos 2t

a2  � 12 sin 2t (5.39)

The exact asymptotic tracking of step reference inputs is demonstrated in Fig. 5.8, where the output of

the closed-loop plant is required to follow a square wave reference input. 55
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Figure 5.9: Fast TV plant (� = 2): Bounded response but poor tracking
of step reference inputs with the TV PPC + PW IMP.
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Figure 5.10: Slowly TV plant (� = 0:5): Somewhat improved tracking
of step reference inputs with the TV PPC + PW IMP.

5.23 Example: TV PPC + PW IMP Design. Finally, to illustrate the modi�ed IMP design mentioned

in Section 5.6, let us consider Example 5.21 again and take up = ��yp + �up. From (5.22) we obtain

[s2 + sa1 + a2 + (s+ b)�][yp] = (s+ b)[�up]

We may now choose � to introduce the internal model as a factor of the plant PIO in a PW sense. For

example, assuming b 6= 0, we may take � = �a2=b (other choices are also possible) which yields the following

description for the modi�ed plant

[s2 + s(a1 + �)][yp] = (s+ b)[�up]

With this choice, L(s) = s becomes a left factor of the plant PIO. Next, the control law �up is designed as a

TV PPC for the modi�ed plant, i.e., for the plant [s2+s(a1+�)]
�1[s+b]. The resulting controller guarantees

the closed-loop stability irrespective of the speed of the plant parameter variations and O(�) tracking error

to step reference inputs.

This is demonstrated in Figs. 5.9, 5.10 and 5.11. In the �rst of these �gures � = 2, i.e., the plant

parameters are fast TV; the closed-loop is shown to have bounded response but tracking is very poor.12 In

the last two �gures, � = 0:5; 0:2 respectively; the tracking of a step input improves considerably as the

speed of the plant parameters decreases. 55

APPENDIX V

12Step reference input; 0-10 transition at t = 10.
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Figure 5.11: Slowly TV plant (� = 0:2): Considerably improved tracking
of step reference inputs with the TV PPC + PW IMP.

Proof of Corollary 5.7:

For the �rst part of the Corollary we must show that DpQ and Np are strongly left coprime PDO's in R+.

From De�nition 2.12, it su�ces to show that there exist PDO's X;Y;X0; Y0 with smooth UB coe�cients,

such that

DpQX +NpY = 1 ; DpQX0 +NpY0 = 0:

Since Dp and Np are strongly left coprime in R+, the PDO's DR; NR, corresponding to the right coprime

factorization of the plant, exist and have smooth UB coe�cients and satisfyDpNR�NpDR = 0: Further, since

Q and NR are strongly left coprime in R+, there exist PDO's Xq; Yq; XR; YR with smooth UB coe�cients

such that

QXq +NRYq = 1 ; QXR +NRYR = 0:

Hence, DpQXR +DpNRYR = DpQXR + NpDRYR = 0. Next, let X1; Y1 be the PDO's satisfying DpX1 +

NpY1 = 1 which, by the strong coprimeness of Dp and Np, exist and have smooth UB coe�cients. Since

Q and NR are strongly left coprime in R+, there exist PDO's X;W with smooth UB coe�cients, such

that QX � NRW = X1. De�ne the PDO Y = Y1 � DRW . It follows that DpNRW � NpDRW = 0 and

Dp(X1 + NRW ) + Np(Y1 � DRW ) = 1 from which we obtain DpQX + NpY = 1. Letting X0 = XR and

Y0 = DRYR it follows from De�nition 2.12 that the PDO's DpQ and Np are strongly left coprime in R+.

The above result guarantees the existence of two PDO's ~N1; ~N2 with smooth UB coe�cients such that

DpQ ~N2 + Np
~N1 = �A�. Letting N1 = ~N1 � P ~N2, we obtain equation (5.14). The rest of the proof of part

(a.) follows from Lemma 2.35 using similar arguments as in Theorems 4.10 and 5.5.

For part (b.) and after some straightforward calculations we obtain the following equation for the tracking

error e = r � yp

e = N2(s; t)
h
X(s; t)�(s) ~N2(s; t) +Np(s; t)N1(s; t)

i�1
X(s; t)�(s)Q�1(s)[r] (5:40)

where, from Assumption 5.8,

X(s; t)�(s) = Dp(s; t)Q(s) +Np(s; t)P (s; t):

Since �(s)Q�1(s)[r] = Q�1(s)�(s)[r] = Q�1(s)[0] we get

e = N2(s) �A
�1
� (s)X(s)Q�1(s)[0] (5:41)

Consequently, by part (a.) the closed-loop system is ES and the tracking error decays to zero exponentially

fast. 22
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Proof of Theorem 5.14:

Note that, by Lemma 2.41, either Assumption 3.2 or its pointwise version 5.13 can be used, since the

latter implies the former for � 2 [0; �20) and some �20 > 0. For the PW PPC, the coe�cients of the controller

PDO's Mi(s; t) are obtained by a pointwise solution of the corresponding Diophantine equation (see Lemma

5.1) i.e.,

Dp(s; t) ? M2(s; t) +Np(s; t) ? M1(s; t) = A�(s)

where (?) denotes a pointwise operation. Hence, from property P4 of the PDO's, it follows that Mi(s; t)

satisfy

Dp(s; t)M2(s; t) +Np(s; t)M1(s; t) = A�(s) + �1(s; t) (5:42)

where �1(s; t) is a PDO of degree 2n�2, with coe�cients O(�). Furthermore, since the controller parameters
pi(t) are found by pointwise calculations from Mi(s; t), it follows that the realized control law corresponds

to PDO's M̂i(s; t) such that the PDO's M̂i(s; t)�Mi(s; t) have coe�cients O(�) and M̂2(s; t)�M2(s; t) is

of degree n� 2. Thus, the actual closed-loop system has PIO

D�1
c (s; t) = [Dp(s; t)M̂2(s; t) +Np(s; t)M̂1(s; t)]

�1 = [A�(s) + �(s; t)]�1 (5:43)

where, again, �(s; t) is a PDO of degree 2n� 2, with coe�cients O(�). Hence, by Lemma 2.45, the closed-

loop system is BIBO stable 8� 2 [0; �2), for some �2 > 0 (and �2 � �20). Further, the internal stability of

the plant and the exponential stability of the closed-loop system follow by using similar arguments as in the

proof of Theorem 5.5 where, now, Dc is given by (5.43). 22



Chapter 6

On-Line Parametric Identi�cation

6.1 Introduction

In the previous chapters we established some general controller design techniques which under their respective

assumptions and given a complete knowledge of the plant parameters produce a stabilizing controller. In

practice, however, such a knowledge is more often than not unavailable, introducing some uncertainty in the

dynamical description of the plant. This uncertainty can be in the form of a general dynamical operator

(dynamic uncertainty) and/or in the form of parametric uncertainty, that is an error in the parameters of

the state-space representation of the (nominal) plant. For both types of uncertainty, a controller designed

so as to make the nominal closed-loop plant exponentially stable is also able to guarantee stability in the

presence of su�ciently `small' amounts of uncertainty. For example, such a result may easily be established

by employing the small-gain theorem [D.V.75] for dynamic uncertainty whose operator has small gain or

Lemma 2.45 for small parametric uncertainty. In the context of TV plants, however, the requirement that

the parametric uncertainty is small may be too restrictive and di�cult to satisfy. Consider for example

a parameter varying as sin(w0t); any small perturbation of the frequency w0 is su�cient to destroy the

knowledge of the parameter within a small or small-in-the-mean-square error.

On the other hand, it is intuitively possible to use a parameter estimation scheme to identify the pa-

rameters of the nominal plant on-line, thus reducing a large parametric uncertainty to a level that can be

tolerated by the controller. The implementation of this deceivingly simple idea is the subject of the rest of

this book. The main theoretical problem, introduced by such an implementation, is the severe nonlinear

coupling between the parameter estimator and the control law. This raises questions not only about the sta-

bility/boundedness of the closed-loop system but about the existence of solutions of the di�erential equation

describing the closed-loop as well.

In order to provide an answer to these questions, we �rst need to establish some fundamental properties

of parameter estimation algorithms operating in a closed-loop environment. In such an environment the

various signals cannot be assumed to be bounded a priori |or, for that matter, even exist at all. Moreover,

any convenient arguments on the convergence of the estimated parameters are also absent since the closed-

loop signals are not in the disposal of the designer. The derivation of the properties of parameter estimators

under such weak conditions is the subject of this chapter. We begin with Section 6.2 where we consider a

general a�ne in the (TV) parameters model and analyze some basic algorithms for the estimation of the

TV parameters. The results of Section 6.2 are subsequently employed in Section 6.3 where we discuss the

parametric identi�cation of the I/O operator of a general LTV plant. Finally, we present a simple example

to illustrate the main ideas of this chapter.

107
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6.2 A�ne Parametric Models and Estimation of TV Parameters

Let us consider the parametric model,

y(t) = w>(t)��(t) + �(t) (6:1)

where y : [t0; t0 + T ] 7! R, w : [t0; t0 + T ] 7! Rn are signals available for measurement, �� : R+ 7! Rn is

a vector of unknown parameters and � : [t0; t0 + T ] 7! R is an unknown signal which is typically due to

modelling error e�ects or noise in (6.1).

Parametric models of the form (6.1) have been extensively studied in the identi�cation of LTI plants,

where �� is constant (e.g., see [S.B.89, G.S.84]). As we have shown in Chapter 2, the parametric model

(6.1) is also applicable in the case of LTV plants, e.g., see equation (3.21) where �� is a vector of the PDO

coe�cients of the plant I/O operator in the PL form and � is a swapping term depending on _��. In this

section, our objective is to develop and study parameter estimators or adaptive laws to estimate ��(t) in
(6.1). For this purpose, we assume that

6.1 Assumption: �� is UB and piecewise Lipschitz continuous on R+ with piecewise UB derivative; we

use nI to denote the number of points of discontinuity of �� |always of the �rst kind| in an interval

I � [t0; t0 + T ];

6.2 Assumption: w, � (and therefore y) are UB and piecewise continuous on [t0; t0 + T ]; in this context

`UB' also denotes that the bounds are independent of T and t0;

6.3 Assumption: a bounded, convex setM(t) with smooth boundary and such that ��(t) 2M(t), 8 t 2 R+,

is known a priori. For simplicity, we assume that the setM(t) is a ball in Rn, i.e.,

M(t) =M = f� 2 Rn : j� � �cj �M0g

where the center �c and the radius M0 are constant.

Assumption 6.2 requires w; � and y to be UB on [t0; t0 + T ] with bounds that are independent of t0 and

T . In most identi�cation problems of LTV plants parametrized by (6.1), such an assumption is satis�ed by

considering either stable LTV plants or plants which are stabilized by a �xed (non-adaptive) controller. On

the other hand, if Assumption 6.2 fails, it is often possible to rewrite (6.1) as

�y(t) = �w>(t)��(t) + ��(t)

where �x denotes the normalized signal x, i.e., �x(t) = x(t)=m(t) and m(t) is a suitable normalization signal

selected so that �w; �� and �y satisfy Assumption 6.2. This situation typically arises in an adaptive control

setup where the closed-loop signals may not be assumed to be UB a priori. Normalization is therefore a

useful tool which allows us to extend any results developed for the parametric model (6.1) to such cases. A

more detailed discussion on the design of a normalization signal is given later in this and the next chapter.

In Assumption 6.3, the parameter M0 used in the de�nition of the setM is a measure of the size of the

parametric uncertainty in ��(t). With a little additional e�ort both M0 and �c can be allowed to vary with

time. For example, under a similar formulation, it is possible to admit generalized ellipsoids as parametric

uncertainty sets, i.e.,

M(t) = f� 2 Rn : jM(t)[� � �c(t)]j � 1g
where M(t) is a known, strongly nonsingular, positive de�nite matrix 8 t 2 R+, �c(t) is a known vector and

M , �c are Lipschitz continuous and UB on R+. At this stage, we do not consider such a generalization, as
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it unnecessarily complicates the presentation without o�ering any signi�cant improvement of the results; it

may be useful, however, in subsequent studies.

Furthermore, the vector norm in the de�nition of the set M can be chosen as the most convenient one

for the particular problem although norms whose unit balls have non-smooth boundaries introduce some

additional di�culties in the estimator construction. In our discussion we avoid this rather minor issue by

considering only two vector norms, namely the j � j2 and the j � j1 which are a `natural' selection in most

applications. For example, j � j2 would be less conservative if the uncertainty in ��(t) is speci�ed in terms

of the radius of a sphere while j � j1 would be more appropriate if it is speci�ed in terms of the minimum

and maximum value of its components. Notice that in this case, the estimation problem can be treated

component-wise with interval constraints and thus satisfy the smooth boundary assumption; an example of

this is presented later.

We may now develop an adaptive law to estimate �� in (6.1) according to the following procedure:

Let �(t) be the estimate of ��(t) at time t. Then the estimated value of y at time t, based on the estimate

�(t), is

ŷ(t) = w>(t)�(t) (6:2)

The estimation error

�1 = ŷ � y = w>� � y (6:3)

is therefore a measure of the `quality' of estimation in the sense of (6.1), that is, how well is the partially

unknown parametric model (6.1) approximated by (6.2). Substituting (6.1) and (6.2) in (6.3), it follows that

the estimation error is expressed as

�1 = w>�� �
where �

�
= � � �� is the parameter error. In other words, �1 contains information about the parameter

error, in an inner product form, corrupted by the noise term �. An adaptive law to update the estimate �

is designed by using the gradient projection method to minimize the cost

J(�) = �21 = (w>� � y)2

with respect to � and subject to the constraint � 2M. Such an update law has the form

_� = P (�
�1w) ; �(t0) 2M (6:4)

where 
 > 0 is a constant gain referred to as the adaptation gain and, for simplicity, is taken as scalar and

P denotes a projection operator, designed to guarantee � 2M.

Essentially, the operator P is the identity when � is in the interior ofM and projects�
�1w on the tangent

hyperplane at �(t) when the latter is on the boundary ofM and the vector�eld points towards the exterior of

M (e.g., see [Ega.79, G.S.84, S.B.89]). Some additional provisions are taken so that the vector�eld in (6.4)

is (at least locally) Lipschitz continuous, in order to avoid any problems with the existence and uniqueness

of �, as well as problems in the numerical simulations of the adaptive law. For this purpose, we may slightly

increase the size of the setM, i.e., de�ne a boundary region of some small but nonzero thickness, where we

make a smooth transition between projected and unprojected vector�elds. The thickness of the boundary

region is denoted throughout by �� which is treated as a small design parameter. In the following examples

we illustrate such a design of the projection operator in the two, most frequently encountered, cases where

the setM is speci�ed in terms of an L1 and an L2 vector norm. It should be mentioned that the existence

and uniqueness (in the sense of Fillipov) of solutions of di�erential equations of the form (6.4) have been

established in [P.I.91] for a general projection operator. It is therefore theoretically possible to select �� = 0.

In practice, however, such a choice may cause numerical problems due to the discontinuous vector�eld in the

di�erential equation with projection. For this reason, in the following we assume that �� > 0.
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Figure 6.1: The functions �pi.

6.4 Example: When the set M is de�ned in terms of the minimum and maximum values of the

components of ��, say �i�min and �i�max respectively, the projection operator P is simply constructed as a

multiplier of the form

P = diag[�pi]

�pi =

8>><
>>:

max
n
0;min

h
1; 1 + �i��i�min

��

io
when �1wi > 0

max
n
0;min

h
1; 1 + �i�max��i

��

io
when �1wi < 0

1 otherwise

(6:5)

where �� is an arbitrary, small positive constant whose purpose is to ensure the Lipschitz continuity (in �) of

�pi�1wi, something that can be shown using Assumptions 6.1{6.3. Pictorially, the functions �pi are shown

in Fig. 6.1. 55

6.5 Example: A similar construction of the projection operator P is also possible when the setM is

de�ned in terms of the Euclidean norm of ��. In this case the setM is of the general form

M = f� 2 Rn : j� � �cj2;M � 1g

where j�j2;M denotes the weighted Euclidean norm
�
�>M�

�1=2
andM is a symmetric positive de�nite matrix.

In other words,M is a generalized ellipsoid in Rn centered at �c.

For such a set, one simple form of a projection operator can be given in terms of a multiplier

P = I � �p�?�>?
where

�? =
M(� � �c)
jM(� � �c)j2

is the normal vector, pointing outwards, on the surface j� � �cj2;M = constant,1

�p =

(
max

n
0;min

h
1;
j���cj2;M�1

��

io
when �1w

>�? < 0

0 otherwise
(6:6)

and �� is again an arbitrary, small positive constant. 55

The properties of the adaptive law (6.4) are given by the following theorem.

6.6 Theorem: Consider the parametric model (6.1), satisfying Assumptions 6.1{6.3, and the adaptive

law (6.4). Then,

a. �, _� are UB on [t0; t0 + T ] (� is within distance �� fromM);

b. there exist constants C0; C1;K�;KJ , independent of T; t0, such that for any interval I = [tI ; tI+TI ] �
[t0; t0 + T ],

1The constant used here is the current value of j���cj2;M , i.e., �
?
is the normal vector on the boundary of a scaled ellipsoid,

similar toM, that passes through the point �. Note that a more e�cient but more complicated type of projection would be to
take �

?
to be the vector of minimum distance between � and M.
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1.

Z tI+TI

tI

�21(t) dt � C0 +

Z tI+TI

tI

�2(t) dt+
K�




Z tI+TI

tI

j _�s�(t)ji dt+
KJ



nI

2.

Z tI+TI

tI

j _�(t)j2 dt � 
2C1

Z tI+TI

tI

�21(t) dt

where �s� denotes the Lipschitz continuous part of ��, i.e., �� = �s� + �J� , for some piecewise constant (jump)
function �J� and j � ji is the linear functional norm induced by the norm employed in the de�nition of the set

M. 55

Proof: In Appendix VI.

At this point, it is worthwhile to make some observations on the performance of the adaptive law (6.4),

as given by Theorem 6.6 and its relation with the various design parameters.

� The adaptive law (6.4) identi�es the I/O properties of ��, viewed as an operator de�ned by (6.1), in the
mean-square sense. In this sense, the mean-square value of the estimation error is a measure of the quality

of identi�cation. Thus, the identi�cation is `successful' from an I/O point of view, provided that �� varies
slowly with time and the noise term � is small.

� The constants used in the theorem depend on the size of parametric uncertainty (M0) and the gain of

adaptation (
) as follows:

C0 = O(M2
0 =
) ; K� = O(M0) ; C1 = kwk21

while Kj is of the order of the maximum size of jumps. These relations imply that if the adaptation gain is

large enough compared with the speed of variation of ��, the mean-square value of the estimation error is of

the order of the mean-square value of the noise term �.

� In the special case where � = 0 and �� = constant, the estimation error �1 is square integrable. It

follows that if �1 is also uniformly continuous, then as T ! 1, �1 ! 0. This does not imply, however,

that for small � and _��, �1 remains uniformly small as T ! 1. Instead, properties (2) and (3) allow for

the possibility of `burst' phenomena, whereby the estimation error may attain O(M0)-large values during

short time periods. Such phenomena can be avoided in the case of constant parameters by using some

a priori information on the L1 bound of � and a `dead-zone' modi�cation in the adaptive law (e.g., see

[P.N.82, MGHM.88, G.S.84]). It is not clear though, whether this technique can be transferred to the TV

case with similar results.

� Even in the TI case, Theorem 6.6 does not provide any conclusions on the `strong' convergence of the

operator � to ��, i.e., the convergence of k� � ��k to zero. Although such a convergence is desirable, it does

not seem to be possible unless �� is constant and the vector w is persistently exciting [And.77]. When the

unknown parameter vector �� is slowly TV this result can be extended to the parametric model (6.1) within

an error that depends on the speed of variation of �� [M.G.87].

Analogous results can be obtained with estimators employing the so-called �-modi�cation [I.K.83]. With

this modi�cation, a term ��(���c) is introduced in the vector�eld of the estimator, providing the necessary
component to ensure the boundedness of the parameter estimates, for example

_� = �
�1w � �(� � �c) (6:7)

where � is a positive constant.

6.7 Theorem: Consider the parametric model (6.1), satisfying Assumptions 6.1{6.2 and the adaptive law

(6.7). Then,

a. �, _� are UB on [t0; t0 + T ] and �(t) converges exponentially fast to a residual set�
� : j�(t)� �cj2 �

r



2
E��(t)k(y � w>�c)tk2;�

�
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b. there exist constants C0; C1;KJ , independent of T; t0, such that for any interval I = [tI ; tI + TI ] �
[t0; t0 + T ],

1.

Z tI+TI

tI

�21(t) dt � C0 +

Z tI+TI

tI

�2(t) dt . . .

+
1

2


Z tI+TI

tI

jp�(��(t)� �c) +
1p
�
_�s�(t)j22 dt+

KJ



nI

2.

"Z tI+TI

tI

j _�(t)j22 dt
#1=2

� 

"
C1

Z tI+TI

tI

�21(t) dt

#1=2
. . .

+�

"Z tI+TI

tI

j�(t)� �cj22 dt
#1=2

where �s� denotes the Lipschitz continuous part of ��. 55

Proof: In Appendix VI.

Such an estimator has the advantage that parameter boundedness is guaranteed without the explicit a

priori knowledge of a bound on the parametric uncertainty. However, unlike an estimator using projection,

it does not recover any asymptotic identi�cation properties when the parameters become constants. An

additional drawback is that the selection of � and 
 involves certain trade-o�s since both � and 1=� appear

in the various bounds. For example, �
 j����cj2 and 1

� j _�s�j2 both appear as perturbations in the mean-square

value of the estimation error. And although their contribution can be lessened by increasing the value of

the adaptation gain, such an approach has the undesirable e�ect of increasing the bound of � as well as the

mean-square value of _� and may cause instability in an adaptive control scheme employing (6.7). On the

other hand, the properties of the above theorem indicate that this estimator can be particularly e�ective

when the (unknown) parametric uncertainty is small (i.e., j�� � �cj is `small').
It should be mentioned that another di�erence between the two techniques discussed above is that using

an estimator with projection, the parameters are guaranteed to be UB with considerably weaker assumptions.

In fact, if the bounds of the signals w; � depend on T , the projection still guarantees the uniform boundedness

of �, although in this case the constants in the Theorem 6.6 may depend on T . The same statement is not

true for an estimator with a �-modi�cation, in which case, the failure of w; � to be UB results in parameter

estimates whose bound may depend on T . Such a property, however, is not exploited any further and in the

sequel Assumption 6.2 |or su�cient conditions for it to be satis�ed| is employed whenever a parameter

estimation algorithm is constructed.

6.8 Remark: It is possible to retain most of the attractive simplicity of the �-modi�cation and, at the

same time, achieve error bounds as in Theorem 6.6 by using the a priori knowledge of M0 to switch on the

� term only when the magnitude of the parameter estimates is large. In this case, � is chosen as a Lipschitz

function of j� � �cj2, e.g.,
� = �0max

�
0;min

�
1;
j� � �cj2 �M0

��

��
where �0 is a positive constant. This switching �-modi�cation has the property that, provided j����cj2 < M0,

�(� � �c)>(� � ��) � 0.2 Using this property it is straightforward to verify that Theorem 6.7 is still valid

and the mean-square value of �1 satis�esZ tI+TI

tI

�
�21(t) +

2�



(�(t)� �c)>(�(t)� ��(t))

�
dt � C 00 + . . .

+

Z tI+TI

tI

�2(t) dt+
K 0
�




Z tI+TI

tI

j _�s�(t)j dt+
K 0
J



nI

2Otherwise, the switching �-modi�cation acts e�ectively as the constant one with similar properties.
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where the constants C 00;K 0
�;K

0
J have similar properties as C0;K�;KJ of the projection algorithm. Moreover,

� is UB and (� � �c) is exponentially decaying to a set bounded (in the 2-norm) by M0 + O[��] + O[
q



�0
].

Hence, the size of this set is essentially independent of the initial conditions �(t0) and, with an appropriate

choice of �� and the ratio 
=�0, can be made arbitrarily close to M0. An attractive property of the switching

�-modi�cation is that it can be used together with a projection to accommodate a priori known time-varying

parametric uncertainty (�c;M0) sets, while preserving the properties of the projection algorithms. Note that

whenM(t) changes with time, there is a possibility of � being well outside the projection set at some time

instant. In such a case, the term ��(� � �c) provides means to bring � back to M(t) exponentially fast.

55

It is now apparent that the estimators presented in this section have the essential properties required for

the successful I/O identi�cation of a slowly TV multiplier ��. The quality of the identi�cation is determined

by the mean-square value of the estimation error and, as intuitively expected, improves as the speed of

variations of �� decreases. What remains to be established is that the unknown I/O operator can be

described in a form satisfying the assumptions of Theorem 6.6 and 6.7. This problem is studied in the

following section.

6.3 Parametric Identi�cation of LTV Plants

In this section we discuss the identi�cation problem of the I/O operator of a LTV plant. Our focus is on

parametric identi�cation whereby we perform the identi�cation of the operator by estimating the parameters

of a suitable parametric model. Such parametric models for the LTV plants under consideration have been

derived in Chapter 3 [e.g., see equations (3.20), (3.21)] and are in or can be transformed to the standard

form (6.1). Thus, we can apply the results of the previous section to estimate the parameter vector �� in,
say, (3.21) which in turn corresponds to the PDO coe�cients of the PL-form of the plant I/O operator.

The analysis of such identi�cation schemes and the derivation of error bounds assessing the quality of the

parameter estimates as well as the quality of the identi�ed plant I/O operator are the subjects of this section.

For reasons of clarity we consider the case of smooth parameter variations �rst and then generalize the results

to the case of non-smooth parameter variations.

6.3.1 Smooth Parameter Variations

Let us consider an LTV plant with a state-space representation given by (3.1) and satisfying Assumptions

3.1{3.3 and suppose that its order n is known. Invoking Lemma 2.32, the plant representation is topologically

equivalent to the corresponding observable canonical form and, therefore, it admits an I/O description in

terms of PDO's given by

yp = GL
p (s; t)[up] = D�1

p (s; t)Np(s; t)[up]

Using Lemma 3.10, the I/O description of the plant becomes

yp = G(s)[up�1�] +G(s)[yp�2�] (6:8)

where G(s) = q>(sI�F )�1 is a �lter selected by the designer and q; F are as speci�ed in that lemma. Since

the vector �� = [�>1�; �>2�]> : R+ 7! R2n is directly related to the coe�cients of Dp(s; t) and Np(s; t) by a

constant a�ne transformation depending on q; F , it follows that ��(t) is also smooth and UB.

Further, in order to allow nonzero initial conditions at t = t0, in both the plant and the auxiliary �lters

G(s), we augment equation (6.8) by an additional exponentially decaying term, as follows

yp = G(s)[up�1�] +G(s)[yp�2�] + " (6:9)
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where j"(t; t0)j � c0 exp[�a(t � t0)], c0 is a constant depending on the size of the initial conditions and �a
is the rate of exponential stability of the auxiliary �lters (e.g., see proof of Lemma 3.10).

Next, employing the notion of structured parameter variations we assume, without loss of generality, that

��(t) = �(t)�̂�(t)

where �(t) is a known (not necessarily square) matrix with smooth UB entries and �̂�(t) is a partially

unknown smooth UB vector. Letting �1(t), �2(t) be a partition of �(t) such that �i�(t) = �i(t)�̂�(t),
equation (6.9) becomes

yp = G(s)[up�1�̂�] +G(s)[yp�2�̂�] + " (6:10)

We may now invoke the swapping Lemma 2.59 to express (6.10) in the general form of the parametric

model (6.1)

yp = w>�̂� � � (6.11)

w = [G(s)fup�1g+G(s)fyp�2g]>

� = w>�̂� �G(s)[up�1�̂�]�G(s)[yp�2�̂�]

= G(s)fG0(s)[up�1]
_̂
��g+G(s)fG0(s)[yp�2]

_̂
��g

G0(s) = (sI � F )�1

In order to employ Theorem 6.6 or 6.7, we need to ensure the boundedness of the regressor vector w and

swapping term � in the parametric model (6.11). One way to achieve this is to normalize both sides of (6.11)

by using one of the normalization signals described in Chapter 2. The general form of these signals is m
1=p
p

where p 2 [1;1) and mp is constructed by integrating the following di�erential equation

_mp = �p�0mp + jQU jp + qe ; mp(t0) > 0 (6:12)

where Q is a positive de�nite weighting matrix, U = [up; yp]
>, qe is a positive constant and �0 is such that

(F + �0I) is a Hurwitz matrix. Since the gp;�0-gains of G and G0 are �nite, Lemma 2.56 shows that the ratio
x=m

1=p
p , x being any of the signals w, �, yp, is UB, for as long as the truncated Ut belongs to L1, (implying,

of course, that Ut 2 Lp(�) for t <1).

Thus, the plant I/O description after normalization becomes

yp

m
1=p
p

=
w>�̂�
m

1=p
p

� �

m
1=p
p

+
"

m
1=p
p

(6:13)

with the normalized signals being UB and satisfying Assumption 6.2 for as long as the truncated Ut belongs

to L1. Applying the procedure of Section 6.2 on (6.11) we de�ne the estimation error �1 by

�1 = w>�̂ � yp

and the normalized estimation error
�1

m
1=p
p

=
w>�̂

m
1=p
p

� yp

m
1=p
p

where �̂(t) is the estimate of �̂�(t) at time t. The last equation de�nes a (normalized) parametric model that

satis�es Assumptions 6.1{6.3. Therefore, the results of the previous section are now applicable, providing

means to design and analyze adaptive laws to estimate �̂�. Of course, once �̂ becomes available, the estimate
�(t) of ��(t) is obtained from

�(t) = �(t)�̂(t)
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Note that the estimation of � via �̂ may also be viewed as a Kalman �ltering problem where � is known

to satisfy a di�erential equation _� = A(t)� with unknown initial conditions. In this case the matrix �(t)

corresponds to the completely or partially known state transition matrix associated with A(t).

Before proceeding with the design and analysis of adaptive laws to estimate �̂�, let us summarize at this
point the main notational conventions.

� U denotes the I/O vector [up; yp]
>. It is assumed throughout this section that the truncated (up)t

belongs to L1, for all t in a compact interval [t0; t0 + T ]; T > 0. For the class of plants considered it

follows that (yp)t, Ut 2 L1 over the same interval; we use the notation

U 2 L1;[t0;t0+T ]

to signify this assumption. Notice that this assumption does not require up or yp to be in Le1 or the

plant to be stable in any sense.

� �; �̂ denote the parameter errors � � �� and �̂ � �̂� respectively, related by �(t) = �(t)�̂(t). Whenever

necessary, the matrix � may be partitioned as �i such that �i� = �i�̂�. We also denote by �̂c a bias

term, possibly zero, being the center of the ellipsoid containing �̂�.

� G(s) = q>(sI�F )�1, G0(s) = (sI�F )�1 are frequently used. Also, to simplify the various expressions,
we use the shorthand notation G�, G

0
�, G�� , G�c to signify the operators de�ned by their I/O pairs:

G� : QU 7! w
�
= G(s)[up�1] +G(s)[yp�2]

G0� : QU 7! G0(s)[up�1] +G0(s)[yp�2]

G�� : QU 7! G(s)[up�1�] +G(s)[yp�2�] = yp

G�c : QU 7! G(s)[up�1�̂c] +G(s)[yp�2�̂c]

where Q is a positive de�nite matrix.

� � and �̂ are reserved for the `swapping' terms

� = w>�̂� �G(s)[up�1�̂�]�G(s)[yp�2�̂�]

�̂ = w>�̂ �G(s)[up�1�̂]�G(s)[yp�2�̂]

which, for absolutely continuous ��; �̂ and zero initial conditions become

� = G(s)fG0(s)[up�1]
_̂
��g+G(s)fG0(s)[yp�2]

_̂
��g

�̂ = G(s)fG0(s)[up�1]
_̂
�g+G(s)fG0(s)[yp�2]

_̂
�g

� e1 is used for the `identi�cation' error de�ned by

e1 = G(s)[up�1] +G(s)[yp�2]� yp

and �1 for the `estimation' error

�1 = w>�̂ � yp
while " denotes an exponentially decaying term describing the e�ect of initial conditions.

With this notation, the block diagram of the identi�er structure is shown in Fig. 6.2. It is straightforward

to verify that the identi�cation error satis�es

e1 = G(s)[up�1] +G(s)[yp�2] + "



ypup
Plant
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Figure 6.2: Block diagram of the plant identi�er.

and hence it is unbiased, in the sense that for �̂ = �̂�, e1 is decaying to zero exponentially fast. The

identi�cation error is therefore appropriate to assess the quality of the parameter estimates interpreted as a

part of the plant I/O identi�cation algorithm, i.e., whenever G(s)[up�1] +G(s)[yp�2] is used as an estimate

of the plant I/O operator. On the other hand, the estimation error, related to the parameter error via

�1 = w>�̂+ �

has the desired for estimation purposes inner product form between the parameter error and a regressor

vector (similarly for the normalized estimation error). Notice, however that, unless �̂�(t) is constant, �̂ = �̂�
does not necessarily imply that �1 is exponentially decaying or even converging to zero.

6.9 Corollary: Suppose that for an LTV plant satisfying Assumptions 3.1{3.3, U 2 L1;[t0;t0+T ] and �̂�
satis�es Assumption 6.3. Then, the estimator

_̂
� = P

 
�
 �1w

m
2=p
p

!
; �̂(t0) 2M

guarantees that �̂,
_̂
� are UB on [t0; t0 + T ] and there exist constants C0, C

0
0, C

00
0, K�, independent of T , t0,

such that for any interval I = [tI ; tI + TI ] � [t0; t0 + T ]

1.

Z tI+TI

tI

 
�1(t)

m
1=p
p (t)

!2

dt � C0 +
K�




Z tI+TI

tI

j _̂��(t)ji dt . . .

+

2
4gp;�[G]gp;�0 [G0�]

(Z tI+TI

tI

�Z t

tI

e�p(���0)(t��)j( _̂��(�)jp d�
� 2

p

dt

) 1
2

+C 00]
2
;

2.

Z tI+TI

tI

j _̂�(t)j2 dt �

264
gp;�0 [G�]

0
@Z tI+TI

tI

 
�1(t)

m
1=p
p (t)

!2

dt

1
A1=2

. . .

+C 000]
2
;

where � > �0 is such that F + �I is a Hurwitz matrix, K� � 4M0 + 2�� and the gp;�-gains of the various

operators are evaluated with respect to the underlying vector space norm. 55

Proof: In Appendix VI.
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The above corollary gives a quite general description of the mean-squared normalized estimation error in

terms of the speed of the unstructured part of the plant parameter variations. Despite its generality, however,

the resulting expressions are quite complicated and, perhaps, unnecessarily so. Therefore, we choose at this

point to work with the normalization signal m2 only, yielding more convenient and compact expressions.

Also, in an e�ort to further simplify the various bounds we introduce a parameter � as a measure of the

`average' speed of the unstructured parameter variations. That is, we assume that

6.10 Assumption: There exist constants c; � such that

(a.)

Z t0+T

t0

j _̂��(t)ji dt � c+ �T

(b.)

Z t0+T

t0

j _̂��(t)j2 dt � c+ �T

for all t0; T � 0.3

We are now in the position to give a simpli�ed and more intuitive, albeit more conservative, version of

Corollary 6.9, stated as follows.

6.11 Corollary: Under the assumptions of Corollary 6.9 and Assumption 6.10, the estimator

_̂
� = P

�
�
 �1w

m2

�
; �̂(t0) 2M

guarantees that �̂;
_̂
� are UB on [t0; t0 + T ] (j�̂ � �̂cj � M0 + ��); furthermore, there exists a constant C0

depending on the initial conditions but independent of T; t0, such that for any interval I = [tI ; tI + TI ] �
[t0; t0 + T ]

1.

Z tI+TI

tI

�21(t)

m2(t)
dt � C0 +

�
�21 +

K�




�
�TI ;

2. j _̂�(t)j � 
�2
j�1jp
m2

+ "(t; t0);

where K�;�1;�2 are constants depending only on operator gains and the radius of the setM (their expres-

sions are given in the proof). 55

Proof: For the proof of the corollary we follow the same steps as in Corollary 6.9 except that we also

use the Cauchy inequality

(x+ y)2 � (1 + �c)x
2 + (1 +

1

�c
)y2

where �c > 0 is an arbitrary constant (`Cauchy constant') to group the more interesting integral terms

together. From Corollary 6.9, we can easily obtain the following estimates for the various bounds

K� = 4M0 + 2�� ; �1 = (1 + �c)
g2;�[G]g2;�0 [G

0
�]p

2(� � �0)
; �2 = g2;�0 [G�]

where �c > 0 is an arbitrary Cauchy constant and � > �0 as de�ned in Corollary 6.9.4

The constant terms, depending on the initial conditions, are then combined to a single constant C0 which

is O(1=�c). (Since �c is arbitrary, a single Cauchy constant is used for simplicity.) 22

3For simplicity, we use the same constant � to characterize both the mean-absolute and mean-square speed of the unstructured
parameter variations.

4Notice that, as mentioned in the proof of Corollary 6.9, simpler and perhaps tighter expressions can be used when the
parameter derivatives are small uniformly in time.
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In other words, the use of a basic estimator with projection and normalization guarantees that the mean-

square value of the estimation error is O(�; �=
) with � representing the average speed of variation of the

unstructured part of the plant parameters. It is interesting to observe that higher adaptation gains (
) tend

to decrease but not eliminate the mean-square normalized estimation error while increasing the speed of the

parameter estimates, which is O(
�) in the mean-square sense. However, what we actually need to make

small is the mean-square value of the identi�cation error which can be expressed as

e1 = �1 � �̂

yielding, after some straightforward calculations,"Z tI+TI

tI

e21(t)

m2(t)
dt

#1=2
� C0 +

"Z tI+TI

tI

�21(t)

m2(t)
dt

#1=2
. . .

+(1 + �c)�1

"Z tI+TI

tI

j _̂�(t)j2 dt
#1=2

with our usual notation. It is now apparent that, for `successful' identi�cation (in an I/O, mean-square,

normalized sense) both �1=
p
m2 and

_̂
� should be made small in the mean-square sense, something that

involves a trade-o� in the selection of the adaptation gain. Of course, as � ! 0 one recovers the standard

estimation results for LTI systems (e.g., see [N.A.89, S.B.89]) whereby the value of 
 is irrelevant and the

normalized identi�cation and estimation errors as well as
_̂
� are square-integrable.

Also note that the auxiliary �lters, the parameter �0 and the weighting matrix Q play an essential role

in the success of the identi�cation scheme. Qualitative guidelines for their selection can be derived from the

above corollary so as to minimize, e.g., the identi�cation error. However, due to the nonlinear interaction be-

tween the estimation and control laws, the e�ect of such parameters on the closed-loop stability/boundedness

is quite complicated and cannot be analyzed until the �nal stage of the analysis.

6.12 Remark: In order for the parameter estimates to converge to their true values in the uniform

norm, i.e., �̂ ! �̂� if �̂� is constant, or j�̂(t) � �̂�(t)j to converge to an O(�)-small residual set for a slowly

varying �̂�(t), we need to assume that the regressor vector w=
p
m2 is persistently exciting ([And.77]). In

the special case of slowly TV plants, criteria for persistence of excitation have been derived in [M.G.87].

In general, however, the appearance of the possibly fast TV matrix � in the regressor vector makes the

translation of this condition into a condition on the input signal rather complicated. Although persistence of

excitation could be bene�cial in the performance of an adaptive controller, it is not necessary for closed-loop

boundedness and is not discussed any further in the present study. 55

Analogous statements can be made for estimators employing the � or switching �-modi�cation. While

for the latter the derivations and the resulting expressions are similar to those of Corollary 6.11 and are

omitted, the case of the �-modi�cation is somewhat more interesting. This is partly due to the fact that the

a priori knowledge of the setM is not required and partly due to the involved trade-o�'s in the selection of

both � and 
. Moreover, from Theorem 6.7 it follows that the various bounds can be expressed in terms of

the mean-square value of the derivative of �̂� and therefore only part (b) of Assumption 6.10 is needed.

6.13 Corollary: Suppose that for an LTV plant satisfying Assumptions 3.1{3.3, �̂� is UB and satis�es

Assumption 6.10-b and U 2 L1;[t0;t0+T ]. Then, the estimator

_̂
� = �
 �1w

m2

� �(�̂ � �̂c)
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guarantees that �̂;
_̂
� are UB on [t0; t0 + T ] and �̂ converges exponentially fast to the residual set�

�̂ : j�̂(t)� �̂cj2 �
r




4�
�3

�
:

Furthermore, there exists a constant C0 depending on the initial conditions but independent of T; t0, such

that for any interval I = [tI ; tI + TI ] � [t0; t0 + T ]

1.

Z tI+TI

tI

�21(t)

m2(t)
dt � C0 +

�
�21�+

�


�
+K2

��
�




�
TI ;

2. j _̂�(t)j2 � 
�2
j�1jp
m2

+

r

�

2
�3 + "(t; t0);

where K��;�1;�2;�3 are constants depending only on operator gains and the radius of the set M (their

expressions are given in the proof). 55

Proof: The proof follows as a straightforward application of Theorem 6.7 using similar techniques as

in Corollary 6.9. Expressions for the estimates of the various bounds can be obtained as

K�� = k(j�̂� � �̂cj2)k1 ; �3 = g2;�0 [G�� �G�c ]

and �1, �2 are as in Corollaries 6.9 and 6.11. 22

One implication of the last corollary is that the value of � must be carefully selected for the estimation

to be successful. For example, a large ratio 
=� tends to decrease the mean-square value of �1=
p
m2 while

increasing that of j _̂�j2. On the other hand, letting � = 
�0, the mean-square values of �1=
p
m2 and j _̂�j2

become

O

�
�;

�


2�0
; �0
�

and O
�

2�;

�

�0
; 
2�0

�
respectively. Taking 
 = 1 for simplicity, the two can be made small, say less than � < 1, by choosing �0 to
be O(�) and assuming that � = O(�2). With such a choice of the adaptation parameters � and 
, however,

the parameter estimates can become as large as O(1=�). This, in turn, gives rise to some technical problems

when the results of the corollary are used to establish the boundedness of signals in adaptive control systems.

In order to avoid these problems we need to ensure that the identi�cation error can be made small without

increasing the bounds of the parameter estimates and the parameter error. One way to achieve this is to

restrict the class of parameter variations to those which are slow uniformly in time, as shown by the following

corollary.

6.14 Corollary: Suppose that for an LTV plant satisfying Assumptions 3.1{3.3, �̂� is UB, k _̂��k1 � �

and U 2 L1;[t0;t0+T ]. Then, the estimator

_̂
� = �
 �1w

m2

� �(�̂ � �̂c)

guarantees that �̂;
_̂
� are UB on [t0; t0 + T ] and �̂ converges exponentially fast to the residual set�

�̂ : j�̂(t)j2 � K�� + �01

r



2�
�+

�

�

�
Furthermore, there exists a constant C0 depending on the initial conditions but independent of T; t0, such

that for any interval I = [tI ; tI + TI ] � [t0; t0 + T ]

1.

Z tI+TI

tI

�21(t)

m2(t)
dt � C0 +

�
�021 �

2 +
K2
���



+
�2


�

�
TI ;
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Figure 6.3: Alternative representation of the LTV plant.

2. j _̂�(t)j � 
�2
j�1jp
m2

+ 2K��� + �+ �01

r

�

2
�+ "(t; t0);

where K��;�2 are as in Corollary 6.13 and �01 is a constant depending on operator gains (its expression is

given in the proof). 55

Proof: In Appendix VI.

From a di�erent point of view, Corollaries 6.11, 6.13 and 6.14 describe the properties of an identi�cation

procedure which identi�es a left-fractional representation of an LTV I/O operator within two stable-factor

perturbations (see Fig. 6.3). These perturbations have the property that their combined output is `small' in

a mean-square, normalized sense. This can be seen by expressing yp in terms of the identi�cation error as

yp = G(s)[up�1] +G(s)[yp�2]� e1 + "

e1 = G(s)[up�1] +G(s)[yp�2] = �1 � �̂:

Rewriting the above equation in terms of operators we have

yp = D�1(s)N̂p(s; t)[up] +D�1(s)fD(s)� D̂p(s; t)g[yp]
�D�1(s) ~Np(s; t)[up]�D�1(s) ~Dp(s; t)[yp]

where the coe�cients of D̂p(s; t); N̂p(s; t) and ~Dp(s; t); ~Np(s; t) are easily obtained from �, � and D(s) =

det(sI � F ). 5 In other words the unknown plant D�1
p (s; t)Np(s; t) is e�ectively replaced by its estimate

with the known I/O operator D̂�1
p (s; t)N̂p(s; t) and the stable factor perturbations D�1(s) ~Np(s; t) and

D�1(s) ~Dp(s; t). The bene�ts are quite apparent. Since � is known, a controller can now be designed for the

estimated I/O operator of the plant D̂�1
p (s; t)N̂p(s; t). Consequently, the closed-loop stability properties are

determined by the robustness properties of the controller with respect to the stable factor perturbations e1
which are not necessarily of small gain but are small in a mean-squared, normalized sense. Such a design is

studied in more detail in a forthcoming chapter. At this point, however, we should emphasize the importance

of the auxiliary �lters used in the estimator. Not only do they determine the properties of the perturbation

e1 but they also a�ect the sensitivity operators e1 7! yp and e1 7! up which are the key operators involved

in the analysis of the properties of adaptive controllers.

5Note that ~Dp(s; t) is a PDO of degree n� 1.
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6.15 Example: To demonstrate the advantages of modeling the plant as in Lemmas 3.10 or 3.11 and

using the structured-parameter-variations approach, let us consider the case where the plant I/O description

is given by

s2[yp] + s[a1yp] + a2yp = s[up] + b1up (6:14)

where

a1 = 20 + 12 sin 2t ; a2 = 6 cos 2t ; b1 = �1 (6:15)

Let us also suppose that we know a priori that the plant parameters are of the form

a1 = c1 + c2 sin 2t ; a2 = c3 + c4 cos 2t ; b1 = c5 (6:16)

where Np(s; t) is known to be a monic PDO of degree one and c1 � c5 are some unknown constants whose

range, say ci;min � ci � ci;max, is known a priori.

Following the guidelines of the presented analysis let us consider the second order auxiliary �lter:

G(s) = q>(sI � F )�1; q> = [1; 0] ; F =

�
�5 1
�6 0

�
(6:17)

from which D(s) = s2+5s+6. Applying Lemma 3.10, we obtain the following parametrization for the plant

yp = G(s)[up�1�] +G(s)[yp�2�]

where

�1� =
�
1

�̂1�

�
; �2� =

�
�̂2� + �̂4� sin 2t
�̂3� + �̂5� cos 2t

�
and �̂>� = [�1;�15; 6;�12;�6] is an unknown constant vector, to be estimated. Next, employing the notion

of structured parameter variations and since the leading coe�cient of Np(s; t) is known, we may express yp
as

yp = sD�1(s)[up] +G(s)[up�1]�̂� +G(s)[yp�2]�̂�

where,

�1(t) =

�
0 0 0 0 0
1 0 0 0 0

�
; �2(t) =

�
0 1 0 sin 2t 0
0 0 1 0 cos 2t

�
Thus, the estimation error is constructed as

�1 = w>�̂ � yp + sD�1(s)[up]

where w> = [(0; 1)w1; w
>
2 ; (1; 0)w3; (0; 1)w4],

_w1 = F>w1 + qup ; _w2 = F>w2 + qyp

_w3 = F>w3 + qyp sin 2t ; _w4 = F>w4 + qyp cos 2t

and �̂ being the estimate of �̂�. Since the range of each element of �̂� can be directly deduced from the range

of the ci's, we may use the following adaptive law to update �̂

_̂
� = P

�
�
 �1w

m2

�
(6:18)

with P as given by (6.5) and �0 < 2. Finally, the estimate �i of �i� is

�1 =

�
1
0

�
+�1�̂ ; �2 = �2�̂
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from which the estimates of the plant parameters, denoted by (̂�), are given by

b̂1 = (0; 1)�1 ; â1 = �(1; 0)�2 + 5 ; â2 = �(0; 1)�2 + 6 (6:19)

Thus, according to Corollary 6.11, the estimator (6.18) guarantees that �1=
p
m2 and

_̂
� is square integrable,

for as long as U 2 L1;[t0;t0+T ]. Furthermore, if up=
p
m2 is UB, it also follows that �1=

p
m2 is uniformly

continuous and therefore converge to zero as t ! 1, provided of course that up 2 Le1. However, whether

this condition is met or not depends also on the way up is generated (for further discussion, see Chapter 8).

It should be noted that in the case there is some ambiguity in the frequency of the sinw0t terms, e.g.,

the true frequency is w0 + �, we can decompose the sine terms as

sin(w0 + �)t = sinw0t cos �t+ cosw0t sin �t

The last equation suggests that an additional parameter should be used to estimate the cosw0t terms with

the corresponding elements of �̂�s being slowly TV for small � (similarly for the cosine terms). In this case,

Lemma 3.10 can still be used to establish the smallness in the mean-square of the normalized estimation

error even if w0 is large. 55

6.3.2 Non-Smooth Parameter Variations

For our next topic of study we consider the identi�cation problem for plants with non-smooth parameter

variations. In this case, the plant may not be described with a convenient PDO/PIO factorization (even with

non-smooth coe�cients) which would allow the straightforward application of our previous results. Instead,

we rely on Lemma 3.11 to parametrize an LTV plant of known order, with a state-space representation

satisfying Assumptions 3.4{3.6. This lemma together with Corollary 2.60 imply that the output of the LTV

plant at time t can be expressed as

yp = w>�̂� + �s + ~� + �J + q>�F (t; t0)xF (t0) (6.20)

�s = �G(s)fG0�[QU ] _̂�s�g
~� = G(s)[ ~AFxF +~bFup]g+ ~c>FxF

�J =
X
tj�t

q>�F (t; tj)
n
[ �P (tj)� I]xF (t�j ) +G0�[QU ](tj)�̂

J
�j
o

where �̂s� is the Lipschitz continuous part and �̂J� =
P

tj�t �̂
J
�j is the jump part of �̂� and w is the usual

regressor vector as in the smooth parameter case; the rest of the notation is as in Lemma 3.11 Although such

a parametrization is quite more complicated than before, it nevertheless retains the same basic properties

required for an application of Theorems 6.6 and 6.7. The only di�erence here is that the `noise' signal � is

composed of three terms:

1. the term �s, which depends on the speed of variation of the Lipschitz part of �̂� and is characterized

by the parameter �;

2. the term ~� which incorporates the e�ects of smooth approximations of the plant parameters and possible

short excursions of the plant parameters to regions where strong controllability or observability fail;

this term is characterized by the parameter �0 which is typically expected to be very small (� 1);

3. the term �J describing the cumulative e�ects of the jump part of the plant parameters and characterized

by the usually very small parameter �.
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Thus, non-smooth-parameter analogs of Corollaries 6.11 and 6.13, characterizing the I/O quality of the

identi�cation by means of the three parameters �; �0; �, can be derived in a straightforward manner from

the general theorems of Section 6.2. In the following statements, we consider an LTV plant satisfying

Assumptions 3.4{3.6 and the corresponding parameter vector ��, as de�ned in Lemma 3.11. Without loss of

generality, we assume that

�� = ��̂�

where � is a piecewise smooth, UB matrix and �̂� is a piecewise smooth vector with possible discontinuities

at t = tj , j = 1; 2; . . ..

6.16 Corollary: Under these conditions, suppose that �̂� and �̂s� satisfy Assumptions 6.3 and 6.10,

respectively. Further suppose that U 2 L1;[t0;t0+T ] and consider the estimator

_̂
� = P

�
�
 �1w

m2

�
; �̂(t0) 2M

Then, there exist �0; �
0
0 > 0, depending on the value of �0 used in m2, such that for any � 2 [0; �0),

�0 2 [0; �00), �̂;
_̂
� are UB on [t0; t0 + T ] (j�̂ � �̂cj � M0 + ��); furthermore, there exist constants C0; ~K;KJ

such that for any interval I = [tI ; tI + TI ] � [t0; t0 + T ]

1.

Z tI+TI

tI

�21(t)

m2(t)
dt � C0 +

�
�21 +

K�




�
�TI + ~K�0TI +K2

J

�
1 +

1




�
�TI ;

2. j _̂�(t)j � 
�2
j�1jp
m2

+ "(t; t0);

where K�;�1;�2 are as in Corollary 6.11. The constants ~K;KJ depend on the perturbation part of the

plant and the size of jumps in the nominal plant parameters and their derivatives, respectively but they are

independent of initial conditions whose e�ect is incorporated in C0; all three constants are independent of

T; t0. 55

Proof: In Appendix VI.

6.17 Corollary: Under the conditions stated above, suppose that �̂� is UB and �̂s� satis�es Assumption
6.10-b. Further suppose that U 2 L1;[t0;t0+T ] and consider the estimator

_̂
� = �
 �1w

m2

� �(�̂ � �̂c)

Then, there exist �0; �
0
0 > 0, depending on the value of �0 used in m2, such that for any � 2 [0; �0),

�0 2 [0; �00), �̂; _̂� are UB on [t0; t0 + T ] and �̂ converges exponentially fast to the residual set�
�̂ : j�̂(t)� �̂cj2 �

r



4�
�03

�
where �03 is a constant, approaching �3 = g2;�0 [G�� � G�c ] as the perturbation part of the plant and the

jumps in the plant parameters and their derivatives vanish. Furthermore, there exist constants C0; ~K;KJ

such that for any interval I = [tI ; tI + TI ] � [t0; t0 + T ]

1.

Z tI+TI

tI

�21(t)

m2(t)
dt � C0 +

�
�21�+

�


�
+K2

��
�




�
TI + ~K�0TI

+K2
J

�
1 +

1




�
�TI ;
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2. j _̂�(t)j2 � 
�2
j�1jp
m2

+

r

�

2
�03 + "(t; t0);

where K��, �1, �2, �3 are as in Corollaries 6.11 and 6.13. The constants ~K;KJ depend on the perturbation

part of the plant and the size of jumps in the nominal plant parameters and their derivatives, respectively

but they are independent of initial conditions whose e�ect is incorporated in C0; all three constants are

independent of T; t0. 55
Proof: As in Corollary 6.16, but using the expressions of Corollary 6.13 rather than 6.11. 22

Thus, Corollaries 6.16 and 6.17 describe the properties of our basic estimation algorithms when used to

identify an LTV plant with non-smooth parameter variations. As in the smooth parameter case, the quality

of identi�cation |in an I/O, normalized sense| depends on the average speed of variations of the smooth

part of �̂� while the e�ect of the discontinuities and perturbations in the state-space description of the LTV

plant introduces two additional terms O(�) and O(�0) in the various expressions.

In this case, however, �0 and � should be su�ciently small. This requirement arises from the need to

guarantee the uniform boundedness of the normalized signals, including the plant state vector, in order to

obtain expressions which are uniform with respect to the interval of integration and the initial time. Notice

that large �0 or � may result in the overall plant not being uniformly observable6 and a consequent failure

of xF =
p
m2 to be UB. If, on the other hand, we assume that, in addition to Assumptions 3.4{3.6, the LTV

plant (nominal and perturbation part) is uniformly observable, then no restriction on �0 and � is necessary.

Finally, as mentioned in the previous subsection, when an estimator employing the �-modi�cation is used

for adaptive control purposes, we need to impose some additional uniformity conditions on the size of the

perturbation terms. More precisely, we assume that

k _̂�s�k1 � � ; j ~Aj; j~bj; j~cj � �0 ; tj+1 � tj �
1

�

uniformly in t and j, where as usual the superscript `s' denotes the smooth part of the parameters, ~̀�' refers
to the state-space perturbations due to smooth approximations and tj are the discontinuity points.

6.18 Corollary: Under the Assumptions of Corollary 6.17 as restricted by the above conditions, for any

� > 0 there exist �0; �
0
0 > 0 such that for any � 2 [0; �0) and �

0 2 [0; �00), �̂;
_̂
� are UB on [t0; t0 + T ] and �̂

converges exponentially fast to a residual set satisfying

j�̂(t)j2 � O
�
K��;

�

�
; �

r



�
; �0
r



�

�
+KJO

�
1;

r



�

�
e��(t�tj) ; t � tj

where K�� is a constant as in Corollary 6.13, KJ is a constant depending on the size of the jumps in the

nominal plant parameters and their derivatives and for any � > 0, �(�) > 0 is a constant.

Furthermore, there exists a constant C0 depending on the initial conditions but independent of T; t0,

such that for any interval I = [tI ; tI + TI ] � [t0; t0 + T ]

1.

Z tI+TI

tI

�21(t)

m2(t)
dt � C0 +O

�
�2; �02;K2

J�;
K2
���



;
�2


�
;
K2
J�




�
TI ;

2. j _̂�(t)j � O (
)
j�1jp
m2

+O (K���; �; �
p

�; �0

p

�) . . .

+KJO (�;
p

�) e��(t�tj) + "(t; t0) ; t � tj ;

55
6This is because Assumptions 3.5 and 3.6 are on the nominal part of the plant only.
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Proof: In Appendix VI.

Note that due to the complexity and increased conservatism of the expressions, we state Corollary 6.18

using the simpli�ed notation O (x1; x2; . . .) � K1x1+K2x2+ � � � where Ki are constants. All such constants

are independent of the parameter estimates. We do, however, keep track of the important adaptation

parameters 
 and � and the radius of the parametric uncertainty set K�� for later discussion.
6.19 Remark: Although, for estimation purposes, it is possible to allow discontinuities in �(t) at

instants other than at tj , this increases the total number of discontinuity points that should be accounted

for, when the estimator is used in an adaptive control context. For this reason, and in order to maintain

some uniformity in the notation, we assume that the entries of �(t) are smooth inside each interval (tj ; tj+1).

55

APPENDIX VI

Proof of Theorem 6.6:

With the properties of P, y, w and �, the vector�eld in (6.4) satis�es the Caratheodory assumptions,

ensuring the local existence of an absolutely continuous function � satisfying (6.4) almost everywhere. Fur-

thermore, this solution is unique (see [C.L.55], pp. 48{51) and can be extended in the whole interval

[t0; t0 + T ]. Also, from the de�nition of P and with �(t0) 2 M, the distance of �(t) from the set M is at

most �� (see Examples 6.4 and 6.5 for the de�nition of P and �� for setsM de�ned in an L1 or L2 sense).

Hence, the �rst part of the theorem follows.

For the second part, let ti; i = 0; 1; . . . ; nT , ti � ti+1 � t0 + T , denote the points of discontinuity of ��
in the interval [t0; t0 + T ]. Further, de�ne the parameter error � = � � ��. It follows that � satis�es the

di�erential equation
_� = P (�
�1w)� _�s� ; t 2 [ti; ti+1)

with initial conditions

�(t0) = �(t0)� ��(t0)

and boundary conditions at each discontinuity point

�(ti) = �(t�i )� [��(t+i )� ��(t�i )]

where t�i , t
+
i are used to denote left and right limits respectively.

Next, consider the positive de�nite function V = 1
2
�

>�. The derivative of V along the trajectories of

(6.4) is given by

_V = ��>P(�1w)�
1



�> _�s� ; t 2 [ti; ti+1)

From the de�nitions of P and M and after some simple geometry, it follows that when the projection is

active (6= 1), V decreases faster than the V corresponding to a vector�eld without projection. Hence,

_V � ��1�>w �
1



�> _�s� ; t 2 [ti; ti+1)

from which, using (6.3) and taking norms of the sign-inde�nite terms we obtain

_V � ��21 + j�1�j+
1



k�k1j _�s�ji ; t 2 [ti; ti+1)

where the subscript i denotes the functional norm induced by the norm of � (typically the norm used to de�ne

M). Moreover, V being absolutely continuous in [ti; ti+1), a simple completion of squares and integration
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yields Z t

ti

�21(�) d� � 2[V (t+i )� V (t)] +
Z t

ti

�2(�) d� +
K�




Z t

ti

j _�s�(�)ji d� ; t 2 [ti; ti+1)

from which, V being UB, property (1) follows. Notice that expressing _V in terms of w>� rather than �1,

the same inequality holds for (w>�)2. Finally, property (2) follows immediately from (6.4) and Assumption

6.2. 22

Proof of Theorem 6.7:

While the existence and uniqueness of an absolutely continuous � satisfying (6.7) follow as in Theorem

6.6, boundedness can be shown by considering the positive de�nite function V1 =
1
2
(�� �c)>(�� �c). Then,

along the trajectories of (6.7)
_V1 �




4
(y � w>�c)2 � 2�V1

from which, � is uniformly ultimately bounded with an upper bound as given in the theorem. Further, a

bound on _� is simply derived by taking norms on both sides of (6.7). It is important to notice that, modulo

exponentially decaying terms, these bounds are independent of the initial conditions �(t0).

For the rest of the properties, let V = 1
2
�

>� where � = � � ��. Then, as in Theorem 6.6

_V � ��21 + j�1�j �
�



j�j2 + �



j�jj�� � �c +

1

�
_�s�j ; t 2 [ti; ti+1)

while, from the boundedness of � and ��, V is UB. The inequalities of the theorem are now easily obtained

after completing the squares of the above inequality and integrating both sides. 22

Proof of Corollary 6.9:

The boundedness of �̂ and its derivative are obtained as a straightforward application of Theorem 6.6

with the a�ne model (6.13), which also implies that

Z tI+TI

tI

 
�1(t)

m
1=p
p (t)

!2

dt � C0 +K�

Z tI+TI

tI

j _̂��(t)ji dt

+

Z tI+TI

tI

 
�(t) + "(t; t0)

m
1=p
p (t)

!2

dt

where C0 is a constant O(M2
0 =
), M0 being the radius of the set M and K� is a constant due to pulling

j�̂(t)j outside the integral. When the projection P is given by (6.5), k�� �ck1 �M0+ �� which implies that

K� � 4M0 + 2��, while the induced norm of
_̂
��(t) is the l1 vector norm. Similar relations are also obtained

if the setM and the projection P are de�ned through a Euclidean norm.

Further, for the �rst property of the corollary, we notice that �=m
1=p
p is UB and

mp(t) � exp[�p�0(t� �)]mp(�) ; 8 t0 � � � t : (6:21)

Hence, we can express �(t), t 2 [tI ; tI + TI ] as

�(t) = (G(s)fG0�[QU ] _̂��g)(t) + �(tI)e
��(t�tI)

where the functions U;
_̂
�� are taken as zero for t < tI . This, of course, introduces an e�ective initial condition

term �(tI) for which we have that �(tI)=m
1=p
p (tI) is UB. We may now invoke Lemma 2.56, with operator
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gains induced by the norms of the Lp(�) as well as the underlying R
n spaces, to write

j�(t)j
m

1=p
p (t)

� gp;�[G]
E��(t)k(G0�[QU ] _̂��)tkp;�

m
1=p
p (t)

+
j�(tI)j
m

1=p
p (tI)

e�(���0)(t�tI)

� gp;�[G]

�Z t

tI

e�p(���0)(t��)
jG0�[QU ]jp(�)

mp(�)
j _̂��(�)jp d�

�1=p
. . .

+
j�(tI)j
m

1=p
p (tI)

e�(���0)(t�tI)

� gp;�[G]gp;�0 [G
0
�]

�Z t

tI

e�p(���0)(t��)j _̂��(�)jp d�
�1=p

. . .

+
j�(tI)j
m

1=p
p (tI)

e�(���0)(t�tI)

from which, property (1) follows as an immediate application of the Schwarz inequality.

Note that, alternatively, one may also derive a bound for j�j in terms of the g1;�-gain of G, the 
2;�0-gain

of G� and the conjugate-index Lq(�)-norm of
_̂
��. Omitting for simplicity the exponentially decaying terms,

this procedure is outlined below.

j�(t)j � g1;�[G]E��k(G0�[QU ] _̂��)tk1;�
� g1;�[G]E��k(G0�[QU ])tkp;�0k( _̂��)tkq;� ;

�
� > �0
p�1 + q�1 = 1

� g1;�[G]
p;�0 [G
0
�]m

1=p
p (t)E��+�0k( _̂��)tkq;���0

More e�cient bounds can be derived in the special case of TV parameters whose derivatives are small,

uniformly in time. Assuming, for example, that j _̂��j � � and following the same procedure we get

j�(t)j
m

1=p
p (t)

� gp;�0 [G]
E��0(t)k(G0�[QU ] _̂��)tkp;�0

m
1=p
p (t)

+
j�(tI)j
m

1=p
p (tI)

e��0(t�tI)

� gp;�0 [G]
p;�0 [G
0
�]�+

j�(tI)j
m

1=p
p (tI)

e��0(t�tI)

Next, property (2) follows from Theorem 6.6 and using Lemma 2.56 to write jwj=m1=p
p � gp;�0 [G�] +

�0 exp[��(t� t0)]. The constant C 000 is then used to absorb the integral of the exponentially decaying term

(notice that �1=m
1=p
p is UB since �̂ is UB).

Finally, it is straightforward to extend the proof to admit non-zero initial conditions in the auxiliary

�lters. In this case

�1 = w>�̂+ � + "+ "0�̂

where the last term is due to the initial conditions in the auxiliary �lters and the rest of the quantities are

as before. The same arguments can now be used to show the boundedness of �̂ from which the contribution

of "0�̂ can be included in the C0 constants. 22

Proof of Corollary 6.14:

While the existence and uniqueness of an absolutely continuous �̂ satisfying the estimator ODE follow as

in Theorem 6.6, boundedness can be shown by considering the positive de�nite function V = 1
2
�̂>�̂. Then,

_V = �
 �
2
1 � �1�
m2

� �k�̂k2 + (��̂c � _̂
��)>�̂ (6:22)
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where �̂c = �̂c � �̂�. Completing the squares in (6.22) we obtain

_V � ��V +



4

j�j2
m2

+
1

2�
(�K�� + �)2 (6:23)

where K�� is as in Corollary 6.13. Further, as in Corollary 6.9, �2=m2 � �021 �2 + " where �01 = (1 +

�c)g2;�0 [G]
2;�0 [G
0
�], �c is a Cauchy constant and " is an exponentially decaying term due to initial conditions.

Substituting this expression in (6.23), the �rst part of the corollary follows.

For the rest of the properties, we use again (6.22) and complete the squares to obtain

2 _V � �
 �
2
1 � �2
m2

+
1

2�
(�K�� + �)2

Integrating both sides of the last inequality we obtain property (1) while property (2) follows by taking the

norms of both sides of the estimator ODE. 22

Proof of Corollary 6.16:

From (6.20), yp has the same general form as in the smooth parameter case and therefore, in order to

apply the results of Theorem 6.6 and Corollary 6.11, it su�ces to show that �s; ~� and �J , normalized byp
m2, are UB and have similar average properties as �. Indeed, �s=

p
m2 can be handled the same way as

�=
p
m2 in the smooth parameter case, with �s� replacing �� in the various expressions. On the other hand,

for ~� we have that

jG(s)[ ~AFxF ](t)j � g2;�[G]
�Z t

t0

e�2�(t��)j ~AF (�)j2jxF (�)j2 d�
�1=2

Since for �0; � su�ciently small, x2F =m2 is UB for as long as U 2 L1;[t0;t0+T ] (see Lemma 3.11) and using

the fact

m2(t) � e�2�0(t��)m2(�) ; t � �
we have that for all �0 2 [0; �00), � 2 [0; �0)

jG(s)[ ~AFxF ](t)j2
m2

� g22;�[G]KF

Z t

t0

e�2(���0)(t��)j ~AF (�)j2 d� + "(t; t0)

for some constant KF , independent of the initial conditions which are included in the exponentially decaying

term "(t; t0). Next,

jG(s)[~bFup](t)j � g1;�[G]
Z t

t0

e��(t��)j~bF (�)jjup(�)j d�

and therefore, using the Schwarz inequality, we obtain

jG(s)[~bFup](t)j2
m2(t)

� g21;�[G]

Z t

t0

e�2(���0)(t��)j~bF (�)j2 d� . . .R t
t0
e�2�0(t��)jup(�)j2 d�

m2

the last factor being UB. Finally,

j~c>F (t)xF (t)j2=m2 � KF j~cF (t)j2 + "(t; t0):

Accumulating all the terms it follows that ~�2(t)=m2(t) is UB and, using Assumption 3.4, we get that in an

interval I � [t0; t0 + T ] Z tI+TI

tI

~�2(t)

m2(t)
dt � C0 + ~K 0�0TI
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for some constant ~K 0 independent of the initial conditions.
Further, a similar property can be established for the term �J under Assumption 3.6. For this, we make

use of the following intermediate result

� Let tj , j = 1; 2; . . . be an increasing sequence and for t; T � 0 de�ne k; l such that tk � t < t+T � tm.
Suppose that there exist constants C; T > 0 such that l � k � C 8t � 0. Then, for any � > 0, there

exists a constant C 0 such that
NX
j=1

e��(tN�tj) � C 0 ; 8N > 0

Proof: Consider the intervals [tN � (� + 1)T; tN � �T ], � = 0; 1; 2 . . . ;�; � : tN � �T � 0. Then

each one of these intervals contains at most C terms of the sequence and therefore

NX
j=1

e��(tN�tj) � C
�X

�=0

e���T � C 0 = C
1

1� e��T ; 8N > 0

22

In view of the above statement, we may now use the properties of the normalizing signal and the fact that

xF =
p
m2 is UB, to write

j�J(t)jp
m2(t)

� e�(���0)(t�tN )

NX
j=1

e�(���0)(tN�tj)[K + "(t; t0)] ; tN � t

where N is the total number of discontinuities in [t0; t], and " is a term due to the initial conditions in xF .

Hence, under Assumption 3.6, we have that �J=
p
m2 is UB and integrating inside the intervals (tj ; tj+1),

j = 1; 2; . . . ; N we get Z tI+TI

tI

�2J(t)

m2(t)
dt � C0 +K 02

J �TI

where K 0
J is a constant depending on the size of the jumps in the plant parameters and their derivatives but

independent of the initial conditions. It is now quite straightforward to verify the inequalities of the corollary,

working as in the previous cases. Notice that although it is not di�cult to keep the various Cauchy constants

in the equations, resulting in sharper bounds, the inequalities tend to become rather messy. Moreover, the

bounds related to the perturbation part of the plant and the parameter discontinuities are quite conservative,

as they involve norms of |often sparse| perturbation matrices. And since the parameters �0; � are typically
expected to be very small, there is little intuition to be gained from such an approach. On the other hand, we

must keep track of the adaptation parameters which eventually a�ects the upper bounds of �, � and �0 for
the BIBO stability of the adaptive closed-loop system. And although the overall stability problem becomes

very complicated at the �nal stage of the analysis, these bounds reveal some design guidelines which may

be useful in various special cases. 22

Proof of Corollary 6.18:

Working as in Theorem 6.6 we �rst establish the existence and uniqueness of an absolutely continuous

�̂ satisfying the estimator ODE, at least in a subinterval of [t0; t0 + T ]. Next, consider the positive de�nite

function V = 1
2
 �̂

>�̂. Then, for t 2 (tj ; tj+1) and inside the subinterval where the solution exists

_V � ��V � �21 � ��2

2m2

+
1

2�

(�K�� + �)2 (6:24)

where �� = �s + ~� + �J + " Further, from the proof of Corollary 6.16 we have that for �0; � su�ciently small

so that kxF k2=m2 is UB,
��2(t)

m2(t)
� O

�
�2; �02

�
+K2

Je
�2�0(t�tj) + "(t; t0)
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inside the interval (tj ; tj+1). Integrating both sides of (6.24) inside (tj ; tj+1) with the initial condition V (t+j )

we obtain

V (t) � V (t+j )e
��(t�tj) +O

�
K2
J

�

�
e��(�)(t�tj) + . . .

+O

�
K2
��


;
�2


�2
;
�2

�
;
�02

�

�
+ "(t; t0)

where � < min[�; 2�0] is a positive constant. Observing that jV (t+j ) � V (t�j )j � O
�
K2
J=


�
, it now follows

that for any constant A there exists �1 > 0 su�ciently small such that 8� 2 [0; �1]

O

�
K2
J

�

�
e��(�)=� ; O

�
K2
J




�
e��=� � A

Hence, for � su�ciently small, V (tj) is a bounded sequence from which the �rst part of the corollary follows

by extending the solutions to the whole interval [t0; t0 + T ].

Finally, properties (1) and (2) are obtained by following the same procedure as in the proof of Corollary

6.16. 22



Chapter 7

Model Reference Adaptive Control

7.1 Introduction

A crucial assumption in designing the MRC schemes of Chapter 4 is that the TV plant parameters are known

functions of time. Such an assumption can be quite restrictive in applications especially since the need to

use LTV plant models is often accompanied by a poor knowledge of the LTV plant parameters. Of course,

the MRC's of Chapter 4 possess some robustness properties with respect to modeling error and parametric

uncertainty, but they may fail to even ensure closed-loop stability if the uncertainty becomes large enough.

This problem becomes more pronounced in cases where the plant parameters may vary in an unknown fashion

over a wide range. In this chapter, our objective is to develop and analyze MRC schemes that can tolerate

large parametric uncertainty. Our approach evolves around the so called Certainty Equivalence Principle

whereby the partially unknown controller parameters are replaced by their estimates, generated by a suitable

adaptive law. The resulting controller is referred to as an adaptive controller and in particular, when the

underlying control law is an MRC one, as a Model Reference Adaptive Controller (MRAC).

Depending on the way the estimates of the controller parameters are generated, we distinguish two types

of MRAC. In the �rst one, the adaptive law generates estimates of the plant parameters which are then

used to calculate the corresponding MRC parameters according to the techniques discussed in Chapter 4.

This procedure can also be used with other control laws, e.g., PPC, and the resulting controller is referred

to as an indirect adaptive controller. In the second type of adaptive controllers, the adaptive law generates

the estimates of the controller parameters on line, without any intermediate calculations. This approach

has been particularly successful in generating adaptive controllers with underlying control laws of the MRC

kind, referred to as a direct MRAC.

In this chapter we focus our attention on the direct MRAC, starting with Section 7.2 where we design

adaptive laws that generate on-line estimates of the MRC parameters. In Section 7.3 we combine these

adaptive laws with the MRC structures of Chapter 4 to form direct MRAC schemes and study the stability

properties of the resulting closed-loop plant. We conclude with Section 7.4 where we present examples and

simulations illustrating the design and properties of direct MRAC's.

7.2 Parameter Estimation in Direct MRAC

The distinguishing property of a direct MRAC is that the controller parameters are estimated from I/O data

without requiring the prior identi�cation of the LTV plant. This is achieved by considering the closed-loop

description of an MRAC, that is, the closed-loop plant obtained when the LTV plant is controlled by MRC

whose parameters are determined on-line by a suitable adaptive law. Manipulating the I/O expressions of

131
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the various signals, we can then arrive at an a�ne, in terms of the controller parameters, model. Having

obtained such an a�ne model, the estimator part of a MRAC has similar properties with the estimators

analyzed in Chapter 6. There are, however, a few rather important di�erences. One is arising due to

the need to identify the multiplier c0�, related to the high-frequency gain of the plant. Traditionally, this

parameter is estimated separately, requiring the a priori knowledge of its sign (or, equivalently, the sign of

the high-frequency gain of the plant). Although several studies have produced adaptive laws removing this

requirement [Nus.83, M.M.85] we will not pursue this direction at present. Another di�erence is exactly due

to the fact that the unknown parameters are those of the controller. As a consequence, the assumptions and

conditions under which our estimation results have been derived, must be imposed on the controller rather

than the plant parameters (e.g., bounding ellipsoids, structure of time variations). Since the relation between

the two is highly nonlinear, except some simple cases, the translation of the plant parameter properties to

properties of the controller parameters is very complicated. However, due to the general character of our

assumptions, this problem only a�ects the conservatism of our approach but not its validity.

Again, we begin our presentation with the analytically simpler case of smooth parameters and then

generalize the results to the non-smooth parameter case.

7.2.1 Smooth Parameter Variations

In Chapter 4 we studied the design and properties of a TV MRC, given complete knowledge of the plant

parameters. We now employ these results in order to design an adaptive algorithm to estimate the controller

parameters in the presence of parametric uncertainty. Throughout this development we assume that:

7.1 Assumption: (Plant and Reference Model) The LTV plant (3.1) satis�es Assumptions 3.1{3.3, 4.1{

4.2 and the reference model is selected to satisfy Assumptions 4.3 and 4.4.

Under these assumptions, Theorem 4.10 and Corollary 4.9 guarantee the existence of smooth, UB controller

parameters c0�(t) and ��(t) for which the TV MRC objective is satis�ed and the closed-loop system is ES.

For the controller parameters c0�(t) and ��(t) we assume that:

7.2 Assumption: (Controller Parameters) There exist a vector �̂�(t) and a scalar ĉ0�(t) such that ��(t) =

�(t)�̂�(t) and c0�(t) = �0(t)ĉ0�(t) where �0(t) and the entries of �(t) are known, smooth UB functions

of time. The vector ĉ0��̂�(t) satis�es Assumption 6.3 with an ellipsoid center denoted by �̂c, while a

similar assumption holds for ĉ0�; that is

ĉ0�(t) 2 C �
= [ĉ0min; ĉ0max] ; 8t � 0; ĉ0min > 0

and the interval C is known a priori.

Furthermore, we use the parameter � as a measure of the average speed of the unstructured part of the

MRC parameters, i.e.,

7.3 Assumption: (Speed of Variations) There exist constants c; � such that, for all t0; T � 0,Z t0+T

t0

j _̂c0�(t)j dt � c+ �T ;

Z t0+T

t0

j _̂c0�(t)j2 dt � c+ �TZ t0+T

t0

j d
dt
(ĉ0��̂�)(t)ji dt � c+ �T ;

Z t0+T

t0

j _̂��(t)ji dt � c+ �TZ t0+T

t0

j d
dt
(ĉ0��̂�)(t)j2 dt � c+ �T ;

Z t0+T

t0

j _̂��(t)j2 dt � c+ �T

where, as usual, j � ji is the linear functional norm induced by the norm employed in the de�nition of

the set M.
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Notice that, for technical reasons, it is convenient to pose the speed of variation assumptions on both ĉ0��̂�(t)

and �̂�(t) rather than �̂�(t) alone.

It should be emphasized that these Assumptions require the a priori knowledge of the plant relative

degree n� and the sign of its high-frequency gain kp(t) as well as its upper and lower bounds; they do not

require, however, knowledge of the rate of exponential stability of its zero dynamics.

7.4 Remark: The structure of the time-variations of the control parameter vector ��(t) can be

deduced from the structure of the plant parameters by using the corresponding MRC design equations from

Chapter 4. For plants in the PL-form whose parameter variations are `fully structured,' the simpler form

of the design equations allows the description of the controller parameters in a `fully structured' form. For

example, consider an n th order TV plant

yp = GL
p (s; t)[up] = D�1

p (s; t)Np(s; t)kp(t)[up]

with deg[Np(s; t)] = m and kp(t) = 1 1 whose parameters vary as sinusoids with a known frequency w0 and

unknown amplitude. From Lemma 4.5 and Corollary 4.9, ��(t) can be expressed as

��(t) = �̂0� +
n�mX
1

�̂1i� sin(iw0t) +
n�mX
1

�̂2i� cos(iw0t)

where �̂0�; �̂ji� are constant vectors.

On the other hand, for plants in the PR-form, the nonlinear dependence of ��(t) on the plant parameters

may force the use of a TV �̂�, reducing thus the e�ectiveness of the approach. 55

Preserving as many similarities as possible with the LTV plant identi�cation case of Chapter 6, we use

the notation:

� The I/O vector U = [up; yp]
>.

� The auxiliary controller �lters G(s)
�
= q>(sI � F )�1, G0(s)

�
= (sI � F )�1.

� The operators

G� : QU 7! G(s)[up�1] +G(s)[yp�2] + yp�3

G0� : QU 7! G0(s)[up�1] +G0(s)[yp�2]

G�� : QU 7! G(s)[up�1�] +G(s)[yp�2�] + yp�3�

where the terms with subscripts `3' appear in the case of a non-strictly proper TV MRC only.2

� The exponentially decaying term " describing the e�ect of initial conditions.

Further, in order to design the adaptive law, let us consider the TV MRC structure, as given in Chapter

4:

up = c0�u1 ; u1 = G��[QU ] + r

Although it is possible to perform the identi�cation of ĉ0� and �̂� by simply replacing the desired parameters

with their estimates in this control law (e.g., see [T.I.89]), it is more convenient to express the control input

so that the unstructured part of the unknown parameters appears in an a�ne form:

up = �0

n
ĉ0�r +G�[QU ](ĉ0��̂�)

o
� �0ĉ0��1

1Taking kp(t) to be TV would only result in more complicated but similar expressions.
2See Section 4.3, Example 4.7.
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Figure 7.1: The MRAC closed-loop system.

�1 = G�[QU ]�̂� �G��[QU ] = G(s)fG0�[QU ]
_̂
��g

We may now design the MRAC law by replacing the unknown parameters by their estimates while treating

the term �1 as a perturbation.

up = �0u1 ; u1 = ĉ0r +G�[QU ]�̂ (7:1)

where ĉ0 is the estimate of ĉ0� and �̂ is the estimate of ĉ0��̂�.

It should be pointed out that the control law (7.1) is similar to the realization of the PW MRC and in

fact reduces to it in the case of completely unstructured parameter variations (� = I, �0 = 1). In the case

of partially or completely structured variations, however, it does contain the known part of the parameter

variations at the correct location. This is necessary in order to avoid the swapping of any of the possibly

fast time-varying components of the controller parameters and take full advantage of the available a priori

knowledge of their structure. We also note that, compared with a control law of the form

up = c0u1 ; u1 = G�[QU ] + r (7:2)

where c0 = �0ĉ0, � = ��̂, the control (7.1) su�ers the drawback of introducing the seemingly unnecessary

perturbation �1. In fact, using (7.2), a perturbation due to the swapping of �̂ must be introduced later in

the analysis (e.g., see [T.I.89]). Since we require both perturbations to be small in a mean-square normalized

sense, the use of either one of the control laws produces similar results. It turns out, however, that the

analysis for the control law (7.1) is simpler and possibly less conservative.

Thus, we arrive at a description of the closed-loop TV MRAC system, shown in Fig. 7.1, in terms of the

nominal closed-loop plant and the perturbation, entering at the same node as the reference input,

1

ĉ0�

�
G�[QU ]�̂+ ~c0r

�
+ �1

due to the swapping term �1 and the parametric uncertainty, where

�̂
�
= �̂ � ĉ0��̂� ; ~c0(t)

�
= ĉ0 � ĉ0�

In this setup, the goal of the adaptation is simply to update the controller parameters as to minimize (in

some sense) the contribution of this perturbation. For this purpose, we de�ne the estimation error �1 by

�1 = ĉ0yp + �>�̂ �Wm(s) [u1] (7:3)

where

�> =WmG�[QU ] =Wm(s) fG(s)[up�1] +G(s)[yp�2] + yp�3g (7:4)
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and the terms with subscript `3' appear in the cases of a non-strictly proper MRC law.

With this de�nition, the estimation error �1 can be written as an a�ne model in the parameter error

vector for which our previous development of estimation algorithms is applicable. More precisely,

7.5 Lemma: Under Assumption 7.1 the estimation error �1, de�ned by (7.3) satis�es

�1 = ��>�� + ĉ0�� + "

where

�� =

�
~c0
�̂

�
; �� =

�
yp
�

�
and � is a `swapping' term:

� = Wm(s)[�1] + �>�̂� �Wm(s)
h
G�[QU ]�̂�

i
. . .

+Wm(s)

�
1

ĉ0�
u1

�
� 1

ĉ0�
Wm(s) [u1]

55

Proof: In view of Theorem 4.10, Corollary 4.9 and Example 4.7 the nominal closed-loop system (shaded

part of Fig. 7.1) is ES and has an I/O operator equal to Wm(s). Thus,

yp = Wm(s)

�
~c0
ĉ0�

r + r +
1

ĉ0�
G�[QU ]�̂+ �1

�
+ "

= Wm(s)

�
1

c0�
up

�
�Wm(s)G��[QU ] + "

Hence,

�1 = ��>�� + ĉ0�Wm(s)

�
1

ĉ0�
u1

�
�Wm(s)[u1] . . .

+ ĉ0�
�
�>�̂� �Wm(s)G��[QU ]

�
+ "

from which the proof follows immediately by performing the swapping of �̂� in the last two terms. Note that

the term ", describing the e�ect of initial conditions, is exponentially decaying since the nominal closed-loop

system is ES. 22

It is straightforward to see that a normalized version of the estimation error equation (7.3) can be put

in the general form of the a�ne model studied earlier. For example, we may choose the normalizing signal

m2 de�ned by

_m2 = �2�0m2 + jQU j2 + qrr
2 + qe;m2(t0) > 0 (7:5)

where Q is a positive de�nite weighting matrix, qr; qe are positive constants
3 and �0 is such that the poles

of G(s� �0) and Wm(s� �0) are in the open left half-plane.

The properties of the estimator part of an MRAC are described by the following corollary.

7.6 Corollary: Suppose that Assumptions 7.1, 7.2 and 7.3 hold and consider an MRAC closed-loop plant

where the parameters of the control law (7.1) are updated by

_̂c0 = Pc
�
�
 �1yp

m2

�
; ĉ0(t0) 2 C

3The term qrr
2 is only needed in one case, to ensure that the various constants are independent of the bound of r. Also,

certain bounding procedures may require the use of such a term for the same purpose. In our study, however, and in order
to preserve the similarities with the plant identi�cation case, we avoid such derivations and this term is unnecessary except in
Corollary 7.8.
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_̂
� = P�

�
�
 �1�

m2

�
; �̂(t0) 2M

and the projections Pc and P� correspond to the sets C and M respectively. Further, suppose that U 2
L1;[t0;t0+T ]. Then, ĉ0; �̂;

_̂c0;
_̂
� are UB on [t0; t0 + T ] (ĉ0; �̂ are within distance �� from C, M); furthermore,

there exists a constant C0 depending on the initial conditions but independent of T; t0, such that for any

interval I = [tI ; tI + TI ] � [t0; t0 + T ]

1.

Z tI+TI

tI

�21(t)

m2(t)
dt � C0 +

�
�21 +

K�




�
�TI ;

(also valid for (��>��)2=m2.)

2. j _̂�(t)j � 
�2
j�1jp
m2

+ "(t; t0);

3. j _̂c0(t)j � 
�3
j�1jp
m2

+ "(t; t0);

where K�;�1;�2;�3 are constants depending only on operator gains and the radii of the sets C;M (their

expressions are given in the proof). 55

Proof: In Appendix VI.

The performance of an estimator employing the �-modi�cation to ensure parameter boundedness can

be characterized in a similar fashion. In this case, however, and for technical reasons associated with the

forthcoming study of the BIBO stability of MRAC schemes, we assume that the derivatives of ĉ0� and �̂�
are �-small, uniformly in time. If we keep the projection in the estimation of ĉ0�, the same estimation error

can be used and the following result is obtained.

7.7 Corollary: Suppose that Assumptions 7.1, 7.2 hold4 and

k _̂��k1 � � ; k _̂c0�k1 � �

Further, consider an MRAC closed-loop system where the parameters of the control law (7.1) are updated

by

_̂c0 = Pc
�
�
 �1yp

m2

�
; ĉ0(t0) 2 C

_̂
� = �
 �1�

m2

� �(�̂ � �̂c)

and the projection Pc corresponds to the set C. Also suppose that U 2 L1;[t0;t0+T ]. Then, ĉ0; �̂; _̂c0;
_̂
� are

UB on [t0; t0 + T ], ĉ0 is within distance �� from C and �̂ converges exponentially fast to a residual set5�
�̂ : j�̂(t)j2 � O

�
K�;

�

�
; �

r



�

��
where K� is a constant depending on the radius of the parametric uncertainty set. Furthermore, there

exists a constant C0 depending on the initial conditions but independent of T; t0, such that for any interval

I = [tI ; tI + TI ] � [t0; t0 + T ]

4In this case, knowledge of the radius of the set M is not required.
5Due to the complexity and increased conservatism of the expressions, we used the simpli�ed notation O (x1; x2; . . .) �

K1x1 +K2x2 + � � � where Ki are constants. All such constants depend only on operator gains. We do, however, keep track of
the important adaptation parameters 
 and � and the radius of the parametric uncertainty set K� for later discussion.
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1.

Z tI+TI

tI

�21(t)

m2(t)
dt � C0 +O

 
�2;

K2
��



;
�2


�

!
TI ;

(also valid for (��>��)2=m2.)

2. j _̂�(t)j � O (
)
j�1jp
m2

+O (K��; �; �
p

�) + "(t; t0);

3. j _̂c0(t)j � O (
)
j�1jp
m2

+ "(t; t0);

55

Proof: In Appendix VI.

Similar results can also be derived without requiring the explicit knowledge of the set C by using an

additional parameter, updated as an estimate of 1=ĉ0�. This technique, discussed in [N.V.78] for the LTI case

and [T.I.89] for the LTV case, has the advantage that it requires less a priori knowledge about the plant, an

advantage that can be exploited by adaptation algorithms employing the �-modi�cation. It does, however,

have a disadvantage associated with the overparametrization of the controller that prohibits parameter

convergence [S.B.89] and possibly increases its susceptibility to noise.

In this approach, the estimation error is constructed as

�1 = yp � ym +  �

where  is a scalar parameter used as an estimate of  � = 1=ĉ0� and � is the signal

� = �>�̂ + ĉ0ym �Wm(s)[u1]

and, as usual, ym is the output of the reference model ym =Wm(s)[r]. It follows that �1 can be expressed as

�1 =  �
�
�>�̂+ ~c0ym

�
+ ~ � + � + "

where ~ =  �  � and � is a swapping term as in Lemma 7.5.

The so-constructed estimation error is in the familiar a�ne-model form for which an estimator can

be designed along the lines of our previous discussions, employing either a projection or a �-modi�cation

to ensure parameter boundedness. Here, we only consider the latter, since the value of this approach is

primarily in cases where the a priori knowledge of the sets C;M is very poor. Thus, the parameter updates

are performed by

_̂
� = �
 �1�

m2

� �(�̂ � �̂c)

_̂c0 = �
 �1ym
m2

� �(ĉ0 � ĉ0c)

_ = �
 �1�
m2

� �( �  c)

where, as usual, the subscripts 'c' denote the center of the ellipsoid containing the unknown parameters. Of

course, if such information is unavailable, these terms are zero. Further, assuming that the usual MRAC

assumptions are satis�ed as in Corollary 7.7 and that the derivatives of the unknown parameters are uniformly

small, i.e.,

k _̂��k1 � � ; k _̂c0�k1 � � ; k _ �k1 � �

we obtain the following result.
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7.8 Corollary: Under these conditions, suppose that U 2 L1;[t0;t0+T ]. Then, there exists �0 > 0 such

that 8� 2 [0; �0], ĉ0; �̂;  and their derivatives are UB on [t0; t0 + T ]. The parameter estimates converge

exponentially fast to a residual set�
�̂; ~c0; ~ : j�̂(t)j2; j~c0(t)j; j ~ (t)j � O

�
K��;

�

�
; �

r



�

��
where the constants in O (�) are well de�ned for �0 su�ciently small and K�� = kĉ0��̂� � �̂ck1 + kĉ0� �
ĉ0ck1 + k � �  ck1.

Furthermore, for any interval I = [tI ; tI + TI ] � [t0; t0 + T ]

1.

Z tI+TI

tI

�21(t)

m2(t)
dt � C0 +O

�
�2;

K2
���



;
�2


�

�
TI ;

2. j _̂�(t)j � O (
)
j�1jp
m2

+O (K���; �; �
p

�) + "(t; t0);

3. j _̂c0(t)j � O (
)
j�1jp
m2

+O (K���; �; �
p

�) + "(t; t0);

4. j _ (t)j � O

�

;

�

�
; �


r



�

� j�1jp
m2

+O (K���; �; �
p

�) + "(t; t0);

where C0 is a constant depending on the initial conditions but independent of T; t0. 55

Proof: In Appendix VI.

The above results characterize the average performance of parameter estimation schemes operating in a

direct MRAC setting, and bear many similarities with the respective parameter estimators for the identi�-

cation of LTV plants. We note, however, that the separate estimation of the parameter ĉ0� and the more

involved construction of the estimation error, tend to increase the complexity of the various expressions.

Further, the properties of certain appropriately de�ned forms of `identi�cation' errors are of particular

interest. For example, such an identi�cation error is simply the tracking error

e1 = yp � ym = yp �Wm(s)[r]

which is the di�erence between the plant output and the output of the reference model. As discussed in more

detail in the next section, the tracking error can be expressed in terms of the estimation error and a `swapping'

term �̂. The latter has the same form as � of Lemma 7.5 except that the estimates �̂; ĉ0 are also involved

in the swapping. As a consequence, in order to make e1=
p
m2 small in the mean-square sense, we must

ensure that �1=
p
m2,

_̂
� and _̂c0 are all small in the mean-square sense. For algorithms using projection, this

introduces a trade-o� between the adaptation gain and the speed of the unstructured parameter variations,

very similar to the indirect case. We note, however, that for any choice of 
 the mean-square tracking

error can be made arbitrarily small for su�ciently small �. This, in turn, implies that, irrespective of the

choice of the adaptation parameters, a projection algorithm can always guarantee `good' performance of the

estimation process for some non-trivial class of time-variations.

On the other hand, for algorithms using the �-modi�cation a much more careful selection of the adaptation

parameters is necessary. For example, Corollary 7.7 indicates that the mean-square value of e1=
p
m2 is of

the form

f(�) +O
�

�; �=
; �2

�
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where f(�) ! 0 as � ! 0. Hence, in order to guarantee that the mean-square identi�cation error is small,

we must not only require � to be su�ciently small but select � to be small enough as well. In other words,

estimators using the � modi�cation may fail to guarantee small estimation/identi�cation errors |even for

constant plant parameters| if the adaptation parameters are arbitrarily selected.

Another error signal that should be made small, at least in a mean-square sense, is the `input error'

W�1
m (s)[e1] =

~c0
ĉ0�

r +
1

ĉ0�
G�[QU ]�̂+ �1

=
1

c0�
up � (G��[QU ] + r)

which is exactly the di�erence between the actual signal produced by the MRAC at the reference input

node and the TV MRC input if the controller parameters were known. In fact, the input error is the

e�ective loop perturbation introduced by the parametric uncertainty in the controller parameters (see Fig.

7.1). Consequently, its properties are of paramount importance in determining the boundedness and overall

behavior of the closed-loop system. Notice that, in general, we cannot expect that the parameter errors

�̂; ~c0 become small after some time; this requires persistent excitation conditions which may not be satis�ed

for arbitrary reference inputs. Hence, we may not rely on simple small-gain arguments as, in general, the

perturbation operators �̂ and ~c0 may have large gains. On the other hand, our previous results ensure that

the tracking error is small in the mean-square sense for su�ciently slow variations of the unstructured part

of the controller parameters. Unfortunately, to take advantage of this, we need to invert the strictly proper

operatorWm(s), a procedure which has been a traditional di�culty in the analysis of direct MRAC schemes.

An elegant approach to solve this problem can be given through the Operator Inversion Lemma which is an

important part of our study in the next section.

7.2.2 Non-Smooth Parameter Variations

The previous results can be extended, in a rather straightforward manner, to the case of LTV plants with

non-smooth parameter variations. In this case, however, the appearance of the complete plant state as a

perturbation at every point of discontinuity introduces a requirement for the a priori knowledge of the rate

of exponential stability of the plant zero dynamics so that an e�ective normalization signal can be realized.

Although in applications this requirement may not be too severe, it constitutes a major qualitative di�erence

from the case of smooth parameter variations. Thus, for the design and analysis of an MRAC for LTV plants

with non-smooth parameter variations our assumptions are summarized as follows:

7.9 Assumption: (i) The LTV plant (3.8) satis�es Assumptions 3.4{3.6 and 4.1{4.4 inside every interval,

uniformly in j; the reference model is selected to satisfy Assumptions 4.3 and 4.4 hold.

(ii) An upper bound on the rate of exponential stability of the nominal plant zero dynamics, ��, (see
Assumption 4.2) is known a priori and the normalizing signal m2, given by (7.5), is designed so that

�0 < �

(iii) Inside every interval (tj ; tj+1), the controller parameters satisfy Assumption 7.2, uniformly in j.

Under these assumptions, there exist piecewise smooth controller parameters �� and c0� for which the

closed-loop is ES (Theorem 4.18). Furthermore, by Lemma 3.11, the complete state vector of the plant is

bounded by
p
m2, for �; �

0 su�ciently small.6 This property is instrumental in the proof of all the results

associated with the MRAC in the case of LTV plants with non-smooth parameters.

6As in the previous cases, �; �0 are used to denote the average frequency of parameter discontinuities and the mean-square
value of the perturbation resulting from smooth approximation, respectively.
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7.10 Corollary: Suppose that Assumption 7.9 holds, the smooth part of the controller parameters satis�es

Assumption 7.3 and consider an MRAC closed-loop system where the parameters of the control law (7.1)

are updated by

_̂c0 = Pc
�
�
 �1yp

m2

�
; ĉ0(t0) 2 C

_̂
� = P�

�
�
 �1�

m2

�
; �̂(t0) 2M

and the projections Pc and P� correspond to the sets C and M respectively. Further, suppose that U 2
L1;[t0;t0+T ]. Then, there exist �0; �

0
0 such that for any � 2 [0; �0) and �0 2 [0; �00), ĉ0; �̂;

_̂c0;
_̂
� are UB on

[t0; t0 + T ] (ĉ0; �̂ are within distance �� from C, M). Furthermore, there exists a constant C0 depending on

the initial conditions but independent of T; t0, such that for any interval I = [tI ; tI + TI ] � [t0; t0 + T ]

1.

Z tI+TI

tI

�21(t)

m2(t)
dt � C0 +

�
�21 +

K�




�
�TI +K2

J

�
1 +

1




�
�TI + ~K�0TI ;

(also valid for (��>��)2=m2.)

2. j _̂�(t)j � 
�2
j�1jp
m2

+ "(t; t0);

3. j _̂c0(t)j � 
�03
j�1jp
m2

+ "(t; t0);

where K�;�1;�2 are as in Corollary 7.6 and �03;KJ ; ~K are constants depending only on operator gains,

the radii of the sets C;M the magnitude of parameter discontinuities and the magnitude of parameter

perturbations due to smooth approximation but independent of T; t0. 55

Proof: In Appendix VI.

Analogous, though more complicated, results are obtained when the �-modi�cation is used to ensure pa-

rameter boundedness. Again, we restrict ourselves to the study of this case under some uniformity conditions

on the size of the perturbation terms, namely,

k _̂�s�k1 � � ; k _̂cs0�k1 � �

j ~Aj; j~bj; j~cj � �0

tj+1 � tj �
1

�
uniformly in t and j, where as usual the superscript `s' denotes the smooth part of the parameters, ~̀�' refers
to the state-space perturbations due to smooth approximations and tj are the discontinuity points.

7.11 Corollary: Suppose that Assumption 7.9 holds and the smooth part of the controller parameters

satis�es Assumption 7.3 as restricted by the conditions above. Further, consider an MRAC closed-loop

system where the parameters of the control law (7.1) are updated by

_̂c0 = Pc
�
�
 �1yp

m2

�
; ĉ0(t0) 2 C

_̂
� = �
 �1�

m2

� �(�̂ � �̂c)

and the projection Pc corresponds to the set C. Further, suppose that U 2 L1;[t0;t0+T ]. Then, there exist

�0; �
0
0 such that for any � 2 [0; �0) and �

0 2 [0; �00), ĉ0; �̂;
_̂c0;

_̂
� are UB on [t0; t0 + T ], ĉ0 is within distance ��

from C and �̂ converges exponentially fast to a residual set satisfying

j�̂(t)j2 � O

�
K�;

�

�
; �

r



�
; �0
r



�

�
+O

�
KJ ;

r



�

�
e��(t�tj) ; t � tj
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where K� is a constant depending on the radius of the parametric uncertainty set (see Corollary 7.6), KJ is

a constant depending on the size of the parameter jumps and for any � > 0, �(�) > 0 is a constant.

Furthermore, there exists a constant C0 depending on the initial conditions but independent of T; t0,

such that for any interval I = [tI ; tI + TI ] � [t0; t0 + T ]

1.

Z tI+TI

tI

�21(t)

m2(t)
dt � C0 +O

 
�2; �02; �;

K2
��



;
�2


�
;
K2

J�




!
TI ;

(also valid for (��>��)2=m2.)

2. j _̂�(t)j � O (
)
j�1jp
m2

+O (K��; �; �
p

�; �0

p

�) . . .

+O (�KJ ;
p

�) e��(t�tj) + "(t; t0) ; t � tj ;

3. j _̂c0(t)j � O (
)
j�1jp
m2

+ "(t; t0);

55

Proof: In Appendix VI.

The essence of all the results in this section is the description of the closed-loop plant in terms of known

I/O operators and a perturbation related to an estimation/identi�cation error. This is quite obvious in the

MRC case and it is also true in the indirect control case. Consequently, in the remainder of our study, we

need to discuss the robustness properties of such systems subject to persistent but small in the mean-square

sense perturbations.

7.3 MRAC: Design and Stability Analysis

In this section we study the global properties of direct MRAC. Our primary objective is to establish, under

some general conditions, the boundedness (BIBO stability) of the closed-loop system. In addition, we

would like to describe the closed-loop performance, in some sense, characterizing thus the e�ectiveness of

the adaptive control scheme. The latter is an issue largely unresolved even for LTI plants without using

persistent excitation and/or local analysis concepts [A++.86, Gaw.87]. Moreover, standard remedies in the

form of dead-zone modi�cations are not directly applicable in our case due to the continuous variation of the

plant parameters over possibly large sets of parametric uncertainty. Guided by the results of the previous

section, our expectation is to show that the mean-square or, equivalently, the Root-Mean-Square (RMS)

value of a normalized identi�cation error is kept small, for slow variations of the unstructured part of the

unknown parameters. Of course, this is a rather weak measure of performance and should be carefully

interpreted.

As mentioned in the Introduction, the design of an MRAC scheme is performed in two stages. In the

�rst one, the control input is de�ned by

up = �0u1 ; u1 = ĉ0r + w>�̂

where

w> = G�[QU ]

G� : QU 7! G(s)[up�1] +G(s)[yp�2] + yp�3

G(s) = q>(sI � F )�1
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Figure 7.2: The MRAC closed-loop system.

and ĉ0; �̂ are the MRAC adjustable parameters. In the second stage, an adaptive law, of the type studied

is Section 7.2, is selected to update these parameters on-line. In our analysis, we consider two types of

estimators, one using projection and one using the �-modi�cation to ensure the boundedness of the parameter

estimates. Brie
y described, for the projection modi�cation, the update law equations are (see Section 7.2

and Chapter 5 for details)

_̂c0 = Pc
�
�
 �1yp

m2

�
; ĉ0(t0) 2 C

_̂
� = P�

�
�
 �1�

m2

�
; �̂(t0) 2M

where 
 > 0 is the adaptation gain, Pc and P� denote projection operators and

�1 = ĉ0yp + �>�̂ �Wm(s) [u1]

� = Wm(s)[w]

_m2 = �2�0m2 + jQU j2 + qrr
2 + qe;m2(t0) > 0

For the �-modi�cation, the update equation for �̂ is de�ned by

_̂
� = �
 �1�

m2

� �(�̂ � �̂c)

where � > 0 is a constant and the rest of the quantities are as before.

Our approach to analyze the stability properties of the MRAC closed-loop plant relies on the closed-loop

I/O description, shown in Fig. 7.2, where the parameter error appears as a perturbation of an ES nominal

closed-loop system. In this framework, boundedness can be established provided that the |appropriately

normalized| external perturbation is small in the mean-square sense. This key idea is essentially expressed

by Lemma 2.45 although a slightly more re�ned version is used here.

The description of Fig. 7.2 is obtained by a straightforward decomposition of the control input into the

nominal part G��[QU ], corresponding to the TV MRC law if the plant parameters were precisely known, and

the `input error' part. The latter is a perturbation due to the parameter errors ~c0 and �̂ and the swapping

term �1 which, for the adaptive control systems considered, can be decomposed into two parts: the �rst is

the output of an operator having small gain and input the I/O pair; the second is a signal which, by virtue

of the properties of the estimation algorithm, is small in an average, normalized sense.7

7A similar description is obtained when the control input is de�ned by up = c0u1, u1 = G�[QU ] + r where c0; � are the
adjustable parameters [T.I.89]. However, the analysis for this control law is slightly more involved and is not discussed here.
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Motivated by such a decomposition, we study the boundedness properties of the closed-loop system by

combining small-gain and Bellman-Gronwall arguments to obtain the following intermediate result.

7.12 Lemma: Let U; v;E;R; r be, possibly vector valued, signals in L1;[t0;t1] with R; r; 1=r being

UB.8 Also, let mf be a signal de�ned by

mf = E�2�
�
k(U)tk22;� + k(r)tk22;� + qe2�t0

�
where q > 0 is a constant and suppose that

k(U)tk2;� � k(R)tk2;� + ak(U)tk2;� + k(v)tk2;� + k(E)tk2;�; 8t 2 [t0; t1]Z t+T

t

jv(�)j2
mf (�)

d� � C + �2T ; 8t 2 [t0; t1]; 80 � T � (t1 � t)

jE(t)j2
mf (t)

� C 0e�b(t�t0); 8t 2 [t0; t1]

jvj2
mf

;
jEj2
mf

are UB on [t0; t1]

where a; b; �; C;C 0 are positive constants and (�)t denotes truncation at t.

Then, a su�cient condition for mf to be UB on [t0; t1] is

a+
�p
2�

< 1 (7:6)

55

Proof: In Appendix VII.

It is interesting to observe that this result can be interpreted as a weak version of the small-gain theorem,

applicable to ES systems perturbed by an operator of small gain and an operator whose output has a small

normalized RMS value. That is, a can be interpreted as the L2(�) gain of a perturbation operator in cascade

with the corresponding system sensitivity operator and � as the RMS value of v=
p
mf , v being the output

of another, not necessarily small perturbation operator. Notice that the ES property of the unperturbed

system is, at this point, indirectly required through the term R which is the nominal output of the system

and the assumption that a is a �nite constant. On the other hand, � can be interpreted as the exponential

stability margin of the nominal system or, alternatively, as its minimum rate of energy dissipation. Thus,

the �rst term of (7.6) imposes a small-gain condition on the �rst perturbation operator while the second

ascertains the worst-case maximum average energy that can be dissipated by the system.

Note that Lemma 7.12 does not guarantee by itself that mf is UB for all t nor that the closed-loop signals

are UB. Such conclusions, however, can be drawn by making some technical arguments regarding the ODE's

that describe the evolution of the closed-loop system. As usual, we begin our discussion with the analytically

simpler case of smooth parameter variations.

7.3.1 Smooth Parameter Variations

In the case of smooth parameter variations and invoking Lemma 4.6, we express the signal U = [up; yp]
> as

QU = QSr[~u] + "

where

~u =
ĉ0
ĉ0�

r +
1

ĉ0�
w>�̂+ �1

8Again, we use the term UB to signify that the L1 bounds are independent of t0; t1.
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�1 = w>�̂� �G��[QU ] = G(s)fG0�[QU ]
_̂
��g

and Sr = [Sru; Sry]
> is an Lp(�)-stable operator. Further, since Sry =Wm(s), we have that

Wm(s)[~u] = yp

while from equation (7.3)

yp =
1

ĉ0

�
�1 �Wm1fWm2[w

>]
_̂
�g+Wm[ĉ0r]

�
(7:7)

Thus, combining the expressions above and employing Lemma 2.61, we arrive at the following description

of the closed-loop system

QU = QSr(1� �)[~u] + (1� �)QSr�W
�1
m [yp] + �QSr�[~u] + "

= R+QSr�1

�
d

dt

�
1

ĉ0�
w>�̂

��
+QSr(1� �)[�1]

+(1� �)QSr�W
�1
m

1

ĉ0
[�1]

+(1� �)QSr�W
�1
m

1

ĉ0
Wm1

n
Wm2[w

>](� _̂
�)
o

+�QSr�[�1] + �QSr�

�
1

ĉ0�
w>�̂

�
(7.8)

where R includes the contribution of all terms depending on initial conditions or the UB reference input,

� 2 [0; 1] is a free parameter9 and �;�1 are operators as in Lemma 2.61 such that the 
2-gain of �1 is O (1=a)

with `a' being another free parameter to be selected.

Equation (7.8) establishes a connection between the estimation process and the nominal closed-loop

perturbation due to the TV parametric uncertainty �̂. Clearly, a stability argument can be made using the

small-gain theorem alone. Such an argument, however, would involve the worst-case parametric uncertainty

which, in general, is of the order of the radius of the parametric uncertainty set and thus limiting the

usefulness of the result. On the other hand, the estimator adjusts on-line the controller parameters and

therefore �̂ in an attempt to minimize the estimation error �1. Translating the properties of the estimation

error, established in the previous chapter, to properties of the e�ective perturbation w>�̂ involves the non-

proper inverse of the reference model. This operation can be interpreted as a decomposition of w>�̂ into

a low and a high frequency component, the former being small in a mean-square normalized sense. The

decomposition is performed by the �ctitious �lter � whose cut-o� frequency `a' determines, in an indirect

way, the worst-case frequency content of the large-in-magnitude components of w>�̂. The rest of the analysis

is a tedious but rather straightforward procedure where a constraint on the free parameter `a' and an upper

bound on � are determined via Lemma 7.12. The �nal result describes the boundedness and performance,

in a mean-square sense, properties of the adaptive closed-loop system and can be stated in a simple form as

follows.

7.13 Theorem: Let K� be a constant denoting the size of the parametric uncertainty set as in Corollary

7.6 and suppose that the conditions of Corollary 7.6 are satis�ed with the projection Pc designed so that

ĉ0min � �� > 0. Then, for any �nite K�, there exists �0 > 0 such that for any � 2 [0; �0) all signals in the

closed-loop are UB for all t � t0.

9The usefulness of � is in recovering a small-gain condition when the parametric uncertainty is small, e.g., see [Tsa.89].
In our case, however, the general bounding procedure invoked for the perturbation term �1 makes such an approach rather
inconvenient. Instead, the analysis can be performed in two stages. One for large parametric uncertainty sets (� = 0) and
another for small parametric uncertainty sets (� = 1).
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Furthermore, there exists a constant C0 > 0 such that the tracking error e1 = yp � ym satis�esZ t+T

t

e21(�)

m2(�)
d� � C0 +O

�
1;
K�



; 
2;K�


�
�T

for all t � t0 and all T � 0. 55

Proof: In Appendix VII.

Clearly, this result con�rms our intuitive expectation that an adaptive controller should be able to

guarantee boundedness and good performance on the average even if the plant description contains unknown

but slowly varying elements. Next, to gain some further insight on the implications of Theorem 7.13, we

make several interesting observations following either directly from the Theorem itself or its proof.10

7.14 Remark: As a �rst observation we note that the critical parameter for the boundedness of the

closed-loop signals is the speed of variation of only the unstructured part of the controller parameters. This

in turn implies that an adaptive controller can be used with plants that are not necessarily slowly TV, as long

as the structure of the fast TV elements has been correctly incorporated in the control law. And although

the structure of the fast TV elements (�; �0) a�ects the value of �0 in an indirect way, through the gains of

the various operators, boundedness can always be guaranteed for some non-trivial class of TV plants. On

the other hand, �0 is very sensitive to the size of parametric uncertainty and especially M0. A large radius

of the parametric uncertainty set tends to decrease �0 quite rapidly and even more so if the relative degree

of the plant and the reference model is high. This can be attributed to the increasing loss of high-frequency

information, during the estimation process, as the relative degree of the plant increases. 55

7.15 Remark: In the limit as � ! 0, boundedness is guaranteed for arbitrarily large parametric

uncertainty sets (K� ! 1) and the mean-square value of the tracking error also approaches zero without

excluding, however, the possibility of burst phenomena. In addition, when � = 0, (fully structured variations)

the adaptive controller recovers the performance of the ideal case (known parameters), in the sense that

e1 ! 0 as t ! 1 irrespective of the size of the parametric uncertainty. This result is an immediate

consequence of the square integrability and Lipschitz continuity of the tracking error.11 Again, the result is

valid even if the overall plant is TV. 55

7.16 Remark: In the case of completely unstructured parameter variations, � = I, �0 = 1, the MRAC

design is identical to the standard one used for LTI plants. This observation establishes the robustness

of a MRAC with respect to slow or slow-in-the-mean variations of the plant parameters and provides a

theoretically concrete justi�cation for the use of adaptive controllers in a TV environment. 55

7.17 Remark: When the parametric uncertainty becomes su�ciently small, boundedness can be

guaranteed independent of the speed of variation of the unknown parameters. This result can be seen via a

straightforward small-gain argument (for further details, see the proof of the theorem). 55

7.18 Remark: It is both theoretically and practically interesting to note the role of the adaptation gain


 in the behavior of the adaptive closed-loop systems. Since quantities depending on both 
 or 1=
 appear

in the condition for stability as well as the performance characterization, the adaptation gain should not be

selected as too small or too large. This observation agrees well with intuition as estimators with too small

adaptation gains are unable to track fast parameter variations. On the other hand, large adaptation gains

introduce large perturbations since the derivative of the parameter estimate is not necessarily an estimate

of the derivative of the parameter. An `optimum' selection of the adaptation gain is not clear at this

10Theorem 7.13 can also be stated in a form reminescent of the small-gain theorem, e.g., see [Tsa.89] from which all the
observations follow as corollaries. Such a form, however, is notationally complicated and perhaps unnecessary. In an attempt
to keep the presentation simple we refer the interested reader to the proof for further details.

11Note that the convergence of the tracking error to zero is not necessarily exponential.
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point, especially in view of the fact that the stability condition in Theorem 7.13 is only su�cient and quite

conservative. It seems reasonable, however, that an initial selection of the adaptation parameters should be

approached from a performance point of view. That is, design the adaptive controller as to minimize the

RMS value of the tracking error, for which relatively tight bounds can be derived, assuming that the plant

parameter variations are su�ciently slow to ensure the closed-loop BIBO stability. 55

7.19 Remark: It cannot be overemphasized that the results described in this and the next chapter are

su�cient conditions for the boundedness of signals in the adaptive closed-loop plant. And although these

conditions are intuitively appealing, it is by no means implied that their violation leads to an unbounded

closed-loop plant. In fact, as shown in [A.N.89], there are special cases where the signals in the adaptive

closed-loop plant remain bounded despite fast unstructured variations over a wide range. These results,

however, are not directly applicable to the general case and since general instability theorems are extremely

hard to establish, the derivation of necessary and su�cient or even `tight' conditions for boundedness is still

an unresolved problem. 55

7.20 Remark: Following similar analytical steps, one may also establish the robustness of an MRAC

with respect to di�erent types of perturbations (e.g. unmodeled dynamics, unstructured non-parametric

uncertainty [Tsa.89]), although for such a result one should rederive the estimator properties in order to

include the e�ects of the additional perturbations. In this case, the properties of the various loop sensitivity

operators are of critical importance and loop shaping procedures should be used to enhance both robustness

and performance of the adaptive system. However, a systematic design methodology is yet unavailable except

in special cases, e.g., local analysis and/or persistent excitation [A++.86]. 55

When the parameters of an MRAC are updated by an estimator using the �-modi�cation, the analysis

becomes more complicated due to the additional O (�) perturbation introduced in the parameter estimation

algorithm. The net result is that, in order to guarantee boundedness, we need to impose conditions on the

magnitude of both � and �.

7.21 Theorem: Let K� be a constant denoting the size of the parametric uncertainty set and suppose

that the conditions of Corollary 7.7 are satis�ed with the projection Pc designed so that ĉ0min � �� > 0.

Then, for any �nite K�, there exist �0 > 0 and �0(�)
12 such that for any � 2 (0; �0), �0 > 0 and for any

� 2 [0; �0) all signals in the closed-loop are UB for all t � t0.

Furthermore, there exists a constant C0 > 0 such that the tracking error e1 = yp � ym satis�es

Z t+T

t

e21(�)

m2(�)
d� � C0 +O

 
K2

�



;K2

��;K
2
�


!
�T . . .

+O

�
1; 
2;




�
;
1


�
; 
�

�
�2T

for all t � t0 and all T � 0. 55

Proof: In Appendix VII.

7.22 Remark: As it was intuitively expected, the boundedness of the closed loop signals can be

guaranteed provided that � is su�ciently small. This condition appears even in the LTI case, [I.S.88], as

well as in the case of completely structured parameter variations. One interpretation is that the parameter

� adjusts the size of the parameter search set in an indirect way. Small values of � allow the parameters to

move further away from the `nominal' point �c. In general, this set must be large enough (its diameter should

be O (K�)) so that �� is close to it, implying in return that the set contains the parameters of a stabilizing

12�0, as derived in the proof of the theorem, is a continuous function of �.
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compensator. Indeed, even though our analysis is quite conservative, �0 decreases rapidly as K� increases,

indicating that the size of parametric uncertainty must be taken into account in the selection of �. On the

other hand, the previous theorem can be stated in a somewhat di�erent form to indicate the usefulness of

the algorithm in the case of poor a priori knowledge of the size of parametric uncertainty. Namely,

\for any � > 0 there exist �0 > 0 and K0 > 0 such that for any � 2 [0; �0) and K� 2 [0;K0) all signals in

the loop are UB. Furthermore, as � ! 0, �0 ! 0 and K0 !1."

The proof of this statement follows directly from the proof of Theorem 7.21 by considering K� as a variable

instead of �. 55

7.23 Remark: When the parametric uncertainty K� becomes su�ciently small, it is shown in the

proof of the theorem that one way to guarantee boundedness is to increase the value of � so that � � �; �2.

That is, boundedness can be guaranteed for any �, provided that � is su�ciently large. Indeed, this result

has a quite intuitive interpretation. Small parametric uncertainty implies that our initial guess for the

controller parameters �̂c is su�ciently close to ĉ0��̂� for all t and therefore it is a stabilizing one. Thus, all

we need to do is to make sure that the parameter estimates remain close to the initial point in the presence

of an O (�) perturbation. This can be ensured by choosing � to be su�ciently large compared to �. Notice

that such a restriction is unnecessary in the case of estimators using projection since the latter maintains a

`hard-bound' on the parameter estimates. On the other hand, what is interesting about the �-modi�cation is

that the critical parameter is the actual value of K�, i.e., the actual worst-case di�erence between the desired

controller parameters ĉ0��̂� and their initial guess �̂c. When a projection algorithm is used, this di�erence

is (conservatively) estimated a priori and remains �xed throughout the operation of the controller. In other

words, if it happens that, for the particular plant, �̂c is su�ciently close to the desired parameters ĉ0��̂�,

then an algorithm using a �-modi�cation may be superior to one using projection. But the reverse should

be expected when one considers the worst-case scenario where the parameters are allowed to vary inside a

certain bounded set. 55

In an analogous fashion, closed-loop boundedness can be established for MRAC algorithms designed as

in Corollary 7.8 while robustness with respect to other types of perturbations can be shown using the same

analytical tools. The details, however, extend beyond the scope of this discussion and are omitted.

7.3.2 Non-Smooth Parameter Variations

The approach used in the previous subsection to analyze the MRAC properties is also applicable when the

variations of the plant parameters include discontinuities, according to the models and assumptions discussed

in Chapter 3. Again, the main idea is to establish the boundedness of the closed-loop signals by invoking

Lemma 7.12 and using the properties of the estimation error and estimated parameters, derived in the

corresponding corollaries of Chapter 5. Indeed, one can easily verify that the RMS values of both �1=
p
m2

and
_̂
� are simultaneously small, provided that

� the speed of variation of the smooth part of �̂�; ĉ0�, parametrized by �, is small;

� the frequency of discontinuities, parametrized by �, is small;

� any perturbation terms caused by smooth approximations, whose size is parametrized by �0, are small;

� when the �-modi�cation is used in the estimator, � is small.

Consequently, Theorems 7.13 and 7.21 can be generalized to admit plants with discontinuous or non-smooth

parameters. In view of the results obtained so far, this generalization is actually quite straightforward despite
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the fact that the necessary `bookkeeping' is rather tedious. The �nal outcome, showing the e�ect of such

perturbations, is stated below.

7.24 Theorem: Let K� be a constant denoting the size of the parametric uncertainty set and suppose

that the conditions of Corollary 7.10 are satis�ed with the projection Pc designed so that ĉ0min � �� > 0.

Then, for any �nite K�, there exist �0; �0; �
0
0 > 0 such that for any � 2 [0; �0), � 2 [0; �0), �

0 2 [0; �00) all

signals in the closed-loop are UB for all t � t0.

Furthermore, there exists a constant C0 > 0 such that the tracking error e1 = yp � ym satis�esZ t+T

t

e21(�)

m2(�)
d� � C0 +O

�
1;
K�



; 
2;K�


�
�T . . .

+O

�
�; �0;

�



; 
2�; 
�; 
2�0

�
T

for all t � t0 and all T � 0. 55

Proof: In Appendix VII.

7.25 Theorem: Let K� be a constant denoting the size of the parametric uncertainty set and suppose

that the conditions of Corollary 7.11 are satis�ed with the projection Pc designed so that ĉ0min � �� > 0.

Then, for any �nite K�, there exist �0 > 0 and �0(�), �0(�), �
0
0(�) such that for any � 2 (0; �0), �0 > 0,

�0 > 0, �00 > 0 and for any � 2 [0; �0), � 2 [0; �0), �
0 2 [0; �00) all signals in the closed-loop are UB for all

t � t0.

Furthermore, there exists a constant C0 > 0 such that the tracking error e1 = yp � ym satis�es

Z t+T

t

e21(�)

m2(�)
d� � C0 +O
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�02T

for all t � t0 and all T � 0. 55

Proof: In Appendix VII.

The above results are quite similar to those derived for the case of smooth parameter variations. They

can all be classi�ed under the same intuitive comment, that is, under some technical conditions ensuring that

the adaptive closed-loop is well-behaved, perturbations which are small in an RMS sense cause an RMS-small

deviation from the desired behavior. In this framework, the interesting property of adaptive schemes is that

they translate parametric uncertainty, in a certain class of LTV parametric models, into a perturbation of

the order of the parameter derivatives in an RMS sense. However, it should be emphasized at this point

that, although this result can be established for a nontrivial and practically interesting class of plants, the

performance characterization in an RMS sense may not prove to be what the designer had originally in

mind. Infrequent but large burst phenomena are a common cause of concern, an issue for which only partial

remedies are currently available.
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7.4 Examples

We conclude this study of MRAC for LTV plants with a few examples illustrating its design procedure and

some of its properties encountered during closed-loop operation. In the following discussion we consider the

same plant as in Examples 4.21 and 4.22, i.e.,

[s2 + a1s+ a2]yp = up (7:9)

where a1; a2 are TV parameters. More speci�cally, we take

a1 = â1 ; a2 = â2 sin(�t)

where â1; â2 are constants with nominal unknown values �6 and 2 respectively. Thus, the speed of variations
of the plant parameters can be speci�ed by the parameter �. The control objective is to make the plant

output yp track the output of the LTI reference model

[s2 + 3s+ 2]ym = r (7:10)

for any bounded, piecewise continuous reference input signal r.

7.26 Example: (TV MRAC, `fast', structured parameter variations) Let us �rst consider the case

where � = 1 and it is known a priori. Such parameter variations can be characterized as `fast' since, from

the examples of Chapter 4, a PW MRC is unable to maintain closed-loop stability. From Example 4.22,

a TV MRC satisfying the above control objective, irrespective of the speed of the parameter variations, is

designed as

_!1 = �!1 + ��1up ; _!2 = �!2 + ��2yp

up = !1 + !2 + ��3yp + r

with the desired control parameters given by

��1 = â1 � 3

��2 = f(â1 � 4)â1 + 3g+ f(3� â1)â2g sin(�t)
��3 = f(4� â1)â1 � 5g+ â2 sin(�t)

Following our analysis, we may use the alternative construction of the control input

_w1 = �w1 + q1up

_w2 = �w2 + q2yp

_w3 = �w3 + q3yp sin(�t)

w4 = q4yp

w5 = q5yp sin(�t)

up = r + �̂>� w

where w = [w1; . . .w5]
>, qi denotes �xed, constant weights and �̂� is the (constant) parameter vector with

nominal value

�̂� =

0BBBB@
�9=q1
63=q2
18=q3
�65=q4
2=q5

1CCCCA
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Figure 7.3: Closed-loop response with a non-adaptive TV MRC
in the presence of parametric uncertainty.

Further, let us consider the case where the plant parameters are not precisely known, but there is some

parametric uncertainty associated with the values of âi. As shown in Chapter 4, the TV MRC guarantees

that the nominal closed-loop system is ES and, consequently, it remains so for su�ciently small values of

the parametric uncertainty. However, in our example, a mere 8% parametric uncertainty is su�cient to

destabilize the closed-loop system. That is, taking â1 = �5:52 and â2 = 1:84 (i.e., an 8% di�erence from the

actual) the TV MRC parameters are calculated as

�̂0� =

��8:52
q1

;
55:5504

q2
;
15:6768

q3
;
�57:5504

q4
;
1:84

q5

�>
Using these values of the control parameter vector to control the original plant (â1 = �6; â2 = 2), a simulation

of its response to a sinusoid r = 10 sin t demonstrates that the closed-loop is unstable (see Fig. 7.3). The

destabilization of the closed-loop system due to large parametric uncertainty is, of course, not surprising

and appears in the case of LTI plants as well. On the other hand, selecting the auxiliary �lters and the

reference model more carefully may increase the amount of parametric uncertainty that can be tolerated.

Nevertheless, such optimization is still an open problem, even in the LTI case, while the resulting bounds of

parametric uncertainty are always �nite leaving the main points of this discussion qualitatively unchanged.

Here we follow a di�erent approach to handle the parametric uncertainty problem. According to the

procedure discussed in Chapter 6 and assuming knowledge of �, we design an adaptive law to estimate the

unknown controller parameters �̂�. Letting �i = (s2 + 3s + 2)�1[wi], we update the controller parameter

estimates by
_̂
� = P�

�
�
 �1�

m2

�
where

�1 = yp + �̂>� � (s2 + 3s+ 2)�1up

_m2 = �1:4m2 + jupj2 + 5jypj2 + 0:1jrj2 + 1 ; m2(0) = 1

and the projection P� is designed to keep the parameter estimates in a bounded set re
ecting a considerably

larger, 20% parametric uncertainty in âi. Notice that the constant weights qi used in the de�nition of the

signals wi, can now be given a loose interpretation as normalizers of the uncertainty in each component of

�i or, alternatively, as normalizers of the adaptation gain of each component. For this example we use

q1 = q5 = 1 ; q2 = q4 = 5 ; q3 = 3
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Figure 7.4: Closed-loop response with a TV MRAC. Fast, fully structured
parameter variations, � = 1.

for which the projection intervals for each component of �̂ are easily found to be

�̂ 2

8>>>><
>>>>:

[�10:2 ; �7:8]
[9:048 ; 16:728]
[4:16 ; 8:16]
[�17:128 ; �9:448]
[1:6 ; 2:4]

9>>>>=
>>>>;

Finally the control input of the TV MRAC is generated by (notice that c0� = 1)

up = r + �̂>w (7:11)

with the vector w de�ned above and correctly incorporating the available a priori knowledge of the structure

of the variations of �̂�. Then, according to Theorem 7.13 and this being a case of fully structured variations,

the TV MRAC guarantees boundedness of all signals in the loop and convergence of the tracking error to

zero, asymptotically with time. This is demonstrated in Fig. 7.4 where r = 10 sin t, 
 = 10 and all initial

conditions are taken as zero, except

y(0) = 1

�̂(0) = [�8:52; 11:11008; 5:2256;�11:51008; 1:84]>

It is worthwhile to observe that although the initial convergence of the tracking error to the corresponding

residual set is quite rapid, its convergence to zero inside the residual set set is not exponential and can

be very slow. This behavior is, of course, similar to the LTI plant case. And although the underlying

system dynamics and properties of the nominal sensitivity operators and excitation issues become a lot more

complicated, the net result is that the estimation problem is reduced to the estimation of some unknown

but constant parameters. In other words, one may consider the adaptive control of LTI plants as a special

case of the adaptive control of LTV plants with fully structured parameter variations.

It should be mentioned that if there were some ambiguity in the frequency �, e.g., a case of partially

structured variations, two additional parameters would be needed to estimate the amplitudes of the cos�t

terms (see Example 6.15). In this case, the uncertain TV components introduce a perturbation whose size is

related to the derivative of the unstructured part of the estimated parameters. This situation is considered

in the next example. 55

7.27 Example: (Slow, unstructured parameter variations) In this example we consider the more

interesting case where the estimated parameters are actually TV. This situation arises when there is partial

or no a priori knowledge of the structure of the parameter variations. Such problems have been a traditional
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Figure 7.5: Closed-loop response with a PW MRC. Slow, unstructured
parameter variations: a. Reference input r = 10 sin t;
b. Reference input r = 10.

motivation for the use of adaptive controllers. Here, and in order to simplify the presentation, we only discuss

the case of unstructured parameter variations. Of course, partially structured parameter variations present

no additional conceptual di�culty, except perhaps in that the underlying nominal closed-loop structured is

an LTV system.

Thus, let us consider again the MRC problem for the plant given in the beginning of this section, where

now � is an unknown, small constant. Following the analysis of Example 4.22, a TV MRC is given by

_!1 = �!1 + ��1up ; _!2 = �!2 + ��2yp

up = !1 + !2 + ��3yp + r

with the desired control parameters

��1 = a1 � 3

��2 = a21 � 4a1 � a1a2 + 3a2 + 3� 5 _a1 + 2a1 _a1 � �a1

��3 = 4a1 + a2 � a21 � 5 + _a1

Since no information is available on the structure of parameter variations it is reasonable to assume that

they are su�ciently slow so that the plant as well as the controller parameters can be treated pointwise as

constants. Consequently, we can write the control law as

up = r + �>w (7:12)

where

_w1 = �w1 + q1up ; _w2 = �w2 + q2yp ; w3 = q3yp

and, as in the previous example, qi denote �xed weights. Note that since the unknown parameters are TV

with no a priori available model of variations, we do not expect to recover the asymptotic tracking property

of either the LTI or fully structured TV case. Moreover, as discussed in Chapter 6, the more convenient

de�nition of the TV MRAC control input given by (7.12) is identical to the PW MRC structure in the case of

completely unstructured parameter variations (although di�erent in the partially and fully structured cases).

With this in mind, it is more appropriate to use the PW MRC response as an indicator of how well we expect

the adaptive controller to perform. For example, the tracking error to a sinusoid and a step reference input

(r = 10 sin t and r = 10) is shown in Fig. 7.5, where � = 0:05.

Next, let us assume a 20% uncertainty in the parameters âi, as in the previous example. It is straightfor-

ward albeit tedious to calculate the ranges for the controller parameters. Selecting the weighting constants

as

q1 = 1 ; q2 = 10 ; q3 = 5
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Figure 7.6: Closed-loop response of an MRAC with projection.
Slow, unstructured parameter variations, � = 0:0:05.
a. Reference input r = 10 sin t; b. Reference input r = 10.

we �nd that the projection intervals for each component of the control parameter vector is

� 2

8<
:

[�10:2 ; �7:8]
[2:964 ; 10:404]
[�17:568 ; �9:048]

9=
;

The closed-loop response of an MRAC with projection is shown in Fig. 7.6, for r = 10 sin t and r = 10. For

these simulations, we used 
 = 10 and initial conditions

y(0) = 1

�(0) = [�8:52; 5:55504;�11:51008]>

Notice that although the error is kept bounded, it is still large compared to the reference trajectory. This

indicates that the sensitivity of the closed-loop system to parameter mismatch is quite high; to improve

the performance, we may need to redesign the controller and/or the reference model so as to improve the

properties of the nominal sensitivity operators (e.g., see Chapter 4, Section 4.3). On the other hand, these

simulations also indicate that for the particular example, the speed of the parameter variations (governed

by �) is large enough to cause a considerable deterioration of the tracking performance.

The design of an MRAC with �-modi�cation follows a similar procedure. In this case, instead of a

projection interval, we need to determine a nominal control parameter vector and the value of �. According

to the previous example, the former is chosen as

�c = �(0) = [�8:52; 5:55504;�11:51008]>

The latter de�nes, in a dynamic way, the interval of parametric uncertainty and, as seen from Theorem 7.21,

its selection involves a performance versus robustness trade-o�. For our simulations we select � = 0:01; 
 =

10. The closed-loop response of a MRAC with a �-modi�cation to a sinusoid and a step input is shown in

Fig. 7.7.

We should mention at this point that, although our simulations show a reasonable behavior, one should

expect that in the general case all properties of adaptive schemes found in the LTI-plant case, desirable and

undesirable ones, may occur. Moreover, burst phenomena become even more likely to appear due to the time

variations of the desired controller parameters. A possible scenario is that the desired controller parameters

(��) vary in such a way that they leave periodically the estimated parameters in a destabilizing region, and

thus produce bursts of large amplitude. In fact, this indicates that the adaptation gain should be selected

su�ciently large so that the estimation algorithm responds fast enough to prevent such behavior. On the

other hand, large values of the adaptation gain are not always desirable as they induce more oscillatory
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Figure 7.7: Closed-loop response of an MRAC with �-modi�cation.
Slow,unstructured parameter variations, � = 0:05.
a. Reference input r = 10 sin t; b. Reference input r = 10.
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Figure 7.8: Closed-loop response of an MRAC. Slow, unstructured
parameter variations: a. MRAC with projection; adaptation
gain too small (
 = 1); b. MRAC with �-modi�cation;
adaptation gain too large (
 = 50).

behavior and destabilize the closed-loop system. These qualitative ideas are illustrated in Fig. 7.8, using the

same example as before and r = 10 sin t.

APPENDIX VII

Proof of Corollary 7.6:

The proof of the corollary follows along the lines of Corollary 6.11, with minor modi�cations due to the

separate estimation of ĉ0�, something that is also responsible for the increased complexity of the various

expressions.

First, as in Theorem 6.6, we establish the boundedness of the estimated parameters ĉ0; �̂ at least in a

subinterval of [t0; t0 + T ]. By the properties of the projection, they remain within distance �� of the sets

C;M respectively and consequently the solutions can be extended in the whole interval [t0; t0 + T ]. It then

follows that the parameter derivatives are also UB since �1, � and yp are all bounded by
p
m2.

Letting V = 1
2
 (~c

2
0 + �̂>�̂) we have that

_V = �~c0Pc
�
�1yp
m2

�
� 1



~c0 _̂c0� � �̂>P�

�
�1�

m2

�
� 1



�̂>

d

dt

�
ĉ0��̂�

�
� �

��>���1
m2

+
1




�
j~c0jj _̂c0�j+ j�̂j

���� ddt
�
ĉ0��̂�

�����
i

�
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From the boundedness of ĉ0; �̂ it follows that V is also UB; hence, invoking Lemma 7.5 and after a completion

of squares and integration, we obtainZ tI+TI

tI

�21(t)

m2(t)
dt � C0 +

Z tI+TI

tI

(ĉ0��)
2(t)

m2(t)
dt+

K�



�TI

where an upper bound for the constant K� is

K� = 4M0 + 2(ĉ0max � ĉ0min) + 4��

Next, working as in Corollaries 6.9 and 6.11 to evaluate the contribution of the swapping terms, we

express � as

� = Wm(s)[�1] +Wm(s)G�[QU ]�̂� �Wm(s)
h
G�[QU ]�̂�

i
. . .

+
1

ĉ0�

�
ĉ0�Wm(s)

�
1

ĉ0�
u1

�
�Wm(s) [u1]

�
= Wm(s)G(s)

n
G0�[QU ]

_̂
�1;2�

o
+Wm1(s)

n
Wm2(s)G�[QU ]

_̂
��
o
. . .

+
1

ĉ0�
Wm1(s)

�
Wm2

�
1

c0�
up

�
_̂c0�

�
where we used Lemma 2.59, omitting the exponentially decaying terms, which can be incorporated in the

constant C0 through the usual Cauchy constants �c. We may now integrate the swapping term as in Corollary

6.9 and, using Assumption 7.3, obtain the expression given in the Corollary, with

�1 =
(1 + �c)kĉ0�k1p

2(� � �0)
(g2;�[WmG]g2;�0 [G

0
�] + g2;�[Wm1]g2;�0 [Wm2G�])

+
(1 + �c)p
2(� � �0)

g2;�[Wm1]g2;�0 [Wm2c0� ]

where �c > 0 is an arbitrary Cauchy constant and, for convenience, we used the operator de�nitions

Wm1(s)
�
= cm(sI �Am)

�1

Wm2(s)
�
= (sI �Am)

�1bm

Wm2c0� : QU 7!Wm2(s)

�
1

c0�
up

�
(Am; bm; cm) being a minimal state-space representation of the reference modelWm(s) and � > �0 a constant

such that the poles of G(s� �) and Wm(s� �) are in the open left-half plane.13

Finally, from Lemma 2.56, the bound for
_̂
� is quite straightforward, with

�2 = g2;�0 [WmG�]

while for the bound of _̂c0 we may express yp as

yp =Wm(s)

�
1

c0�
up

�
�Wm(s)G��[QU ]

Letting

Wmc0� : QU 7!Wm(s)

�
1

c0�
up

�
13Again, as in Corollary 6.9, simpler expressions can be obtained if the parameter derivatives are small uniformly in time.
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we obtain that

�3 = g2;�0 [Wmc0� ] + g2;�0 [WmG��]

22

Proof of Corollary 7.7:

From the adaptive law, the solutions for ĉ0; �̂ exist at least in a subinterval of [t0; t0 + T ] and due to the

projection ĉ0(t) 2 [ĉ0min � ��; ĉ0max + ��] (see also Theorem 6.7).

Next, consider the function V = 1
2
 (~c

2
0+ �̂

>�̂); taking its derivative along the trajectories of the adaptive

law,

_V = �~c0Pc
�
�1yp
m2

�
� 1



~c0 _̂c0� �

�̂>��1
m2

� �



�̂>(�̂ � �̂c)�

1



�̂>

d

dt
(ĉ0��̂�)

� � �21
2m2

+
(ĉ0��)

2

2m2

� �V . . .

+
�




�
jĉ0��̂� � �̂cj+

1

�

���� ddt (ĉ0��̂�)
�����2

+
�




�
~c20 +

1

�2
_̂c
2

0�

�

Since _̂c0� and
_̂
�� are uniformly O(�)-small, the swapping operators QU 7! � have O(�)-small g2;�0 gains.

Hence, j�j=pm2 is also O(�), within an exponentially decaying term, from which the �rst part of the corollary

follows.

From the boundedness of the parameter estimates it follows that the parameter derivatives are also UB

since �1, � and yp are all bounded by
p
m2.

Further, from the above inequality and since V is bounded, we obtain property 1 of the corollary after

integration. Finally, properties 2 and 3 are obtained by a straightforward bounding procedure as in Corollary

7.6.

Note that in this case the size of the parametric uncertainty is K� = kĉ0��̂�� �̂ck1+ ĉ0max� ĉ0min+2��
which decreases when �̂c, the initial guess of the desired parameters ĉ0��̂�, becomes more accurate uniformly

in time. This is not the case with the projection estimators where K� depends on the a priori selected

projection set. However, since a projection is used in updating ĉ0, K� is lower bounded by the size of

the projection interval C. For this reason, we simply use the same constant to characterize the parametric

uncertainty in both cases, noting that under Assumption 6.3 the radius of the set M is an upper bound of

kĉ0��̂�� �̂ck1. Of course, when the �-modi�cation is used, the knowledge of the radius ofM is not required.

As a �nal comment, it should be mentioned that the reason behind the more restrictive assumptions for

this case is that �-modi�cation performs a `dynamic' adjustment of the radius of the estimated parameters

set. It is not hard to verify that the arguments used in our general estimation results are still applicable

in this case. That is, one may also show that under the more general assumptions of Corollary 7.6, the

parameter estimates are also UB. However, since the perturbations may be large in short time intervals, the

bound on �̂ can be as large as O
�
1
�

�
. Although this does not alter the fact that the estimation error is

small for small � and �, it does induce certain problems in the stability analysis of the MRAC. Thus, for

the sake of simplicity, we only study the MRAC/�-modi�cation case under some uniformity conditions on

the smallness of the perturbation terms. 22

Proof of Corollary 7.8:

From the adaptive law, the solutions for ĉ0; �̂;  exist at least in a subinterval of [t0; t0+T ]. Next, consider

the function V = 1
2
 (~c

2
0 + ĉ0� ~ 

2 + �̂>�̂); taking its derivative along the trajectories of the adaptive law and

after some calculations, we �nd that

_V � ��V � ĉ0��
2
1

2m2

+
ĉ0��

2
1

2m2

+
1

2

~ 2 _̂c0� . . .
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+
�

2


(�
jĉ0��̂� � �̂cj+

1

�

���� ddt (ĉ0��̂�)
�����2

. . .

+ĉ0�

�
j � �  cj+

1

�
j _ �j

�2

+

�
jĉ0� � ĉ0cj+

1

�
j _̂c0�j

�2
)

Under the assumption that j _̂��j; j _ �j; j _̂c0�j are O (�), uniformly in t, it follows that 1
2


~ 2 _̂c0� �  ��V . Hence,

for any � 2 [0; �0], with �0 < �=ĉ0min, V and therefore the parameter estimates are bounded and converge

exponentially to a residual set as given in the corollary. Further, we may now extend the solutions for the

parameters to the whole interval [t0; t0 + T ]. Note that � is also O (�), modulo an exponentially decaying

term due to initial conditions, since the uniformly O(�)-small derivatives of the unstructured part of the

parameters imply that the swapping operator QU 7! � has an O(�)-small g2;�0 gain.

From the boundedness of the parameter estimates it also follows that the derivatives of the parameter

estimates are UB since �1, �, yp and � are all bounded by
p
m2.

Finally, integrating _V in an interval I � [t0; t0 + T ] the properties of the adaptive law follow after a

straightforward bounding procedure and using the previously derived parameter bounds (see also Corollaries

7.6 and 7.7). 22

Proof of Corollary 7.10:

The proof follows the same steps as the proof of Corollary 6.16, although with an increased degree of

complexity since the closed-loop system is not minimal.

Thus, after establishing parameter boundedness as in Corollary 7.6, we have that inside an interval

(tj ; tj+1) where the plant parameters are smooth, the plant output can be expressed as

yp(t) = [cc(t) + ~cc(t)]
>�c(t; tj)xc(tj)

+[cc(t) + ~cc(t)]

Z t

tj

�c(t; �)
h
~Ac(�)xc(�) + ~bc(�)~u(�)

i
d�

+cc(t)

Z t

tj

�c(t; �)bc(�)~u(�) d� + ~cc(t)

Z t

tj

�c(t; �)bc(�)~u(�) d�

where the subscript `c' applies to the nominal closed-loop state-space representation and

~u = r +
1

ĉ0�
(G�[QU ]�̂+ ~c0r) + �1 =

1

c0�
up �G��[QU ]

is the `external' input to the system (see Fig. 7.1). From Lemma 3.11 it follows that the plant state

is bounded by
p
m2 for any � 2 [0; �0) and any �0 2 [0; �00) with �0; �

0
0 su�ciently small.14 The same

conclusion is true for the state of the controller �lters since they are chosen to be ES and have input either

up or yp. Hence, for su�ciently small �0; �
0
0, there exists a constant Kx such that the entire state vector xc

of the closed-loop system satis�es
jxcjp
m2

� Kx + "

Further, consider the system

_xmx = Amxmx + bm~u ; ymx = cmxmx

where (Am; bm; cm) is a minimal state-space representation of the reference model Wm(s). Since inside every

interval (tj ; tj+1) the I/O operator of the closed-loop system is equal to Wm(s) (see Theorem 4.18) and in

14Although this bound is not uniform as �; �0 approach the limit where the plant becomes non-minimal, this can easily be
avoided by taking �0; �

0

0 to be smaller than the respective limit.
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view of Lemma 7.5 we can express the estimation error as

�1 = ��>�� + ĉ0�� + �J + ~�

where

�J = [cc(t) + ~cc(t)]
>�c(t; tj)xc(tj)� c>m�m(t; tj)xm(tj)

~� = [cc(t) + ~cc(t)]

Z t

tj

�c(t; �)
h
~Ac(�)xc(�) + ~bc(�)~u(�)

i
d�

+~cc(t)

Z t

tj

�c(t; �)bc(�)~u(�) d�

For the rest of the proof, the arguments used in Corollary 7.6 are applicable with � being decomposed

into two terms, one of which contains the derivatives of the absolutely continuous part of the controller

parameters and the other contains the contribution of the jump part (see Corollary 2.60). Notice that

the e�ect of the parameter discontinuities also appears in the term [V (t+i ) � V (t�i )] when we combine the

intervals (tj ; tj+1) (see also Theorem 6.6). On the other hand, observing that ~u is the sum of a term O (up)

and a term O
�p
m2

�
the part of the proof related to the parameter jumps and their smooth approximation

follows by integrating inside the intervals (tj ; tj+1). Finally, in estimating the bounds for the derivatives of

the parameter estimates, the only di�erence from Corollary 7.6 is in _̂c0. In this case, the bound of jypj=
p
m2

is O (Kx), obtained directly from the corresponding bound of the plant state.

Notice that a qualitative di�erence in this proof, compared with the indirect case, is that the perturbation

due to parameter jumps need not disappear as the size of the jumps decreases. The roots of this problem are

in the fact that the MRC closed-loop system is not minimal and the related arguments used in the indirect

identi�cation case do not apply here. At this point, it is not clear whether this di�erence can be attributed to

technical reasons and how it can be resolved in the general case where fast (but structured) time-variations

are allowed. 22

Proof of Corollary 7.11:

As in Corollary 7.7, the solutions for ĉ0; �̂ exist at least in a subinterval of [t0; t0 + T ] and due to the

projection ĉ0(t) 2 [ĉ0min � ��; ĉ0max + ��] (see also Theorem 6.7).

Again, consider the function V = 1
2
 (~c

2
0+�̂

>�̂); taking its derivative along the trajectories of the adaptive

law, for t 2 (tj ; tj+1) and inside the subinterval where the solutions exist
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�
where as in Corollary 7.10 and with the same notation

�1 = ��>�� + ĉ0�� + �J + ~�

�J = [cc(t) + ~cc(t)]
>�c(t; tj)xc(tj)� c>m�m(t; tj)xm(tj)

~� = [cc(t) + ~cc(t)]

Z t

tj
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h
~Ac(�)xc(�) + ~bc(�)~u(�)

i
d�

+~cc(t)
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Also, for su�ciently small �0; �
0
0, there exists a constant Kx such that jxcjp

m2
� Kx+ " and using the uniform

bounds on the parameter derivatives and the perturbations due to smooth approximations we �nd that

_V � ��V +O

 
K2

��



;
�2


�
; �2; �02

!
+O

�
K2

x

�
e�2�c(t�tj)

where ��c is the rate of exponential decay of �c(:; :) (which, by Corollary 3.8, is exponentially decaying for

� su�ciently small). Integration using the initial condition V (t+j ) inside (tj ; tj+1) yields

V (t) � V (t+j )e
��(t�tj) +O

�
1

�

�
e��(�)(t�tj) + . . .

+O

 
K2

�



;
�2


�2
;
�2

�
;
�02

�

!

where � < min[�; 2�c] is a positive constant. It now follows that for any constant A there exists �1 > 0 such

that 8� 2 [0; �1]

O

�
1

�

�
e��(�)=� ; O

�
K2

J




�
e��=� � A

where KJ is a constant denoting the supremum of the size of parameter jumps and jV (t+j ) � V (t�j )j �
O
�
K2

J=

�
. Hence, for su�ciently small �, V (tj) is a bounded sequence from which the �rst part of the

corollary follows by extending the solutions to the whole interval [t0; t0 + T ].

For the rest of the proof, and as in Corollary 7.10, property 1 is obtained by integrating inside the

intervals (tj ; tj+1) and properties 2 and 3 after a straightforward bounding procedure. 22

Proof of Lemma 7.12:

Assuming that a < 1, we have that 8t 2 [t0; t1]

k(U)tk2;� �
1

1� a
(k(R)tk2;� + k(v)tk2;� + k(E)tk2;�)

and squaring on both sides

k(U)tk22;� � �20k(R)tk22;� + �21k(v)tk22;� + �22k(E)tk22;�

where �i =
1

1�ak(�c) and k(�c) denotes dependence on Cauchy constants. Adding k(r)tk22;� + qe2�t0 on both

sides and operating by E�2� we get

mf � qe�2�(t�t0) +

Z t

t0

�
�20jRj2 + jrj2

�
(�)e�2�(t��) d�

+

Z t

t0

�
�21jvj2 + �22jEj2

�
(�)e�2�(t��) d�

Next, since q > 0 and 1=r is UB, we have that mf � c > 0 and therefore we can rewrite the last inequality

as

M(t) � q +
R0

2�
e2�(t�t0)

+

Z t

t0

�
�21jvj2 + �22jEj2

�
(�)

mf (�)
M(�) d�
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whereM(t) = mf (t)e
2�(t�t0) and R0 is a constant depending on the L1 bounds of R; r (its precise expression

is not needed). Applying the Bellman-Gronwall lemma, we get that

mf (t) � qe�2�(t�t0) +
R0

2�

+

Z t

t0

V (�)

�
qe�2�(t�t0) +

R0

2�
e�2�(t��)

�
e

R
t

�
V (s) ds

d�

where

V (�) =

�
�21jvj2 + �22jEj2

�
(�)

mf (�)

is UB according to the assumptions of the lemma and

e

R
t

�
V (s) ds � C 00e�

2

1
�2(t��)

where C 00 is a constant depending on b; C;C 0 and �2. It now follows that, if

�2� + �21�
2 < 0

thenmf is UB on [t0; t1] with a bound that is independent of t0; t1. We may now choose the Cauchy constants

such that �1 =
1+�c
1�a , where �c is a positive constant. The choice of �c will of course a�ect the actual bound

of mf through R0; C 00 but this is irrelevant for the boundedness result as long as �c > 0. Thus, since �c can

be arbitrarily small, it can be absorbed under the strict inequality sign from which the result of the lemma

follows. 22

Proof of Theorem 7.13:

First, observe that under the assumptions of the theorem, the vector�eld of the ODE describing the

evolution of the adaptive closed-loop system is locally Lipschitz and therefore there exists T > 0 such that

the solution exists and is unique on the interval [t0; t0 + T ]. Hence, the assumptions of Corollary 7.6 are

satis�ed, implying that the parameter estimates are UB, at least on [t0; t0 + T ].

Further, for t 2 [t0; t0 + T ], de�ne the �ctitious signal mf by

_mf = �2�mf + jQU j2 + qrr
2 + qe; mf (t0) = m2(t0)

where � 2 (0;min[�0; �]). Note that, by construction, mf � m2 on any interval U is well de�ned.

Next, consider the closed-loop description given by (7.8). Since the parameter estimates are UB on

[t0; t0 + T ] it follows that R is also UB (independent of t0 and T ). Moreover, the second term in the

right-hand side of (7.8) can be expanded as follows

d

dt

�
1

ĉ0�
w>�̂

�
=

d

dt

�
1

ĉ0�

�
w>�̂+

1

ĉ0�
_w>�̂

+
1

ĉ0�
w>

�
d

dt
[�̂ � ĉ0��̂�]

�
(7.13)

Substituting the above expression in (7.8) and taking L2(�)-norms of truncated signals on both sides, we

obtain (for simplicity we set � = 0 at this stage)

k(QU)tk2;� � k(R)tk2;� + k�̂k1
2;�[QSr�1]
2;�

�
1

ĉ0�
sG�

�
k(QU)tk2;�

+k�̂k1
2;� [QSr�1] g2;� [G�] k
1

ĉ20�
k1k(j _̂c0�j

p
mf )tk2;�
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+
2;� [QSr�1] g2;�

�
1

ĉ0�
G�

� 



�
���� ddt [�̂ � ĉ0��̂�]

����pmf

�
t






2;�

+
2;� [QSr�1sG] g2;� [G
0
�] k(j

_̂
��j
p
mf )tk2;�

+
2;�

�
QSr�W

�1
m

1

ĉ0

�
k(�1)tk2;�

+
2;�

�
QSr�W

�1
m

1

ĉ0
Wm1

�
g2;� [Wm2G�] k(j _̂�j

p
mf )tk2;�

+Ck("pmf )tk2;� (7.14)

where C is some constant and " denotes exponentially decaying terms which are collected and shown under

the last term only. Notice that in view of Lemma 7.12, their precise expressions are unnecessary for our

purposes. We may now combine the similar terms to get

k(QU)tk2;� � k(R)tk2;� +H0k(QU)tk2;� +H1k(�1)tk2;�
+H2k(j _̂�j

p
mf )tk2;� +H3k(j _̂c0�j+ j _̂��j

p
mf )tk2;�

+Ck("pmf )tk2;� (7.15)

where Hi are constants with order of magnitude as described below

H0 � O

�
M0

a

�
; H1 � O

�
an

�
�

H2 � O

�
1

a

�
+O

�
an

�
�

; H3 � O

�
M0

a

�
+O

�
1

a

�
The above relationships follow by inspection of the corresponding operator gains and the fact that, due to

the projection, k�̂k1 � 2M0+��.
15 Note that the derivations are quite straightforward in the case of strictly

proper MRC laws but they become more involved when a non-strictly proper MRC is considered. In the

latter case, one needs to verify that the operator gains g2;� [G�] and 
2;� [sG�] are �nite. The validity of this

statement becomes apparent by expressing yp as Wm[~u] although the derivation of precise bounds is rather

messy and is omitted.

Invoking Lemma 7.12 and using the expressions derived in the identi�cation part (Corollary 7.6), our

su�cient condition for mf to be UB becomes

inf
a;�

(
H0 +

 
H1

s
�21 +

K�



+H2�2

q

2�21 + 
K� +H3

!r
�

2�

)
< 1 (7:16)

The condition (7.16) is actually su�cient to guarantee the boundedness of all the signals in the closed-loop.

Since, under the assumptions of the theorem, mf bounds the overall state vector of the closed-loop system,

the latter is UB on [t0; t0+ T ] with a bound independent of t0; T . Thus, the solution can be extended on an

interval [t0+T; t0+T +T�] for some T� > 0 [Vid.78]. Since all the bounds derived above were independent of

t0; T , they are also valid on [t0+ T; t0+ T + T�]. Consequently, the solutions can be extended on an interval

[t0 + T + T�; t0 + T + 2T�] etc. from which the �rst part of the theorem follows. Notice that Lemma 3.11

(or Lemma 2.36) can be invoked at this point to establish the internal boundedness (BIBS stability) of the

closed-loop system.

Thus, we only need to verify that (7.16) can be satis�ed for any given size of the parametric uncertainty

set (M0;K�) by requiring � to be su�ciently small. This can be seen by choosing the free parameter 'a' to

be su�ciently large, e.g.,

a >
M0

�
15For simplicity, the small parameter �� is also chosen to be O (M0).
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where � is a small constant making H0 small, say less than 1=2. The rest of the left-hand side terms can

then be made small, less than 1=2, provided that � < �0 where �0 satis�es simultaneously inequalities of

the form

O

 
an

�

; an
�

s
K�




!
p
�0 � � ; O

�
1

a
;
M0

a

�p
�0 � �

O

 
an

�
q

2 + 
K�;

p

2 + 
K�

a

!
p
�0 � �

something that is always possible for some �0 > 0, proving the �rst part of the theorem.

In the special case where � ! 0, our stability condition is satis�ed with a ! 1 indicating that in the

limit, boundedness is guaranteed independent of the size of the parametric uncertainty set (see also Remark

7.15).

On the other hand, when the parametric uncertainty becomes su�ciently small, we may invoke similar

arguments starting from (7.8) with � = 1. The reason for this is that depending on the value of �, the

bound of (1 � �)[w>�̂=ĉ0�] in terms of derivatives of the input may be quite conservative. Thus, in order

to avoid any restrictions on �, we can decompose the controller parameters �̂� as �̂c + ~��, the second term

being bounded by O (M0). Using this decomposition in the expression for �1 we get

k(�1)tk2;� � O (M0) k(QU)tk2;�

Hence,

k(QU)tk2;� � k(R)tk2;� +O (M0) k(QU)tk2;�
from which, as in the previous case, we obtain that boundedness is guaranteed independent of the value of

�, provided that M0 is su�ciently small (see also Remark 7.17). Two observations are worthwhile at this

point. One is that the proof of stability can be derived by a small-gain argument on an L2(�)-space, with

� being arbitrarily small; boundedness is then obtained via Lemma 2.55. The second is that the stability

condition now depends only on M0, something that should have been expected since ĉ0� is not involved in

any feedback signals. However, in the general case, any uncertainty in ĉ0� a�ects the stability condition since

it introduces a perturbation in the estimation process.

Finally, the properties of the tracking error are easily derived from (7.7), yielding

yp � ym =
1

ĉ0

�
�1 �Wm1fWm2[w

>]
_̂
�g �Wm1fWm2[r] _̂c0g

�
Working as in Corollaries 6.9 and 6.11 we obtain for � > �0 Z t+T

t

e21(�)

m2(�)
d�

!1=2

� C0 +
1

ĉ0min � ��

 Z t+T

t

�21(�)

m2(�)
d�

!1=2

+B1

 Z t+T

t

j _̂�j2(�) d�
!1=2

+B2

 Z t+T

t

j _̂c0j2(�) d�
!1=2

where

B1 =
g2;� [Wm1] g2;�0 [Wm2G�]

(ĉ0min � ��)
p
2(� � �0)

; B2 =
g2;� [Wm1] g2;�0 [Wm2]

qr(ĉ0min � ��)
p
2(� � �0)

The second part of the theorem now follows by using the expressions derived in Corollary 7.6 in the last

inequality. 22
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Proof of Theorem 7.21:

The proof of the theorem follows similar analytical steps as the proof of Theorem 7.13 with the main

di�erences being in the treatment of the L1 bounds of the parameter error �̂ and, of course, the di�erent

expressions obtained from the estimator.

Thus, with the existence of solutions established on an interval [t0; t0 + T ] as in Theorem 7.21 and the

same de�nition of the �ctitious signal mf , let us also de�ne the `steady-state' parameter error �̂s as the

vector with the properties

�̂ = �̂s + " ; k�̂sk1 � O

�
K�;

�

�
; �

r



�

�
where, as usual, " is an exponentially decaying term. Such a de�nition is motivated by the results of Corollary

7.7 and serves in removing the e�ects of initial conditions from the eventual condition for signal boundedness.

Further, from (7.8) and (7.13) we obtain the following bound for the L2(�)-norm of the truncated QU

(� = 0)

k(QU)tk2;� � k(R)tk2;� + k�̂sk1
2;�[QSr�1]
2;�

�
1

ĉ0�
sG�

�
k(QU)tk2;�

+k�̂sk1
2;� [QSr�1] 
2;� [G�]





 �

ĉ20�






1
k(QU)tk2;�

+
2;� [QSr�1] g2;�

�
1

ĉ0�
G�

�
k(j _̂�jpmf )tk2;�

+
2;� [QSr�1] 
2;� [G�]





 �

ĉ0�






1
k(QU)tk2;�

+
2;� [QSr�1sG] 
2;� [G
0
�]�k(QU)tk2;�

+
2;�

�
QSr�W

�1
m

1

ĉ0

�
k(�1)tk2;�

+
2;�

�
QSr�W

�1
m

1

ĉ0
Wm1

�
g2;� [Wm2G�] k(j _̂�j

p
mf )tk2;�

+Ck("pmf )tk2;� (7.17)

where, as in the previous theorem, all exponentially decaying contributions are collected under the last term

and C is a positive constant. Combining similar terms,

k(QU)tk2;� � k(R)tk2;� +H0k(QU)tk2;� +H1k(�1)tk2;�
+H2k(j _̂�j

p
mf )tk2;� + Ck("pmf )tk2;� (7.18)

where H1; H2 are constants with order of magnitude as given in the proof of Theorem 7.13 and

H0 � O

 
k�̂sk1
a

;
�k�̂sk1

a
;
�

a

!

k�̂sk1 � O

�
K�;

�

�
; �

r



�

�
Thus, invoking Lemma 7.12, a su�cient condition for mf to be UB and consequently implying boundedness

of all signals in the loop, is

inf
a;�

�
H0 +

�
H1(RMS

� j�1jp
m2

�
) +H2(RMS[

_̂
�])

�
1p
2�

�
< 1 (7:19)
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where, slightly abusing the notation, RMS[x] denotes the root-mean-square value of the signal x. More

precisely, if there exist constants C; 
 such that,Z t+T

t

jx(�)j2 d� � C + 
2T

for all t � t0 and all T � 0, then RMS[x] = 
. Obviously, from Corollary 7.7, we have the following upper

bounds

RMS

� j�1jp
m2

�
� O

�
�;K�

r
�



;
�p

�

�
RMS[

_̂
�] � O

�

�;K�

p

�; �

r



�
;K��; �; �

p

�

�
With the rest of the proof being completed as in Theorem 7.13, all that remains is to establish conditions

for the validity of (7.19). Expanding the terms of the inequality, we �nd that (7.19) is composed of terms

O

�
K�

a
;K�

r
�



an

�

;K�
p
�
an

�

;K��a
n� ;

K�
p
�


a
;
K��

a

�
and various terms, denoted by f(�), which are multiplied by � or �2. By inspection, it follows that these

terms are continuous and well-de�ned functions of � for � > 0. Hence, for any �nite K� we may choose `a'

to make the �rst term smaller than, say, �, and then choose �0 such that the rest of the terms are smaller

than �, for any � 2 (0; �0). Finally, the term f(�) is smaller than � for any � 2 (0; �0), where �0 is a function

of � (as well as a;K�; 
 but these are simply �xed constants at this stage). Choosing � < �0 in the previous

step, �0 takes a �xed non-zero value and hence the �rst part of the theorem follows.

It is worthwhile to make some observations at this point, the �rst one concerning the treatment of terms

depending on
_̂
��. Owing to the assumption that these terms are uniformly O (�)-small, one can use a more

e�cient bounding procedure to include their contribution in the constant H0. This is exactly the reason

why our su�cient condition does not contain the H2 term which appears in the proof of Theorem 7.13. The

same approach is, of course, possible for algorithms using projection although it is not explored in the more

general proof of that theorem.

In (7.18), the fourth term includes the part of contribution of
_̂
�s that is due to its exponentially decaying

component. Since the parameter estimates and their derivatives are UB, it is easy to see that
_̂
�s can be

expressed in terms of
_̂
�,

_̂
�� and another UB exponentially decaying term. The latter, of course, being

integrable disappears from the �nal stability condition.

It is also quite straightforward to see from the expansion of (7.19) that for any �xed value of �, bounded-

ness is guaranteed provided that K� and � are su�ciently small (see Remark 7.22). However, the similarity

of such an argument with what can be obtained from a simple small-gain condition (even for non-adaptive

controllers) introduces the need for a more quantitative analysis of the algorithm. And although the results

can be improved by using non-zero values of � which are subsequently optimized (the details are left to the

reader), the usefulness of the approach is questionable, at best, due to the overall conservatism of the exten-

sive bounding procedures. Moreover, this was exactly the reason why we selected to simplify the analysis by

taking � = 0. Using � as an additional free parameter can certainly improve the quantitative aspects of our

stability condition; but since the analysis is already quite conservative and most of the qualitative aspects

remain the same, the merits do not justify the increased complexity.

On the other hand, when the parametric uncertainty becomes su�ciently small, we may work as in the

proof of Theorem 7.13 to obtain

k(QU)tk2;� � k(R)tk2;� +O

�
K�;

�

�
; �

r



�

�
k(QU)tk2;�

+Ck("pmf )tk2;�
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Our previous arguments now show that boundedness is guaranteed for K� su�ciently small and �=�, �=
p
�

su�ciently small (for a discussion on the implications of this result, see Remark 7.23).

Finally, the performance characterization in terms of the integral of the square, normalized tracking error

follows identically as in the previous theorem except that the expressions for the integrals of the estimation

error and parameter derivatives are now obtained from Corollary 7.7 instead. 22

Proof of Theorem 7.24:

The proof of the theorem follows along the lines of Theorem 7.13, after rewriting the I/O description

in terms of the nominal closed-loop operators (see also Theorem 4.18 and Corollary 7.10). That is, for

t 2 (tj ; tj+1),

QU = QSr[~u] +X1

where

~u =
ĉ0
ĉ0�

r +
1

ĉ0�
w>�̂+ �1

X1(t) = cc(t)�c(t; tj)xc(tj)� co�o(t; tj)xo(tj)

+cc(t)

Z t

tj

�c(t; �)[ ~Ac(�)xc(�) + ~bc(�)~u(�)] d�

+~cc(t)

Z t

tj

�c(t; �)bc(�)~u(�) d� + ~d(t)~u(t)

and the subscripts `c', `o' refer to the actual and nominal state-space representation of the closed loop

system and ~̀�' in the state-space description denotes perturbations due to smooth approximations. Notice

that, according to Theorem 4.18, Sr and �c(:; :) are ES, for su�ciently small �; �0. Similarly, yp can be

expressed as

yp = Wm[~u] +X2

=
1

ĉ0

n
�1 �Wm1

h
Wm2[w

>]
_̂
�
i
+Wm[ĉ0r]

o
where X2 is a term of the form of X1. The critical property of both X1 and X2 is that when normalized by

the �ctitious signal mf , their RMS values are O
�p
�;
p
�0
�
.16

Next, using the decomposition of Theorem 7.13 and taking L2(�) norms of the truncated signals we �nd

k(QU)tk2;� � k(R)tk2;� +H0k(QU)tk2;� +H1k(�1)tk2;�
+H2k(j _̂�j

p
mf )tk2;� +H3k(j _̂c0�sj+ j _̂��sj

p
mf )tk2;�

+H4k(jE
p
mf )tk2;� +H5k(jX2j)tk2;� + k(jX1j)tk2;�

+Ck("pmf )tk2;�

where H0-H3 are constants with order of magnitude as in Theorem 7.13, H4 � O
�
1; 1=a; an

��
and H5 �

O
�
an

��
. The term E results from the di�erentiation of non-smooth parameters, arising in the expansions of

�1 and d
dt

�
1
ĉ0�
G�[QU ]�̂

�
, (see Corollaries 2.60 and 7.10) and is upper bounded by a decaying exponential

inside the intervals of continuity, i.e.,

jE(t)j � ce��c(t�tj); t 2 (tj ; tj+1);8j
16See, for example, Corollary 7.10. Notice that this statement is valid for su�ciently small �, smaller than the ES margin of

the nominal closed-loop system, imposing thus a limitation on the selection of the free parameter �. Moreover, in this case the
proportionality constants in O (�) ; O (�0) may also depend on the size of the parametric uncertainty set, although this is of no
further consequence since any dependence on �; �0 can be made as small as desired by requiring �; �0 to be su�ciently small.
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where c; �c are positive constants independent of j. We should mention that in the case of non-strictly

proper MRC structure, one may arrive at a similar expression, but the derivations become even more tedious.

The (potential) problem appears in the sG�[QU ] term which now involves the di�erentiation of the plant

output. From the expression given above, it is obvious that such an operation cannot be performed directly

since the output vector cc(t) may not be di�erentiable. Instead, the throughput (yp) of G�[QU ] should be

decomposed from the beginning into a nominal part Wm[~u] and a perturbation part X2 and then group the

terms accordingly.

It is now straightforward to complete the proof as in the case of smooth parameter variations by applying

Lemma 7.12 and using the expressions derived in Corollary 7.10. 22

Proof of Theorem 7.25:

In the light of Theorems 7.21 and 7.24, the proof is only incrementally more di�cult in the treatment of

the L1 bound of �̂. That is, the parameter error is now decomposed into �̂ = �̂s+ �̂J + " where �̂s denotes

a smooth component satisfying

k�̂sk1 � O

�
K�;

�

�
; �

r



�
; �0
r



�

�
and �̂J denotes a piecewise continuous component, upper bounded by a decaying exponential inside the

intervals of continuity, i.e.,

j�̂J(t)j � O

�
KJ ;

r



�

�
e��(t�tj); t 2 (tj ; tj+1);8j

where � is a positive constant depending on � but independent of j (see Corollary 7.11). The rest of the

proof follows exactly the same steps as in the previous theorems, except that the expressions derived in

Corollary 7.11 are now used for the RMS values of the normalized estimation error and the derivatives of

the estimated parameters.

Note that, to simplify the expressions in the statement of the theorem, we used O (K�) as an upper bound

for the size of the jumps KJ . More precisely, using the expressions of Corollary 7.11, the terms describing

the e�ect of the parameter discontinuities on the mean-square, normalized tracking error are

O

�
1; 
2; 
K2

J ;
K2

J



;
�2K2

J

�(�)
;

�

�(�)

�
�T

where � < min[�; 2�c] and ��c is the rate of exponential stability of the nominal closed-loop system. Since

in a typical application � is selected to be small, we took for simplicity, � = O (�) from which the expression

given in the theorem follows. It should be noted, however, that the upper bounds of �, � and �0 do depend

on the selected value of �. Consequently, care must be exercised when these bounds are used to describe the

behavior of the tracking error for variable � and especially when � ! 0. 22



Chapter 8

Adaptive TV PPC

8.1 Introduction

In the previous chapter we presented the design and properties of a class of adaptive controllers, of the MRC

type, with the distinguishing characteristic that the controller parameters are updated directly from I/O

measurements, without any intermediate identi�cation of the LTV plant or other calculations. This desirable

feature, however, was obtained under the somewhat restrictive TV MRC assumptions, i.e., constant and

known relative degree and ES zero dynamics. As it was also mentioned in the same chapter, a di�erent class

of adaptive control schemes can be designed whereby the LTV plant is �rst identi�ed and then a controller

is designed, on-line, for the identi�ed plant. With this indirect adaptive control approach, the designer may

choose a control objective and the corresponding controller structure that do not impose conditions on the

plant that are too restrictive. Popular examples of such designs from the LTI case are PPC and LQR and

their variants, mainly thanks to the relative simplicity of their design equations.

In this chapter, we analyze and discuss the design and properties of an indirect TV adaptive PPC (APPC)

as a typical paradigm of the indirect approach. The control objective of the TV APPC is to achieve the TV

PPC objective without requiring complete knowledge of the plant parameters. According to the Certainty

Equivalence Principle, the TV APPC relies on the TV PPC structure which is coupled with one of the

LTV plant identi�cation schemes studied in Chapter 6. That is, at every time instant the estimated plant

parameters are used to calculate the controller controller parameters by solving the appropriate Diophantine

equation. Since the TV PPC assumptions do not require the plant to have �xed relative degree or ES zero

dynamics, the TV APPC has a de�nite advantage over the TV MRAC of Chapter 7. On the other hand,

its main and rather serious drawback is that the controller parameters are calculated for the identi�ed plant

and for this to be possible, the identi�ed plant should be strongly controllable and observable. Such an

assumption, however, can be restrictive and signal dependent especially when the parametric uncertainty is

large. Nevertheless, the TV APPC emerges as an advantageous design in cases where the LTV plant does

not satisfy the MRC assumptions and there is su�cient parametric uncertainty to make the design of a �xed

TV PPC not feasible but such that the LTV plant is strongly controllable and observable for all possible

values of the parameters.1

The design and stability properties of a TV APPC are presented in Section 8.2 for smooth and non-smooth

parameter variations. In Section 8.3 we employ the Internal Model Principle to design a TV IMP/APPC

with command tracking capabilities. We conclude our discussion with examples of TV APPC and TV

IMP/APPC designs in Section 8.4

1Available or internally generated persistent excitation is another possibility but this is yet unresolved for fast TV plants
and is not considered here.
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8.2 APPC: Design and Stability Analysis

As mentioned in the Introduction, a TV APPC is obtained by combining a parametric identi�er and a

TV PPC algorithm, whose fundamental properties have been individually studied in Chapters 6 and 5

respectively. The TV APPC design and analysis is essentially the same for both cases of LTV plants with

smooth and non-smooth parameters. Still, for reasons of clarity regarding the involved assumptions, we

discuss the case of smooth parameter variations �rst.

8.2.1 Smooth Parameter Variations

The �rst step in the design of a TV APPC, based on the Certainty Equivalence Principle, is the design of a

parametric identi�cation scheme to identify the plant I/O operator. For this purpose, let us consider a LTV

plant with a state-space representation given by (3.1) and satisfying Assumptions 3.1{3.3 and suppose that

its order n is known. Invoking Lemma 2.32, the plant admits an I/O representation in the PL form

yp = GL
p (s; t)[up] = D�1

p (s; t)Np(s; t)[up]

which, in turn, is parametrized in terms of a 2n-dimensional vector �� as

yp = Ga(s)[up�1�] +Ga(s)[yp�2�] (8:1)

where Ga(s) = q>a (sI �Fa)�1 is a �lter selected by the designer and �� = [�>1�; �
>
2�]

>. (Note that throughout

this chapter the quantities related to the parameter estimator/identi�er are assigned the subscript `a' to

distinguish between the identi�er and the controller �lters.) The parameters �� are related to the coe�cients

of Dp(s; t) and Np(s; t) by a constant a�ne transformation, say Qa, depending on qa; Fa. Hence, employing

the notion of structured parameter variations we assume, without loss of generality, that

��(t) = �(t)�̂�(t)

where �(t) = [�1(t)j�2(t)] is a known, not necessarily square matrix with smooth UB entries and �̂�(t) is a

partially unknown smooth UB vector.

Thus, the LTV plant is described by the parametric model

yp = w>a �̂� � �

wa = [Ga(s)fup�1g+Ga(s)fyp�2g]>

where � is a swapping term (see Section 6.3 for details). Employing the results of Chapter 6, the I/O operator

of the LTV plant can be identi�ed by estimating the unknown parameters with a suitable adaptive law. For

example, if �̂� satis�es Assumptions 6.3 and 6.10 the following adaptive law can be used

_̂
� = P

�
�
 �1wa

m2

�
; �̂(t0) 2M (8.2)

�1 = w>a �̂ � yp

_m2 = �2�0m2 + jQU j2 + qe;m2(t0) > 0

U = [up; yp]
> ; Q = Q> > 0

with the properties described in Corollary 6.11. On the other hand, if �̂� is UB and k _̂��k1 � �, an adaptive

law with �-modi�cation is applicable, i.e.,

_̂
� = �
 �1wa

m2

� �(�̂ � �̂c) (8:3)
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with the properties described in Corollary 6.14.

Having obtained the parameter estimates �̂, the PDO/PIO description of the identi�ed plant is obtained

by computing � = ��̂, the estimate of ��, and then applying the inverse transformation Q�1a on �. 2 This

operation results in an I/O description of the LTV plant in terms of the identi�ed plant and the identi�cation

error appearing as a stable-factor perturbation as

yp = D�1
a (s)N̂p(s; t)[up] +D�1

a (s)fDa(s)� D̂p(s; t)g[yp]
�D�1

a (s) ~Np(s; t)[up]�D�1
a (s) ~Dp(s; t)[yp]| {z }

e1=�1��̂

(8.4)

where Da(s) = det(sI � Fa) and (̂�), (~�) denote PDO's depending on the parameter estimates � and the

parameter error � = � � �� respectively.
3

The next step in the TV APPC design is that of the control law. Since the identi�ed plant I/O operator

is obtained in the left form, invoking Lemma 5.1 the controller I/O operator is chosen to meet the TV PPC

objective for the identi�ed plant, i.e.,

up = �N1(s; t)N
�1
2 (s; t)[yp]

where N1(s; t); N2(s; t) are calculated by solving the Diophantine equation

D̂p(s; t) ? N2(s; t) + N̂p(s; t) ? N1(s; t) = A�(s; t) (8:5)

where A�1� (s; t) is the desired (ES) PIO and `?' denotes a pointwise operation with respect to �̂ only. Note

that although �̂ is known, its higher order derivatives are not. As a consequence, (8.5) can only be solved for

frozen �̂. It should be emphasized, however, that `?' does not indicate a complete pointwise operation. The

coe�cients of D̂p; N̂p depend on �̂ as well as �. The latter contains known functions with known derivatives

and therefore the operator multiplications can be performed by di�erentiating � as necessary.

As previously mentioned, the need to solve (8.5), which depends on the estimated plant parameters

instead of the actual ones, is responsible for the main APPC drawback. That is, in order to ensure the

solvability of (8.5) we assume that

8.1 Assumption: For any possible frozen �̂ the estimated PDO's D̂p(s; t), N̂p(s; t) are strongly left coprime

in [t0;1), uniformly in �̂.

Equivalently, the identi�ed plant, with �̂ frozen, should be strongly controllable and observable, uniformly

in �̂. This assumption is rather standard in the literature of indirect adaptive schemes and, in general,

its validity cannot be guaranteed by the properties of the estimator alone. One approach to ensure that

Assumption 8.1 is satis�ed is to use an estimator with projection and require that the set M contains no

uncontrollable or unobservable points. This procedure is feasible and can be e�cient for certain applications

though it may be quite restrictive especially when the dimension of the estimated parameter vector is large.

In the latter case, the requirement for a convex projection set where the above assumption holds is likely

to constrain the parametric uncertainty to be small, in which case the need for an adaptive controller is

questionable. Nevertheless, it appears that in this aspect algorithms with projection have an advantage over

the �-modi�cation since for the former su�cient conditions for the validity of Assumption 8.1 can be checked

a priori.

Other existing remedies of this problem are injection of persistently exciting signals (slowly TV plants)

[G.S.84, GMDD.87] or use of multiple estimators [MGHM.88]. Although these techniques may also be applied

to our case, we do not address this problem in the present study.

2The invertibility of the transformation Qa is guaranteed by the observability of the pair qa; Fa.
3As usual, when the initial conditions are not zero, equation (8.4) should be augmented by an exponentially decaying term

". For further details, see Section 6.3.
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Figure 8.1: Block diagram of the closed-loop plant with the TV APPC.

Finally, the PPC solution �N1(s; t)N
�1
2 (s; t) is realized in state-space by following the guidelines of

Example 2.38, that is, the control input is obtained by

_! = F! + qu1

u1 = p>2 (t)! + (r � yp)

up = p>1 (t)! + p3(t)u1 (8.6)

Notice that when solving the Diophantine equation (8.5), the PDO's N1; N2 are calculated in the right form

while the PPC state-space realization assumes that the PDO's are expressed in the left form. This implies

that an intermediate operation should be performed to convert the PDO's N1; N2 from the right to the left

form. Again, since the derivatives of �̂ are not available, such an operation is performed with �̂ being frozen.

The calculations involved in the TV APPC are summarized below:

8.2 TV APPC Algorithm:

1. Obtain �̂ from the adaptive law and calculate � as � = ��̂.

2. Determine D̂p(s; t) and N̂p(s; t), the estimates of the plant PDO's, using � in the place of �� in the

parametric model of the LTV plant.

3. Solve the Diophantine equation (8.5) for the coe�cients of N1(s; t), N2(s; t) with �̂ being frozen.

4. Convert the right PDO's N1(s; t), N2(s; t) into the left form with �̂ being frozen and calculate the

parameters pi(t), i = 1; 2; 3 of the control law (8.6). 55

With the so-de�ned TV APPC, the closed-loop plant can be described in terms of the estimated pa-

rameters �, instead of ��, as shown in Fig. 8.1 (see also Fig. 6.3 in Chapter 6, for more details on the

identi�cation part). As pointed out in Chapter 6, such a description involves the identi�ed plant, perturbed

by the identi�cation error e1 (a stable-factor perurbation). Furthermore, the TV APPC guarantees by con-

struction that the shaded part of the closed-loop in Figure 8.1 is ES for �̂ frozen. Since both the identi�cation

error e1 and the speed of variations of the parameter estimates
_̂
� are small in the mean-square sense for

slow in the mean-square speed of unstructured plant parameter variations, boundedness can be shown by

virtue of Lemmas 2.44 and 7.12. This idea is made precise in the following theorems which describe the

closed-loop stability properties when the TV APPC 8.2 with an adaptive law using either projection or the

�-modi�cation is used to control the plant (3.1).

8.3 Theorem: Let K� be a constant denoting the size of the parametric uncertainty set as in Corollary

6.11 and suppose that the conditions of Corollary 6.11 and Assumption 8.1 are satis�ed. Then, for any �nite

K�, there exists �0 > 0 such that for any � 2 [0; �0) all signals in the closed-loop of the LTV plant and the

TV APPC 8.2 with projection are UB, for any UB command input r, for all t � t0. 55
Proof: In Appendix VIII

8.4 Theorem: Let K�� be a constant denoting the size of the parametric uncertainty set as in Corollary
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6.14 and suppose that the conditions of Corollary 6.14 and Assumption 8.1 are satis�ed. Then, for any �nite

K��, there exist �0 > 0 and �0(�)
4 such that for any � 2 (0; �0), �0 > 0 and for any � 2 [0; �0) all signals

in the closed-loop of the LTV plant and the TV APPC 8.2 with the �-modi�cation are UB, for any UB

command input r, for all t � t0. 55
Proof: In Appendix VIII

The above theorems establish the intuitive result we expected. That is, the closed-loop signals are

bounded provided that the speed of variation of the unstructured part of the plant parameters is su�ciently

small. Their di�erences are primarily revolving around the measure and description of the uncertainty in

the range and speed of variation of the plant parameters. Estimators with projection describe the range of

parameters in terms of a projection set and can tolerate small-in-the-mean parameter variations. On the

other hand, estimators with the �-modi�cation impose a `soft' constraint on the parameter estimates by

penalizing their deviation from a nominal point. With this approach the range of the plant parameters is

not speci�ed a priori but the admissible variations are restricted to be uniformly slow. Some additional

comments regarding these theorems are given next. (For further details, see the proofs in the appendix)

The important quantities for stability/boundedness are the parameter �, and K� (or K��) representing

the e�ective deviation from the ideal case. While the latter describes the maximum possible range of

variations, the former describes how fast a change can occur. As � approaches zero, K� may approach 1
without destroying boundedness, provided of course that Assumption 8.1 holds. Note that, in the structured

variations formulation, � = 0 does not necessarily imply that the plant is LTI. On the other hand, when

the parametric uncertainty is su�ciently small, boundedness is preserved independent of the speed of the

unstructured parameter variations.

The selection of the adaptation gain (as well as � for estimators using the �-modi�cation) involves one

of the most obvious and important trade-o�s in the design of an adaptive controller. Since both 
 and

1=
 appear in the RMS value of the perturbations e1;
_̂
�, the adaptation gain should not be chosen either

too small or too large. Furthermore, the auxiliary �lters in the controller and estimator also a�ect the

range of � for which the adaptive controller guarantees boundedness but in a more subtle way, through the

closed-loop sensitivity operators e1 7! up; yp; u1. An arbitrary choice of these design parameters may yield

an arbitrarily bad performance. With this in mind, the techniques developed in Section 5.2 for the design of

overparametrized TV PPC structures as well as the application of the Internal Model Principle (see Section

5.4) can prove quite useful in shaping the properties of the closed-loop sensitivity operators. However, due

to the complexity of the analysis, the quantitative aspects of these issues are still elusive and only crude or

special-case guidelines are available.

It should be noted that the TV APPC as well as all indirect designs rely on a plant description factorized

in the PL form, since this is the natural form obtained from our identi�cation schemes. It is, in principle,

possible to design a TV APPC for the identi�ed plant in the PR form by �rst performing the necessary

conversion between forms (this is always possible under Assumption 8.1). Such a design may be advantageous

from a sensitivity-shaping point of view, but it has the disadvantages of increasing the computational load

and complicating the way the identi�cation error perturbs the closed-loop.

Up to this point, our study of the TV APPC was focused only on the boundedness issue. It is also

important, however, to discuss its performance with respect to the TV PPC objective. For this, we need to

rewrite the closed-loop plant in a slightly di�erent form, shown in Fig. 8.2, with three additional perturbation

terms e2; x1; x2. These terms represent errors due to smooth approximations of the controller and plant

parameters. Such approximations are needed in order to arrive at a PDO/PIO description of the closed-

loop system (since the estimated parameters may not possess as many derivatives as necessary) while they

4�0, as derived in the proof of the theorem, is a continuous function of �.
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Figure 8.2: Alternative description of the closed-loop plant.

introduce perturbations which are small in the mean-square, normalized sense. The �nal result states that

the closed-loop plant can be viewed as a nominal part with PIO [A� +�]�1 where the coe�cients of � are

small in the mean-square and several perturbations which are small in the mean-square, normalized sense.

These perturbations as well as � disappear as �! 0. (Of course, for the �-modi�cation, they also depend

on �.)

8.5 Theorem: Consider the LTV plant (5.1) satisfying the conditions of either Theorem 8.3 or 8.4 and

the respective TV APPC. Then the closed-loop plant admits an I/O description of the form2
4 up
yp
u1

3
5 =

2
4 Sru Seu Suu
Sry Sey Suy
Sr1 Se1 Su1

3
5

| {z }
Ss

2
4 r + x2
�e1 + e2

x1

3
5

where the sensitivity operators in Ss have PIO D�1
c (s; t) satisfying

Dc(s; t) = A�(s) + �(s; t)

and �(s; t) is a PDO of degree at most 2n � 2, with smooth, UB coe�cients O(k _̂�k). The terms e2; x1; x2

are of the form

e2 = Ga(s)[up�1
~�1] +Ga(s)[yp�2

~�2]

x1 = ~p>1 (sI � F )�1q[u1] + ~p3u1

x2 = ~p>2 (sI � F )�1q[u1]

where ~�i; ~pi are O(k _̂�k). 55

Proof: In Appendix VIII.

Of course, it is possible to use Theorem 8.5 to show the closed-loop boundedness with a purely I/O

approach but the derivations are slightly more messy and restricted to a PPC-type scheme, while the approach

used in Theorems 8.3 and 8.4 is easily extended to include other controller design techniques.

8.2.2 Non-Smooth Parameter Variations

In contrast to the direct TV MRAC case, the previous results on the TV APPC are easily generalized

to admit non-smooth parameter variations. The reason is that the analysis of the indirect schemes relies

on the identi�ed plant rather than the actual one. Still, some additional work is necessary in order to

encompass practically interesting cases such as discontinuities in the structure matrix � or infrequent loss of

controllability or observability which are more likely to occur when the plant parameters are discontinuous.

Let us consider the plant (3.8), satisfying Assumptions 3.4{3.6. Such a plant admits an I/O description

of the form (6.20), parametrized by the parameter vector �� (see Chapters 3 and 6 for details). Without
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loss of generality, we assume that �� = ��̂� where � is a piecewise smooth, UB matrix and �̂� is a piecewise

smooth vector with possible discontinuities at t 2 ftjg11 . Employing the results of Chapter 6 regarding the

non-smooth parameter case, the I/O operator of the LTV plant can be identi�ed by estimating the unknown

parameters with a suitable adaptive law. For example, if �̂� satis�es Assumption 6.3 and its Lipschitz

continuous part �̂s� satis�es Assumption 6.10 the estimator (8.2) can be used with the properties described

in Corollary 6.16. Similarly, if �̂� is UB, k _̂�s�k1 � �, the perturbation part of the plant is uniformly small

and the minimum time between jumps is large, an adaptive law with �-modi�cation (8.3) is applicable with

the properties described in Corollary 6.18.

As in the previous subsection, the parameter estimates �̂ are used to compute � = ��̂, from which the

PDO/PIO description of the identi�ed plant, parametrized by �̂ (or equivalently �) is given by (8.4). Next,

a control law could be designed based on the identi�ed plant by solving (8.5) and realized by (8.6). One

important di�erence from the smooth parameter case is that the structure matrix � may be discontinuous.

Moreover, since the continuous �̂ is an estimate of the discontinuous plant parameters �̂�, it is likely that

Assumption 8.1 is violated in short time intervals. Therefore, to avoid being overly restrictive we need to

modify Assumption 8.1 and the control law, so that the latter is designed in a piecewise sense. That is, we

introduce an additional step in design of the TV APPC, given below:

8.6 TV APPC Modi�ed Algorithm:

1. Obtain �̂ from the adaptive law and calculate � as � = ��̂.

2. Determine D̂p(s; t) and N̂p(s; t), the estimates of the plant PDO's, using � in the place of �� in the

parametric model of the LTV plant.

2.i. Determine whether the left TV Sylvester matrix of D̂p(s; t), N̂p(s; t) is strongly nonsingular, with respect

to an a priori selected threshold. If not, set � = ��̂o and repeat step 2. Otherwise, set �o(t) = �(t)

and continue.

3. Solve the Diophantine equation (8.5) for the coe�cients of N1(s; t), N2(s; t) with �̂ being frozen.

4. Convert the right PDO's N1(s; t), N2(s; t) into the left form with �̂ being frozen and calculate the

parameters pi(t), i = 1; 2; 3 of the control law (8.6). 55

In other words, �̂o(t) is the `last' estimate for which the the estimated PDO's D̂p(s; t), N̂p(s; t) (with �̂o
frozen) are strongly left coprime in (tj ; tj+1), uniformly in �̂o and uniformly in j. Hence, using �̂o the controller

parameters can be calculated according to the TV PPC procedure, in a piecewise sense. E�ectively, this

approach reparametrizes the plant in terms of �̂o, treating the di�erence �̂� �̂o as an additional perturbation

in the identi�ed plant description, which is similar to the identi�cation error e1. More precisely,

yp = G(s)[up�1o] +G(s)[yp�2o]� e1 + e3 + " (8.7)

e3 = Ga(s)[up�1(�̂1 � �̂1o)] +Ga(s)[yp�2(�̂2 � �̂2o)]

We now introduce an assumption to ensure that the perturbation term e3 is small in a mean-square

normalized sense and that the switching between �̂o and �̂ does not occur too often.

8.7 Assumption: There exist constants c; �0 such that for all tI � t0 and T � 0,Z tI+T

tI

j(�̂ � �̂o)(t)j22 � c+ �0T

n0I � c+ �0T
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where n0I denotes the number of discontinuous switchings in an interval (tI ; tI + T ), between �̂o and �̂

in the calculations of the controller parameters.

We must emphasize that although Assumption 8.7 is less restrictive than 8.1, allowing the parameters

to cross uncontrollability/unobservability surfaces, it still su�ers the same major drawback. That is, it is

signal dependent and cannot be veri�ed a priori, except for special cases or under some additional excitation

conditions.

The stability properties of the modi�ed TV APPC 8.6 are now given by the following theorems.

8.8 Theorem: Let K� be a constant denoting the size of the parametric uncertainty set and suppose

that the conditions of Corollary 6.16 and Assumption 8.7 are satis�ed. Then, for any �nite K�, there exist

�0; �0; �
0
0; �

0
0 > 0 such that for any � 2 [0; �0), � 2 [0; �0), �

0 2 [0; �00), �
0 2 [0; �00) all signals in the closed-

loop of the LTV plant and the TV APPC 8.6 with projection are UB, for any UB command input r, for all

t � t0. 55

Proof: The TV APPC 8.6 stabilizes the modi�ed plant (8.7) (without the perturbations e1; e3) in

a piecewise sense and therefore |under Assumption 8.7| for all t, provided that the average number of

discontinuities in � and �̂o �, �
0 are su�ciently small. Furthermore, since e3 has similar properties as e1 in

a mean-square, normalized sense, the rest of the proof follows as in Theorem 8.3, but using the expressions

of Corollary 6.16 instead. 22

8.9 Theorem: Let K�� be a constant denoting the size of the parametric uncertainty set and suppose

that the conditions of Corollary 6.18 and Assumption 8.7 are satis�ed. Then, for any �nite K��, there exist

�0 > 0 and �0(�), �0(�), �
0
0(�), �

0
0(�) such that for any � 2 (0; �0), �0 > 0, �0 > 0, �00 > 0, �00 > 0 and for

any � 2 [0; �0), � 2 [0; �0), �
0 2 [0; �00), �

0 2 [0; �00) all signals in the closed-loop of the LTV plant and the

TV APPC 8.6 with the �-modi�cation are UB, for any UB command input r, for all t � t0. 55

Proof: As in Theorems 8.8 and 8.4, but using the expressions of Corollary 6.18 instead. 22

8.2.3 Slowly TV Plants

The approach and tools employed in establishing the results of the previous subsections indicate that a wide

variety of controller structures can be used in the design of indirect adaptive control schemes. Indeed, the

basic requirements are that the controller has a `well-behaved' state-space realization and it guarantees that

the closed-loop plant is ES for every frozen estimate of the parameter vector in a uniform sense. The idea

behind these requirements is to use Lemma 2.42 or its TV extension 2.44 to ensure that the closed-loop plant

without the identi�cation error is ES and then use the Bellman-Gronwall Lemma to show boundedness. Note

that a `well-behaved' controller realization is needed in order for Lemma 2.42 to be applicable. For example,

this is the case when the controller parameters are Lipschitz functions of the plant parameter estimates which

in turn implies that the closed-loop state-space representation is Lipschitz in the estimated parameters (for

similar developments see, e.g., [Kre.86, M.G.88, GMDD.87]).

This observation is especially valuable in the special but interesting case of slowly TV plants with com-

pletely unstructured parameter variations, where an indirect adaptive controller can rely on a wide variety of

controller structures developed for LTI systems (i.e., pointwise designs). In such a case the following result

is applicable.5

8.10 Corollary: Suppose that the conditions of Corollary 6.11 are satis�ed with � = I. Also suppose

that, for any possible �, a control law of constant order and with UB parameters, Lipschitz continuous in �,

5An analogous statement can be made for estimators using the �-modi�cation.
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is designed so that the frozen closed loop is ES uniformly in �. Consider the adaptive controller obtained

by evaluating the parameters of the control law based on the plant parameter estimates as given by the

estimator of Corollary 6.11 at each time instant. Then, there exists �0 > 0 such that for any � 2 [0; �0) all

signals in the closed-loop of the LTV plant and are UB, for any UB command input r, for all t � t0. 55

Proof: As in Theorem 8.3. 22

Notice that, the assumptions of the corollary admit a wide class of controllers (e.g., MRC, LQR etc.)

which may allow for weaker assumptions than 8.1. Using an LQR-type control, for example, mode cancella-

tion can occur in the identi�ed plant, as long as they are ES. Again, however, this does not solve the intrinsic

problem of indirect schemes since, in general, meeting such conditions is not guaranteed by the properties

of the estimator alone.

8.3 Command Tracking with the TV APPC

Like the TV PPC studied in Chapter 5, the TV APPC is primarily motivated as a regulation problem

and may exhibit very poor performance if used for command tracking purposes (e.g., see Example 5.21).

Moreover, the situation becomes even more complicated since the estimated parameters do not necessarily

converge to the actual ones, i.e., �̂ ! �̂� even when the latter is constant. This, in turn, indicates that

very little can be said about the PDO's of the closed-loop sensitivity operators, though they all have PIO's

`close' to A� (see Theorem 8.5). One approach to introduce some tracking capabilities in a TV PPC is via

the Internal Model Principle (see Section 5.4). The resulting IMP/PPC is able to track command inputs

generated by a prescribed model and although the associated conditions are more restrictive than the PPC

ones, they still allow for plants which cannot be controlled by MRC schemes.

In this section we design an adaptive IMP/PPC (IMP/APPC) which, in addition to the TV APPC

objective and without the restriction of fully known plant parameters, achieves asymptotic tracking of a

class of command inputs whose internal model is speci�ed a priori. Naturally, the design procedure and

assumptions are similar to their APPC counterparts, with a few additions outlined below.

As in Section 8.2, we consider a LTV plant with a state-space representation given by (3.1) and satisfying

Assumptions 3.1{3.3. For such a plant, suppose that the control objective is

1. The closed-loop PIO is A�1� (s; t) and

2. The plant output tracks asymptotically UB command inputs r satisfying �(s)[r] = 0,

where A�1� (s; t) is an ES PIO with UB coe�cients and of order 2n+ deg[�]� 2.

Under the pertinent assumptions (e.g., see Section 8.2), an identi�cation scheme based on the adaptive

law (8.2) or (8.3) is used to identify the plant I/O operator. Further, with the notation of Section 8.2, and

applying the TV IMP/PPC design to the identi�ed plant the control input up is generated by (5.13)

up = N1(s; t)N
�1
2 (s; t)[r � yp]� P (s; t)Q�1(s)[yp]

or, in a state-space realization

_!1 = F1!1 + q1u1 ; _!2 = F2!2 + q2yp

u1 = p>2 !1 + r � yp ; up = p>1 !1 + p3u1 + p>4 !2 + p5yp (8.8)

where, Q�1(s) is an ES, TI PIO of order deg[�]�1. N1(s; t), N2(s; t), P (s; t) are PDO's with UB coe�cients

of degrees n+ deg[�]� 2, n+ deg[�]� 2, deg[�]� 1 respectively, obtained as the solution of

D̂p(s; t) ? Q(s) ? N̂2(s; t) + N̂p(s; t) ? N̂1(s; t) = A�(s; t) (8:9)
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N2(s; t) = Q(s) ? N̂2(s; t)

N1(s; t) = N̂1(s; t)� P (s; t) ? N̂2(s; t)

X(s; t) ? �(s)� N̂p(s; t) ? P (s; t) = D̂p(s; t) ? Q(s)

for some PDO X(s; t) of degree n � 1. As usual, `?' denotes a pointwise operation with respect to �̂ only.

Also, in the state-space realization of the controller (8.8), the various parameters are calculated such that:

p>1 (sI � F1)
�1q1 + p3 = N1(s; t)D

�1(s)

p>2 (sI � F1)
�1q1 = [D(s)�N2(s; t)]D

�1(s)

p>4 (sI � F2)
�1q2 + p5 = �P (s; t)Q�1(s)

D(s) = det(sI � F1) ; Q(s) = det(sI � F2)

The calculations involved in the TV IMP/APPC are summarized below:

8.11 TV IMP/APPC Algorithm:

1. Obtain �̂ from the adaptive law and calculate � as � = ��̂.

2. Determine D̂p(s; t) and N̂p(s; t), the estimates of the plant PDO's, using � in the place of �� in the

parametric model of the LTV plant.

3. Solve the equations (8.9) for the coe�cients of N1(s; t), N2(s; t), P (s) with �̂ being frozen.

4. Convert the right PDO's N1(s; t), N2(s; t), P (s) into the left form with �̂ being frozen and calculate the

parameters pi(t), i = 1; . . . ; 5 of the control law (8.8). 55

As in the previous section, the solvability of the equations involved in the TV IMP/APPC algorithm

cannot be guaranteed in general by the properties of the estimator alone. We, therefore, impose the following

conditions on the identi�ed plant.

8.12 Assumption:

a. For any possible frozen �̂ the estimated PDO's D̂p(s; t)Q(s), N̂p(s; t) are strongly left coprime in

[t0;1), uniformly in �̂. 6

b. For any possible frozen �̂ the PDO equation

X(s; t) ? �(s)� N̂p(s; t) ? P (s; t) = D̂p(s; t) ? Q(s)

has a solution such that P (s; t); X(s; t) are PDO's of degree deg[�] � 1, n � 1 respectively, with UB

coe�cients Lipschitz continuous in �̂, uniformly in �̂.

Under this assumption, the following theorems describe the properties of the closed-loop plant (3.1) with

the TV IMP/APPC.

8.13 Theorem: Suppose that the conditions of Theorem 8.3 and Assumption 8.12 hold. Then, in addition

to the results of Theorem 8.3, there exists �1 > 0 such that for any � 2 [0; �1) and any bounded r such

6This is more convenient than requiring Q(s) and N̂R(s; t) to be strongly left coprime as in Section 5.4 since Q(s) is a �xed
LTI PDO.
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that �[r] = 0, the tracking error e = yp � r of the LTV plant and the TV IMP/APPC 8.11 with projection

satis�es7 Z t+T

t

e2(�) d� � C0 +O

�
1;
K�



; 
2;K�


�
�T

where C0 is a constant, for all t � t0 and all T � 0. 55

Proof: In Appendix VIII

8.14 Theorem: Suppose that the conditions of Theorem 8.4 and Assumption 8.12 hold. Then, in addition

to the results of Theorem 8.4, there exist �1 > 0 and �1(�) such that for any � 2 (0; �1), �1 > 0 and for any

� 2 [0; �1) and any bounded r such that �[r] = 0, the tracking error e = yp � r of the LTV plant and the

TV IMP/APPC 8.11 with the �-modi�cation satis�esZ t+T

t

e2(�) d� � C0 +O

�
K2

��


;K2

���;K
2
��


�
�T

+O

�
1; 
2; 
�;




�
;
1


�

�
�2T

where C0 is a constant, for all t � t0 and all T � 0. 55

Proof: As in Theorem 8.13, but with the expressions obtained in Corollary 6.14. 22

8.15 Remark: In the case of slowly TV plants where the parameter variations are completely

unstructured (� = I) and � is a measure of the total speed of plant parameter variations, the above theorems

are also valid (in a qualiatative sense) for PW IMP/APPC designs (e.g., see Remark 5.18). In this case, the

PDO swappings in the derivation of an expression for the tracking error require the di�erentiation of the

identi�ed plant and controller parameters. Such an operation results in an O
�
k _�k
�
-small-in-the-mean-square

perturbation which, for slowly TV plants, leaves the rest of the arguments qualitatively unchanged.

Pointwise designs, on the other hand, may be considerably easier to realize and require less stringent

assumptions about the identi�ed plant. For example, we may calculate the PDO's P (s; t); X(s; t) using the

frozen-�̂ version of (5.20)

�(s) ? X(s; t)�Np(s; t) ? P (s; t) = Dp(s; t) ? Q(s)

in the design equations (8.9). For the resulting scheme, referred to as PW IMP + TV APPC, the con-

troller parameters are calculated by solving linear algebraic equations only. Furthermore, condition (b.) in

Assumption 8.12 is replaced by the easier to check:

b'. For any possible frozen �̂ the PDO's �(s; t), N̂p(s; t) are strongly left coprime in [t0;1), uniformly

in �̂.

It is quite straightforward to show that the PW IMP + TV APPC guarantees signal boundedness under

the general conditions of Theorems 8.3, 8.4 while, following the arguments used in Theorem 8.13, a small-

in-the-mean-square tracking error is obtained, provided that the overall plant is slowly TV. 55

Analogous statements can be made for the case of non-smooth parameters where the same arguments

are applicable except, of course, that the expressions for e1;
_̂
� are obtained from the appropriate corollaries

presented in Chapter 5. The �nal results contain additional O(�; �0) terms and due to their similarity with

the already presented ones are omitted.

Finally, the robustness properties of the various APPC designs with respect to unmodeled dynamics and

other disturbances may be established by following similar arguments and procedures including, of course,

the derivation of the estimator/identi�er properties for the particular problem.

7For simplicity, the statement is made without normalizing the tracking error; consequently, the constants in O (�) depend
on the bound of r.
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Figure 8.3: Closed-loop response of a TV PPC during regulation, in the
presence of parametric uncertainty.

8.4 Examples

We conclude our study of indirect APPC schemes with a few examples illustrating their design procedures

and properties. In all cases we consider the LTV plant with I/O description

s2[yp] + s[a1yp] + a2yp = s[up] + b1up

where

b1 = �1 ; a1 = 20 + 12 sin�t ; a2 = 6 cos�t

We also suppose that we know a priori that the plant parameters are of the form

b1 = c1� ; a1 = c2� + c4� sin�t ; a2 = c3� + c5� cos�t

where � is known (to be speci�ed later), the plant PDO is a priori known to be monic and of degree one and

ci� are some unknown constants whose range, say ci;min � ci� � ci;max, is known a priori. For this plant, an

adaptive law to estimate the unknown plant parameters is presented in Example 6.15 while various controller

designs are discussed in the examples of Chapter 5. In the following, and according to our earlier analysis

in this chapter, we combine the estimator and control laws to obtain several adaptive control schemes.

8.16 Example: (TV APPC Design.) Before we present our �rst adaptive control design, let us

consider the case where we have only incomplete knowledge of the plant parameters �̂i�. More precisely,

suppose that we design a TV PPC to regulate the output of the plant to zero, but due to the presence of

parametric uncertainty the parameters used in the APPC design are

b1 = �0:9 ; a1 = 23 + 9:6 sin�t ; a2 = 1:2 + 4:8 cos�t

A simulation of the closed-loop output with � = 5 and zero initial conditions except yp(0) = 10, is shown in

Fig. 8.3. As indicated by this simulation the parametric uncertainty is su�ciently large to cause closed-loop

instability.

In order to compensate for such parametric uncertainty, let us employ estimator of Example 6.15 to

estimate the partially unknown plant parameters. These are given as functions of the �̂i's by the following

equations

b̂1 = �̂1

â1 = ��̂2 � �̂4 sin�t+ 5 (8.10)

â2 = ��̂3 � �̂5 cos�t+ 6

where, in the design of the estimator projection, we assume that �̂i� lie in the following intervals:
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�̂� 2

8>>>>>><
>>>>>>:

[�0:85 ; �1:1]
[�25 ; �13]
[4:5 ; 8]

[�16 ; �8]
[�8 ; �4]

9>>>>>>=
>>>>>>;

(see Example 6.15 for additional details).

The next step in the TV APPC design is to calculate the controller parameters from the plant parameter

estimates. That is, as in the examples of Chapter 5 and with the same PPC objective, we �rst solve the

Diophantine equation

[s2 + sâ1 + â2][s+  1] + [s+ b̂1][s 2 +  3] = s3 + 6s2 + 11s+ 6 (8:11)

for the  i's, considering the �̂i's as frozen (i.e., d
dt �̂i = 0). Equation (8.11) can be expressed as a system of

linear algebraic equations, as follows0
@ 1 1 0

â1 b̂1 1

â2 0 b̂1

1
A
0
@  1

 2
 3

1
A =

0
@ 6� â1

11� â2 + _̂a1
6 + _̂a2

1
A (8:12)

Under Assumption 8.18 b̂21 + â2 � b̂1â1 6= 0 and therefore we can express the solution for the the  i's as

 1 =
A1b̂

2
1 +A3 �A2b̂1

b̂21 + â2 � b̂1â1

 2 =
A2b̂1 +A1â2 �A3 �A1b̂1â1

b̂21 + â2 � b̂1â1
(8.13)

 3 =
A3b̂1 +A2â2 �A1â2b̂1 �A3â1

b̂21 + â2 � b̂1â1

where A1 = 6� â1; A2 = 11� â2+ _̂a1; A3 = 6+ _̂a2. Next we calculate the controller parameters, as functions

of the �̂i's, from

p1 =  3 � 2 2 + _ 2 ; p2 = 2�  1 ; p3 =  2 (8:14)

where, again, all calculations are performed with frozen �̂i's. Finally, the parameters pi are used in the

control law

up = p1[s+ 2]�1[u1] + p3u1 ; u1 = p2[s+ 2]�1[u1] + (r � yp) (8:15)

to generate the control input up. The regulation response of the above TV APPC is shown in Fig. 8.4 for

� = 5, where in the adaptive law we used


 = 100 ; Q = I ; �0 = 0:9 (8:16)

while the initial conditions for the vector �̂ correspond to the same plant parameters as in the previous

non-adaptive case:

�̂(0) = [�0:9; �18; 4:8; �9:6; �4:8]> (8:17)

As shown in Fig. 8.4, exact regulation is achieved with the TV APPC even though the plant parameters

are varying fast with time. Notice that the initial growth of the output is due to the fact that �̂(0) yields a

destabilizing compensator.

8Its validity for this example can be veri�ed after some straightforward calculations and the properties of estimators with
projection.
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Figure 8.4: Closed-loop response of a TV APPC during regulation.
Fast, fully structured parameter variations (� = 5).

8.17 Example: (TV IMP/APPC Design.) Let us now suppose that in addition to the PPC objective

of the previous example, we would like to design a TV IMP/APPC scheme to track constant refernce inputs.

The only essential di�erence of the TV IMP/APPC design from the APPC one is that we �rst calculate �; x

by solving

s2 + sâ1 + â2 + s�+ b̂1� = s2 + xs (8:18)

for �; x, where, as usual, the �̂i's are frozen. Equation (8.18) can be written as

_� = ��̂1�+ (��̂4 + �̂5) cos�t+ (�̂3 � 6)

x = ��̂2 � �̂4 sin�t+ 5 + � (8.19)

Under Assumption 8.12 �̂1 6= 0 and we obtain the following closed-form solution for �

� =
�2�̂4 + ��̂5

�2 + �̂21
sin�t+

��̂1�̂4 + �̂1�̂5

�2 + �̂21
cos�t+

�̂3 � 6

�̂1
(8:20)

Note that for this example, if it is known a priori that a2 has no constant component (i.e., �̂3 � 6), the above

solution for � is well de�ned and bounded for any bounded value of the estimated parameters, something

that simpli�es the implementation of the TV IMP/APPC scheme (compare with the TV IMP/PPC where

b can be any constant).

Further, the parameters pi of the controller are calculated in a similar way as in the APPC case and the

control input is generated by

up = �up � �yp (8.21)

�up = p1[s+ 2]�1[u1] + p3u1 ; u1 = p2[s+ 2]�1[u1] + (r � yp)

The response of the closed-loop plant with the TV IMP/APPC scheme for a square wave reference input

(10$ 0) is shown in Fig. 8.5. In the simulations we used the same initial conditions for the plant parameter

estimates as in the TV APPC example (see eqn. (8.17)) and zero initial conditions for the rest of the state-

variables. As in the previous example, notice that the transient e�ects in the beginning of the adaptation

period are highly pronounced. This is due to the large parameter error at t = 0 which yields an initially

unstable TV PPC closed-loop. However, as t ! 1 the tracking error with a constant reference input

converges to zero. Also note that the large transient errors observed after the reference input undergoes

a transition (0 ! 10 or 10 ! 0) are essentially due to the underlying TV IMP/PPC law (compare with

Example 5.21). Such errors cannot be reduced by simply introducing an adaptive law but it requires a more

careful design and shaping of the closed-loop sensitivity operators. 55
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Figure 8.5: Exact asymptotic tracking of step reference inputs with the
TV IMP/APPC. Fast, fully structured parameter variations.

8.18 Example: (PW APPC Design for a Slowly Time-Varying Plant.) In the previous examples we

discussed the case of LTV plants with fully structured parameter variations where, according to the general

theoretical results of this chapter, the signal boundedness and the convergence of the tracking error to zero

can be established independent of the speed of the parameter variations. On the other hand, when the plant

parameters vary in a partially or completely unknown fashion, the boundedness of the closed-loop signals

depends heavily on the speed of the unstructured part of the unknown parameters. To illustrate the behavior

of the adaptive closed-loop plant under such conditions, let us consider the same plant as in the previous

examples, except that we have no knowledge of the form or structure of the time varying parameters. That

is, we consider the plant

s2[yp] + s[a1yp] + a2yp = s[up] + b1up

where

b1 = �1 ; a1 = 20 + 12 sin�t ; a2 = 6 cos�t

and the only a priori available information regarding b1; a1; a2 is their range

b1 2 [�1:2;�0:85] ; a1 2 [8; 32] ; a2 2 [�6; 6]

Assuming that the variation of the unknown parameters is su�ciently slow, we may employ the estimator

of Example 6.15 with � = I to identify the unknown I/O operator of the LTV plant. Thus, the identi�ed

plant (excluding the identi�cation error) has the I/O description

s2[yp] + s[â1yp] + â2yp = s[up] + b̂1up

where,9 b̂1 = �1, â1 = ��2 + 5, â2 = ��3 + 6. Using the a priori knowledge of the range of the plant

parameters, the estimator projection is selected so that

� 2

8<
:

[�0:85 ; �1:1]
[�27 ; �3]
[0 ; 12]

9=
;

Based on the identi�ed plant, the next step in the (PW) APPC design is to calculate the controller

parameters by �rst solving the Diophantine equation

[s2 + sâ1 + â2][s+  1] + [s+ b̂1][s 2 +  3] = s3 + 6s2 + 11s+ 6 (8:22)

9Note that since � = I, �̂ = �.
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Figure 8.6: Closed-loop response with a PW APPC during regulation.
Fast, fully structured parameter variations, � = 5.
Large bursting due to a `small' adaptation gain.

with �i being frozen, for the  i. As in Example 8.16, equation (8.22) can be expressed as a system of linear

algebraic equations, as follows 0
@ 1 1 0

â1 b̂1 1

â2 0 b̂1

1
A
0
@  1

 2
 3

1
A =

0
@ 6� â1

11� â2
6

1
A

Under Assumption 8.1, b̂21+ â2� b̂1â1 6= 0 and the above system of equations has a well de�ned the solution

for the the  i's. (The solution is the same as in Example 8.16 except that all derivatives are set equal to

zero.) The controller parameters are now obtained as functions of the �i's, as

p1 =  3 � 2 2; p2 = 2�  1 ; p3 =  2

Finally, the parameters pi are used in the control law

up = p1[s+ 2]�1[u1] + p3u1 ; u1 = p2[s+ 2]�1[u1] + (r � yp)

to generate the control input up. Note that, since the plant parameter variations are completely unstructured,

the resulting APPC is naturally a PW one.

The above PW APPC, is used to regulate the LTV plant where � = 0:05. As previously discussed,

for a given value of �, the selection of the adaptation gain 
 plays an important role in determining the

characteristics of the closed-loop response. Small adaptation gains may be inadequate to track the plant

parameter variations while large adaptation gains may cause a deterioration of the closed-loop response,

especially in the presence of external disturbances. In our simulations, we use two adaptive gains to account

for the di�erent size of parametric uncertainty in the components of �,10 that is, �1 is updated with an

adaptation gain 
1 while �2; �3 are updated with a gain 
2. In all cases we use zero initial conditions except

for

�(0) = [�0:9;�18; 4]> ; yp(0) = 10

In our �rst simulation, shown in Fig. 8.6 we use


1 = 1 ; 
2 = 500

In this simulation the PW APPC enjoys some initial success in driving the output to zero. Due to the

parameter variations, however, the closed loop becomes momentarily unstable (at approximately t = 82)

creating a large burst.

10A similar e�ect can be obtained by introducing constant bias and gain in the estimator �lters, as in the MRAC examples.
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Figure 8.7: Closed-loop response with a PW APPC during regulation.
Unstructured parameter variations, � = 0:05.
Smaller burst size due to a larger adaptation gain.

Increasing the value of 
2 to 1000, the size of the burst is signi�cantly decreased, as shown in Fig. 8.7. It

is interesting to mention that, for this example, only one burst is observed. This is due to the convergence of

the estimated parameters to [�:883;�5:247; 5:86], a value that corresponds to a stabilizing compensator.11

Such a behavior, however, is particular to this example and should by no means be expected in general. That

is, the plant may not be stabilizable by single LTI compensator and burst phenomena may not be con�ned

to a �nite interval. Finally, it should be mentioned that the terminology `small' and `large' adaptation gains

is used in a rather loose and qualitative manner. Their distinction essentially depends on the magnitude

of the observed derivatives of the parameter estimates, something that is case sensitive and, at this point,

quantitatively unclear. 55

8.19 Example: (PW IMP/APPC Design for a Slowly Time-Varying Plant.) Let us now suppose

that in addition to the PPC objective of the previous example, we would like to design a (PW) IMP/APPC

scheme to track constant refernce inputs. One possible design, having the advantage that it does not increase

the order of the compensator, is to follow the same steps as in Example 8.17 where, now, � is considered as

frozen. That is we �rst calculate �; x by solving

s2 + sâ1 + â2 + s�+ b̂1� = s2 + xs

for �; x. With � being frozen, the above equation has a simple pointwise solution

� = (�3 � 6)=�1 ; x = ��2 + 5 + �

while, by the properties of the projection, Assumption 8.12 is satis�ed (�1 6= 0) and both � and x are well

de�ned.

Further, the parameters pi of the controller are calculated in a similar way as in the PW APPC case and

the control input is generated by

up = �up � �yp

�up = p1[s+ 2]�1[u1] + p3u1 ; u1 = p2[s+ 2]�1[u1] + (r � yp)

The response of the closed-loop plant with the PW IMP/APPC scheme for a square wave reference input

(10-0) is shown in Figs. 8.8, 8.9 and 8.10 for di�erent adaptation gains12 and the same initial conditions as

in the PW APPC example.

11It can be easily shown that the resulting PPC stabilizes the LTV plant pointwise; consequently the closed-loop is stable for
� su�ciently small.

12(
1; 
2) = (1; 500); (1; 1000); (10; 10000) respectively.
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Figure 8.8: Approximate tracking of step reference inputs with the
PW IMP/APPC. Unstructured parameter variations, � = 0:05.
Large bursting due to a `small' adaptation gain.
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Figure 8.9: Approximate tracking of step reference inputs with the
PW IMP/APPC. Unstructured parameter variations, � = 0:05.
Smaller burst size due to a larger adaptation gain.

Since in this case the unknown parameter variations are unstructured, the tracking error no longer

converges to zero but to a residual set where it maintains a small in the mean-square sense value. Nevertheless,

we observe a decrease of the burst size as the adaptation gain increases. Of course, as mentioned in the

previous example, this observation does not imply that an arbitrary increase of the adaptation gain is always

bene�cial.

Finally, as noted in Example 8.17, the transient errors observed after the reference input undergoes a

transition (0-10 or 10-0) depend critically on the underlying control law. Their reduction cannot be achieved

by simply `tuning' the adaptive law but it requires a careful design and shaping of the closed-loop sensitivity

operators. 55

APPENDIX VIII

Proof of Theorem 8.3:

First and as in the proof of Theorem 7.13, observe that under the assumptions of the theorem, the

vector�eld of the ODE describing the evolution of the adaptive closed-loop system is locally Lipschitz and

therefore there exists T > 0 such that the solution exists and is unique on the interval [t0; t0 + T ]. Hence,

the assumptions of Corollary 6.11 are satis�ed, implying that the parameter estimates are UB, at least on

[t0; t0 + T ].
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Figure 8.10: Approximate tracking of step reference inputs with the
PW IMP/APPC. Unstructured parameter variations,
� = 0:05. Furher reduction of the burst size.

Further, for t 2 [t0; t0 + T ], de�ne the �ctitious signal mf by

_mf = �2�mf + jQ1U1j2 + qe; mf (t0) = m2(t0)

where � 2 (0;min[�0; �]), U1 = [U>; u1]
> and Q1 = diag[Q; q1], q1 > 0. Note that, by construction, mf � m2

on any interval U is well de�ned.

Next, consider the closed-loop description given by (8.4) and (8.6). Treating r and e1 as external inputs,

the closed-loop is, by design, ES for every frozen �̂ with rate at most �a, the latter depending on the stability
margins of A�1� and D�1

a . Furthermore, the closed-loop system paremeters are Lipschitz continuous functions

of �̂. Hence, by Lemma 2.44, for any �c 2 (0; a) there exists �(�c) such that if in a subinterval of [t0; t0 + T ]Z tI+TI

tI

j _̂�(t)j2 dt � C0 + �TI ; 8tI � t0; TI > 0

the closed-loop STM is (uniformly) exponentially decaying with rate at most ��c. Invoking Corollary 6.11,

� � O
�

2�; 
K��

�
and therefore the previous statement is satis�ed provided that � < �o(�c; 
;K�), the

latter being positive and well de�ned for any �xed 
;K�.

Further, with the external inputs r; e1, the signal vector U1 satis�es

U1 = R+ Se[e1] + E

where R is a UB term due to the reference input, E is an exponentially decaying term incorporating the

e�ects of initial conditions and Se are the (TV) sensitivity operators from e1 to up; yp; u1. Note that for

� < �o these operators have �nite L2(�)-gains where � < �c. This is due to the fact that �̂ belongs to

a compact set while the closed-loop is ES by design, uniformly in t0 and �̂. Hence, taking norms of the

truncated signals in [t0; t0 + T ],

k(QU1)tk2;� � k(R)tk2;� +H0k(e1)tk2;� + k(E)tk2;� (8:23)

where H0 is the L2(�) gain of QSe. Although H0 depends on the trajectory of �̂, an upper bound can be

given in terms of K� which is �nite for �nite K� (this is easily veri�ed using the results of Chapter 2). We

may now invoke Lemma 7.12 yielding that a su�cient condition for mf to be UB in [t0; t0 + T ] is

H0

RMS[e1]p
2�

< 1

where, as in Chapter 7, RMS[x] denotes the root-mean-square value of the signal x. Since mf bounds

U1, the same applies to all the closed loop signals and the solution of the closed-loop system ODE can be

extended to eventually cover the whole interval [t0;1) (see also the proof of Theorem 7.13).
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Hence, using the results of Corollary 6.11 to evaluate the RMS[e1] term, boundedness is guaranteed

provided that

� < �o(�c; 
;K�)

H2
0O

�
�;
K��



; 
2�; 
K��

�
< 2� (8.24)

� < �c

Clearly, for any �xed K�; 
 there exists �0 > 0 such that the above inequalities are simultaneously satis�ed

for � 2 [0; �0) which completes the proof of the theorem.

Notice that in the stability/boundedness condition (8.24), �c is a free parameter and can be chosen so as

to yield the maximum possible �0. Such an issue is beyond the scope of our study and is not explored here.

We should mention, however, that H0, also depending on � is the uniform gain of the sensitivity operators

with respect to �̂. To rephrase this statement, consider the (ES) closed-loop of the LTV plant and the

associated TV PPC, parametrized by �̂. Then, loosely speaking, the closed-loop boundedness depends on

the worst-case sensitivity operator with respect to �̂ ranging in the parametric uncertainty set. This type of

result has also been obtained in the LTI case [KSK.89], though here there are some di�erences because of the

time variation of �̂. Nevertheless, the interesting observation is that the properties of the crucial sensitivity

operators depend heavily on the selection of the estimator and controller �lters (Da(s); D(s)). These �lters,

though irrelevant in meeting the TV PPC objective in the ideal case, are important when robustness issues

arise, either because of the unstructured variation of the plant parameters or because of modeling errors.

Further, observe that for a given size of the parametric uncertainty set (K�) the adaptation gain a�ects

the size of �0 in two con
icting ways. When 
 increases, the term K��=
 decreases and �0 increases. This

term can be interpreted as an e�ective parametric uncertainty which is normalized by the ratio of the speeds

of the actual parameters and their estimates. On the other hand, larger values of 
 increase the term 
K��

and cause �0 to decrease. This term is a bound on
_̂
� which acts as a perturbation since it is not an estimate

of
_̂
�� and, consequently, may destabilize the closed loop.

Finally, when the parametric uncertainty is su�ciently small, boundedness is preserved independent of

the speed of the parameter variations. To show this, consider the expression for e1 derived in Chapter 6:

e1 = Ga(s)[up�1] +Ga(s)[yp�2]

Substituting this expression in (8.23) we obtain a small-gain stability condition of the form H0O (K�) < 1.

22

Proof of Theorem 8.4:

The proof follows the same steps as that of Theorem 8.3, except that now the expressions of Corollary

6.14 are applicable. Consequently, only the major di�erences are outlined here.

The �rst one is that the quantity � is now

O(
2�2; 
�2=�; 
�K2
��; �

2K2
��; �

2; 
��2)

Hence, the closed loop, without the perturbation e1 is exponentially stable with rate ��c for � su�ciently

small, say � < �o and � < �o(�).
13

The second di�erence is that, with the expressions of Corollary 6.14, the �nal condition for boundedness

becomes

� < �o(�)

13The dependence of the various bounds on the rest of the quantities can easily be derived but is suppressed here for simplicity.
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H2
0O

�
�2;

�2


�
;
K2

���



; 
2�2; 
�K2

��;

�2

�
; �2K2

��; 
��
2

�
< 2�

� < �c

As in Theorem 8.3, H0 depends on the trajectory of �̂ but an upper bound can be obtained in terms of the

bound of the parameter estimates. Observing that for su�ciently small � the latter approaches K��+k�̂�k1,

a constant independent of � or 
, the proof of the theorem follows.

Notice that the last argument regarding H0 is precisely the point where the analysis of slow-in-the-mean

parameter variations breaks down. Using the �-modi�cation, the parameter estimates can grow as large as

O(
=�) (see Corollary 6.14) and our stability condition may fail to hold for any choice of �; 
; � unless K��
is small. It is not clear, however, whether this is a fundamental drawback of the �-modi�cation or merely a

technical problem due to our analysis.

Finally when K�� is su�ciently small, �̂ converges exponentially fast to a set O (K��=�;K��) implying

that the operator U 7! e1 has a O (K��=�;K��) gain and therefore, as in Theorem 8.3, boundedness is

guaranteed for arbitrarily fast variations of the plant parameters. 22

Proof of Theorem 8.5:

Using Lemma 2.64, consider the vector �� which is a smooth approximation of �̂ and di�erentiable as

many times as necessary (the number of required derivatives is certainly �nite and can be determined from

the di�erentiations involved in the calculation of the controller parameters). Then for ~� = �̂ � �� we have

that k~�k1 � O
�
k _̂�=�k

�
where � is a constant to be chosen.

Next, we use the smooth parameter vector �� to derive smooth approximations of the controller parameters

pi and rewrite the closed-loop equations in terms of PDOs with smooth coe�cients. Let �Dp(s; t); �Np(s; t)

be the PDOs corresponding to ��, as in Lemma 3.10. Thus, the plant I/O description becomes

�Dp(s; t)yp = �Np(s; t)up +Da(s)(e1 + e2) (8:25)

where e1 is the identi�cation error e2 = Ga(s)[up�1
~�1] + Ga(s)[yp�2

~�2]. From the de�nition of the TV

APPC algorithm we have that the controller parameters pi can be expressed as functions of �̂ as

pi = Qa(�̂)S
�1
? (�̂)Â(�̂) (8:26)

where Qa(�) is a matrix that relates the coe�cients of N1(s; t); N2(s; t) with pi; S?(�) is a left Sylvester-like
matrix of D̂p(s; t), N̂p(s; t); Â(�̂) is a vector with the coe�cients of A�(s; t) � D̂p(s; t)s

n�1. Note that no

derivatives of �̂ appear in (8.26) since all operations are performed with �̂ being frozen. Thus, we de�ne the

parameters �pi as the smooth approximates of pi by:

�pi = Qa(��)S
�1
? (��)Â(��) (8:27)

Since Qa(�); S?(�); Â(�) are uniformly continuous functions in their argument, we can select � such that

j�̂� ��j is su�ciently small for jdet[S?(�̂)]j � c > 0 to imply that j det[S?(��)]j � �c for some constant �c > 0. It

now follows that the controller parameters �pi are well de�ned by (8.27) and the error ~pi = pi � �pi satis�es

~pi � O(k�� � �̂k) (8:28)

Further, since the controller parameters pi are calculated from the PDOs N1(s; t); N2(s; t) which satisfy

D̂p(s; t) ? N2(s; t) + N̂p(s; t) ? N1(s; t) = A�(s; t)
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with �̂ being frozen, it follows from the rules of di�erentiation, the de�nitions of �� and �pi and Lemma 2.64

that
�Dp(s; t) �N2(s; t) + �Np(s; t) �N1(s; t) = A�(s; t) + �(s; t)

where �(s; t) is a PDO of degree � 2n � 2 and with coe�cients of O(�i
_̂
�), and i ranges between one and

the maximum number of di�erentiations required. Following Lemma 5.2, [A�(s; t) + �(s; t)]�1 is the PIO

involved in all sensitivity operators. Finally, to complete the closed-loop I/O description, we rewrite the

controller in terms of the smooth parameters �pi and introduce the signals x1; x2, depending on the di�erence

pi � �pi, as perturbations at the respective nodes, which completes the proof. 22

Proof of Theorem 8.13:

The proof of the theorem follows along the lines of Theorem 8.5 whereby we approximate �̂ by a smooth

vector �� and reparametrize the identi�ed LTV plant in terms of �� and an additional perturbation e2 due to

the di�erence �̂ � ��.

Next, the smooth parameters �� are used to derive smooth approximations of the controller parameters,

for which our ususal PDO operations can be performed. From the controller design equations (8.9) and

under Assumption 8.12, the coe�cients of the PDO's N̂1(s; t), N̂2(s; t) and P (s; t) are Lipschitz continuous

functions of �̂, say f1(�̂); f2(�̂) and f3(�̂) respectively. De�ne the smooth-coe�cient approximations of these

PDO's as the PDO's with coe�cients fi(��), i.e.,

�N1(s; t)$ f1(��) ; �N2(s; t)$ f2(��) ; �P (s; t)$ f3(��)

Also de�ne the PDO's

��N1(s; t) = �N1(s; t)� �P (s; t) �N2(s; t) ; ��N2(s; t) = Q �N2(s; t)

and parametrize the state-space realization of the control law

up =
��N1(s; t)

��N
�1
2 (s; t)[r � yp]� �P (s; t)Q�1(s)[yp]

in terms of the parameter vectors �pi, i = 1; . . . 5, corresponding to pi. From Lemma 2.64 and the Lipschitz

continuity of fi it follows that pi � �pi is O(k _̂�k) and that the following equations hold:

�Dp(s; t)Q(s)
��N2(s; t) + �Np(s; t)

��N1(s; t) = A�(s; t) + �1(s; t)

�X(s; t)�(s)� �Np(s; t) �P (s; t) = �Dp(s; t)Q(s) + �2(s; t)

where �X(s; t) is the corresponding smooth-coe�cient approximation of X(s; t) and �i(s; t) are PDO's with

coe�cients O(k _̂�k).
After some straightforward calculations the tracking error is expressed as

e = ��N2(s; t)[A�(s; t) + �1(s; t)]
�1�2(s; t)Q

�1(s)[r] + Se[x1; x2; e1; e2]
> + "

where xi are the perturbations due to the controller reparametrization and Se are the corresponding sensi-

tivity operators (see Theorem 8.5). Since the various operators are ES for su�ciently small perturbations

(in the mean-square sense), using the expressions of Corollary 6.11, the result follows. 22
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