
Chapter 5

Practical Controller Design

5.1 Introduction

Arguably, one of the biggest impacts of modern control theory is in the area of multivariable controller
design. This statement does not aim to de-emphasize the importance of good single-loop controllers nor to
suggest that all single-loop problems are easy. It is just that the most dramatic performance improvements
and ability to operate in new regimes should be expected from the compensation of dynamic and nonlinear
interactions.

Single-loop systems naturally dominate practical applications. This is a consequence of a justi¯able
philosophy to keep the system simple. The designers often go to great lengths to maintain a low coupling
between the controlled variables and the control inputs (manipulated variables). This may impose severe
constraints on the physical system itself and its mode of operation. But the bene¯ts are quite apparent. The
design of feedback to achieve the prescribed operation is limited to the compensation of relatively simple
dynamics and disturbance attenuation. Nonlinear characteristics and interactions are then compensated
by an outer loop controller that involves primarily static (DC) maps. In this framework, the performance
improvement from a better single-loop controller is often questionable. The gains from a more precise
compensation of higher order dynamics can be negated by bandwidth restrictions that arise from interactions
and the overall system complexity.

On the other hand, newer processes or operating modes are driven by an economic optimization and
tend to emphasize dynamic interactions (e.g., by requesting a bandwidth increase from the system). With
the nonlinear control problem still containing several unresolved theoretical or computational issues, modern
control theory o®ers systematic methods to handle interacting linear dynamics. Coupled with an ad-hoc1

handling of the nonlinearities, this is often enough to achieve signi¯cant improvements in system performance.
One of its main drawbacks preventing a more wide-spread acceptance is the requirement for a high degree
of sophistication and expertise.

In the early linear quadratic methods of the 60's, there was a lot of \art" involved in the ¯ne-tuning
of a controller, especially for meeting speci¯c and precise objectives. For example, the Q and R matrices
in the Riccati equation have nice and immediate interpretation in terms of penalizing the error energy in
some channels more than others. But their e®ect on channel maching or dynamic behavior is more obscure.
The development of the H1 approach in the 80's and the advancements in its computational software in
the 90's have introduced the ability to simplify the design procedure through the use of fairly sophisticated
algorithms. Simplicity here refers to the choices made by the designer. For example, the free parameters
now have become transfer function weights that are essentially de¯ned by a corner frequency and a roll-o®
rate. But it is not the conceivable reduction in the number of user-selected parameters that makes this
approach attractive. It is its system-interpretation, the ability to relate the weights to performance and
robustness measures and, thus, quantify the interplay between modeling uncertainty and disturbances in a
more precise manner. To prevent misleading impressions, it should be emphasized that \hard" designs still

1Or \insightful" or \educated" all of them meaning that it is a case-dependent engineering solution and not very systematic.
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remain hard, perhaps even worse. And there are (always?) requirements on the controller behavior that
are too complicated to formulate or incompatible with the approach. These are usually left to adjust in
the controller evaluation stage. Sometimes, integrated high-level design techniques may be too in°exible to
achieve that. Nevertheless, in the \normal-complexity" case, the H1 approach can automate much of the
user interaction and produce good designs quickly.

The typical design of a control system can be decomposed into the following major steps:

1. Speci¯cations set-up

2. System Modeling

3. Controller Design

4. Evaluation and Adjustment

5. Implementation

Depending on the application these steps may be essentially disjoint or interdependent. For example, in
aerospace applications the design speci¯cations are prescribed by the system designer or manufacturer so
that the all the system components work in the desired manner. Modeling is also performed independently
from ¯rst principles. The results of these two steps are then handed down to the controls engineers for
the design of the controller. Of course, there is always the possibility that the design speci¯cations are not
achievable, in which case an iteration is necessary. This design mentality has driven the development of the
robust control theory. The controller design evolved naturally to address model reduction, feasibility and
controller computation. Iterations with the modeling and speci¯cations steps were viewed as a last resort
action since that would imply a major change in the component that could a®ect the operation of the entire
system.

As the modern control theory matured in the 90's, it became a viable candidate for designing control
systems for other industrial applications, e.g., semiconductor manufacturing, chemical process control, auto-
motive processes. Several new issued started arising; the suitability of existing models for controller design
and even their availability can no longer be taken for granted. Speci¯cations are rarely given in a concrete
de¯nition, but they take the form of a loose optimization (the best possible controller...). A basic reason for
such a direction is in the economics of industrial processes where the fundamental models are too expensive
to develop or simply unavailable at the time the controller is to be designed. In the same vein, expertise
in control systems may not be widely available during the process development phase and any available
models do not necessarily capture control-related characteristics of the process. Consequently, controls en-
gineers are often responsible for the complete design and implementation of the control system, including
the understanding of its impact on the operation of the process. Integration of the controller design steps
is now becoming more important than the controller computation itself (the latter being largely a resolved
issue). The same issues arise when the control problem is often seen from a retro¯tting point of view. Here
the process needs to be improved through a redesign of an existing control system, already in operation.
In addition to the possible lack of models or speci¯cations, an added di±culty comes in the form of design
expediency.

In the following we discuss the essense of an integrated controller design procedure that aims to handle
\most" but not \all" cases. (Universal controllers and universal procedures go hand-in-hand with perpetual
motion machines; in practice we would be happy if, for a given class of problems, we can adjust the procedure
so that it produces a successful design, almost always.) The process modeling is performed from input-
output data with a system identi¯cation approach. The controller design employs classical loop-shaping
principles and its computation relies of tools from the H1 theory. In the ¯nal implementation, the controller
is augmented by a simple observer-based anti-windup scheme to handle the ubiquitous input saturation
constraints. It should be emphasized that the methods used in each step are not the only ones possible
or even available. The basic criterion for their selection is compatibility that allows the integration of the
identi¯cation and controller design steps. For example, the objective of the identi¯cation gives rise to a
speci¯c uncertainty structure; this, in turn, translates into constraints that de¯ne the controller design
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objectives. The key analytical tool that provides the theoretical support and the link between the two steps
is the so-called Small Gain Theorem, presented in the next section.

5.2 The Small Gain Theorem

This fundamental result was developed independently by Zames and Sandberg in the mid-60's. In a func-
tional analytic framework it addresses the stability problem of the feedback interconnection of two operators
(systems). While deceivingly simple in its statement, it establishes a rigorous abstract formulation of the
problem. In the 80's it became the cornerstone of the robust control theory, providing a concrete multivari-
able generalization of classical robustness measures (gain/phase margin).

The small gain theorem applies to stable operators between two Banach spaces with ¯nite gain. Recall
that for an operator G : X7! Y , the gain of G is de¯ned as

°X;Y (G) = inff°j9¯ : kG[x]kY ∙ °kxkX + ¯; 8x 2 Xg
For the special case where X;Y are the spaces of ¯nite energy vector-valued functions (L2) and G is a stable
linear time invariant system, °2(G) is equal to the supremum of the maximum singular value of G(jw), over
w 2 R. In this case, the corresponding transfer function G(s) is analytic in the right-half plane; the space
of these transfer functions is referred to as H1; it is a normed space with norm kGkH1 = supw ¹¾[G(jw)].
The notation ¹¾ is used for the maximum singular value of a matrix; moreover, the H1 norm notation is
often simpli¯ed to kGk1. Observe that °2(G) denotes the induced L2-to-L2 gain of the general operator G
while kGk1 is the in¯nity-norm of the transfer function (matrix) G(s). It just happens that for linear time
invariant systems the two are equal.

5.2.1 Theorem: (Small Gain Theorem) Consider the following interconnection of linear time invariant
systems, each mapping L2 to L2 with appropriate vector dimensions.

r1 e1 G

 H
e2

r2

Figure 5.1: The feedback system for the Small Gain Theorem.

Suppose that °2(H)°2(G) < 1. Then the closed-loop system in Fig. 5.1 is L2 stable and

ke1k2 ∙ 1

1¡ °2(H)°2(G) [kr1k2 + °2(H)kr2k2 + °2(H)¯G + ¯H ]

ke2k2 ∙ 1

1¡ °2(H)°2(G) [kr2k2 + °2(G)kr1k2 + °2(G)¯H + ¯G]

where ¯H ; ¯G are constants. 55
Proof: (Outline) Successive use the triangle inequality of norms and the de¯nition of the gain yields

ke1k2 ∙ kr1 +H [r2 +G[e1]]k2
∙ kr1k2 + °2(H)(kr2k2 + kG[e1]k2) + ¯H
∙ kr1k2 + °2(H)kr2k2 + °2(H)°2(G)ke1k2 + ¯H + °2(H)¯G

from which the ¯rst inequality follows (similarly for the second inequality). These inequalities show that
all internal signals in the loop have ¯nite energy for any ¯nite energy external inputs; hence the loop is L2
stable.
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The above derivation is the heart of the theorem and provides the correct insight; unfortunately, it is
not rigorous. A precise statement would involve the {tacitly assumed{ causality of the operators and the
so-called extended L2 spaces. Still, the existence of solutions for the loop signals cannot be guaranteed and
should be established separately. For the latter, tools from the theory of ordinary di®erential equations can
be used.

A di®erent, more restrictive version of the small gain theorem uses the notion of the incremental gain of
an operator (same as the gain but for the di®erence x1 ¡ x2 of any two signals in the domain). This version
also guarantees the existence of solutions provided that the loop signals exist for one set of external inputs.
For linear systems, the incremental gain is equal to the gain of the operator and the incremental version can
be used without any increase in conservatism. 22

The small gain theorem is applicable to general input/output spaces and operators. Even though for
nonlinear systems the ¯nite gain condition can be quite restrictive, the results establish the well-posedness
of the robustness problem in practical applications.

The small gain condition is only su±cient. It is also necessary if one of the two operators is arbitrary,
constrained only by a gain bound. For example, consider the problem where G is a linear time invariant
system and H is such that °2(H) ∙ 1 but otherwise arbitrary. Then, a necessary and su±cient condition
for the stability of their feedback loop for any H is °2(G) < 1. The necessity here means that if °2(G) ¸ 1
then a stable operator H can be constructed such that °2(H) ∙ 1 and the feedback loop is unstable.

It should be made clear that the usefulness of the small gain theorem is not in establishing nominal
stability for the plant-controller loop. The reason is that, much like norms, it does not preserve any di-
rectionality or phase information. However, as a robustness analysis tool, it is indispensable. A proper
framework for its use is seen in the following example. Suppose that the plant is modeled as a nominal
transfer function P0(s) and an output multiplicative uncertainty ¢(s) such that k¢k1 ∙ ¹ and the \true"
plant is (I +¢)P0(s). A controller is then designed for P0 and we ask if the perturbed closed-loop is stable
for all possible ¢. To solve this problem, let T (s) denote the complementary sensitivity of C(s) and P0(s),
that is T (s) = [I+P0C(s)]

¡1P0C(s). After some straightforward calculations, the perturbed closed loop can
be written in a nominal-plus-uncertainty form that ¯ts the small gain theorem framework; more speci¯cally,
in Fig. 5.1, G(s) = T (s) and H(s) = ¢(s). Thus, we conclude that the closed loop is robustly stable if
kTk1 < 1=¹.

r
P0(s)

u
C(s)

y

∆W(s)

W-1(s)Nominal system

Uncertainty

Figure 5.2: Introducing frequency-dependent weights in the Small Gain Theorem.

This example also shows the main de¯ciency in the small gain theorem. Typically, the multiplicative
uncertainty magnitude is small at low frequencies and large at high frequencies. A straight application of
the theorem would impose the unreasonable constraint that ¹¾[T (jw)] < 1=¹ at all frequencies. A standard
method to alleviate this problem is to use a frequency dependent weight to \whiten" the uncertainty. (White
here means that the uncertainty magnitude can achieve its maximum at any frequency; ideally such a ¢
would be a scaled all-pass transfer function/matrix.) Thus, we assume that ¢ is such that k¢W (s)k1 ∙ 1
where W (s) is a stable transfer function/matrix with a stable inverse (minimum phase). Then, writing
the perturbed plant as [I + ¢WW¡1]¡1P0, the small gain theorem yields the robust stability condition
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kW¡1Tk1 < 1. This weighting procedure is depicted in Fig. 5.2.
A similar technique is used to reduce the small gain conservatism to structured or directional per-

turbations. For example, suppose that ¢ has a block-diagonal structure ¢ = diag(¢1;¢2). Let D =
diag(w1I1; w2I2) be a stable minimum phase transfer matrix whose diagonal blocks are scalar-times-identity
and I1; I2 have the same size as ¢1;¢2. Introducing the identity maps DD

¡1 and D¡1D in the paths
leading to and coming from the uncertainty, the small gain theorem yields the robust stability condition
kD¡1TDk1kD¡1¢Dk1 < 1. However, by its construction, D commutes with ¢ and the condition becomes
kD¡1TDk1k¢k1 < 1. Further, since the result holds for any D (stable minimum phase) we arrive at the
condition

inf
D
kD¡1TDk1 < 1=k¢k1

This procedure, often referred to as \D-scale optimization," can be implemented by a reasonably e±cient
numerical algorithm with convergence guarantees. While it remains only a su±cient condition, numerical
studies have shown it to be fairly tight. It forms the computational back-bone of the so-called ¹-analysis
and synthesis.

5.3 Modeling via System Identi¯cation

A part of the new demands on the control systems design is the modeling from input-output data. While
this is hardly a new topic, it raises certain compatibility questions between the modeling approach and
the controller design methodology. Many of the older existing results have been derived with a stochastic
formulation to address stochastic modeling problems. More recently, there has been a renewed interest on
the subject from the point of view of control-oriented system identi¯cation. This includes modeling that is
useful for the design of controllers as well as the estimation of gain bounds for the uncertainty.

In Chapter 2 we introduced a system identi¯cation approach that employs a simple least-squares esti-
mator. The identi¯cation error induces a particular uncertainty structure that is di®erent from the usual
additive or multiplicative uncertainty. It is often referred to as \coprime factor uncertainty." Even though it
is more complicated, it possesses some important conceptual advantages in the context of feedback control.
In the rest of this section, we discuss its generalization to the multivariable case.

The selected system identi¯cation method relies on a least squares parameter estimation algorithm to
obtain parameter estimates for a linear model that describes the process locally around an operating point.
To obtain a dynamical model of the plant, a standard state-space description is considered, i.e.,

_x = Ax+Bu ; y = Cx+Du

For multiple-input, single-output systems and under an observability assumption, the model can be written
as

_x = Ax+Bu+ Ly ¡ Ly ; y = Cx+Du
where A¡ LC is Hurwitz with prescribed eigenvalues. After a similarity transformation we obtain

_x = Fx+ µ1u+ µ2y ; y = qx+ µ3u

where F and q are selected a priori so that F is Hurwitz, (F; q) is a completely observable pair, and µ1; µ2; µ3
are adjustable parameters. The usefulness of this description is that it can be readily converted into a
linear model form, which is convenient for parameter estimation, that is, y = w>£. Here, £ is a vector
containing all the adjustable parameters (elements of µ1; µ2; µ3) as well as the initial conditions x(0). The
latter term, often ignored, has been found to have an appreciable impact, especially for short data sets that
begin on a transient. The regressor vector w contains the signals (sI ¡ F>)¡1q>u, (sI ¡ F>)¡1q>y, u, and
(sI ¡ F>)¡1q>, where the last term corresponds to the unknown initial conditions. After generating the
regressor vector, £ can be determined in a least squares sense by minimizing the estimation error ky¡w>£k2.
The above description is repeated for each output and the resulting state-space model is concatenated to
produce the overall model of the system. While this approach may result in a non-minimal model, with a
proper selection of the model orders (dimensions of F ), a model reduction is rarely necessary.
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Emphasis of the model accuracy around the crossover frequency is, of course, crucial and should be
re°ected by the proper selection of the excitation sequence (typically a random binary sequence) and the
identi¯cation design parameters (input signal, pre¯lters, etc.). On the other hand, once a model becomes
available, it is important to compute uncertainty estimates that are suitable for the controller design tech-
nique used. Furthermore, these estimates {although approximate{ should be able to detect a possible
infeasibility of the controller design problem with the given closed-loop performance objectives.

Various model error structures have been used in control systems design for describing the uncertainty in
a manner consistent with robust control theory. In a typical uncertainty estimation approach from data, the
model-data mismatch is described by a multiplicative uncertainty, imposing a constraint on the closed-loop
bandwidth (more precisely, on the complementary sensitivity).

While conceptually simple, the multiplicative (or additive) description of uncertainty is not entirely
consistent with the above identi¯cation scheme. Instead, the minimized error corresponds to the contribution
of coprime factor uncertainty. For this, the above parametrization of the system can be written as:

y = D¡1
p [Np[u] + e]

where e is the residual estimation error and Dp; Np are stable and proper systems determined by F; q and £.
In this formulation, the coprime factor uncertainty arises naturally by attributing the error to contributions
from the input and the output, i.e., e = ¢N [u] + ¢D[y] (see Fig. 5.3).

The main advantages of the coprime factor uncertainty description lie in its handling of low-frequency
perturbations and perturbations that can change the location and number of unstable modes. This is
desirable, and often crucial in the case where the model has large low-frequency gains (near-integral action)
with respect to the intended closed-loop crossover frequency. Usually, such models also exhibit large low-
frequency uncertainty, due to disturbances and the length of the identi¯cation experiment. It can be argued
that this uncertainty can be reduced by performing a longer experiment. This, however, would be undesirable
in retro¯tting applications; furthermore, it is unnecessary for the controller design since that information is
well-below the intended loop bandwidth.

System identi¯cation issues in the context of coprime factor uncertainty have been considered in the
literature. A di±culty with this formulation arises from the fact that the correlation between the plant
input and output prohibits the estimation of separate bounds for the two uncertainty components from
input-output data. To alleviate this problem, we adopt an unfalsi¯cation approach That is \we seek to
¯nd a bound for the most favorable uncertainty that is required to describe the residual error." Of course,
the interpretation of such bounds in the controller design is also modi¯ed. Instead of su±cient condition
for stability, we now have the pseudo-necessary conditions for instability. That is, loosely speaking, if the
controller design violates the given bounds, then it is likely that the closed-loop system will be unstable.

Np Dp
-1

∆N ∆D

up yp

e

Figure 5.3: Structure of Identi¯cation Uncertainty

Guided by the formulation of a standard loop-shaping problem, it is convenient express the uncertainty
estimates as weights for the loop sensitivity (S = [I + PC]¡1) and complementary sensitivity (T = PC[I +
PC]¡1) functions.2 This is compatible with the H1 problem: Find a stabilizing controller C such that

min
C
° : ¹¾

∙
W3T
W1S

¸
< ° (5.3.1)

2P = D¡1
p Np denotes the nominal plant and C the controller.
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Here, ¹¾ denotes the maximum singular value, andW1;W3 are weights de¯ning the target sensitivity functions
(or, target loop-shape as W1W

¡1
3 ). This form of the H1 design draws considerable insight from classical

loop-shaping principles, while fundamental feedback limitations are easily observed (e.g., S + T = I).
In this setup, the small gain theorem with diagonal scaling can be used to develop a condition for closed-

loop stability in the presence of the perturbations ¢N ;¢D. Performing the optimization with respect to the
diagonal scales and the following condition is obtained

¹¾[CSD¡1
p ]¹¾[¢N ] + ¹¾[SD

¡1
p ]¹¾[¢D] < 1 (5.3.2)

For square systems and using CS = P¡1T , we may pose the uncertainty bound estimation as the following,
frequency domain, constrained optimization problem:

min
±1;±2

¹¾[P¡1TD¡1
p ]±1 + ¹¾[SD

¡1
p ]±2 (5.3.3)

s.t. ¢N [u] + ¢D[y] = e

¹¾[¢N ] ∙ ±1 ; ¹¾[¢D] ∙ ±2
A simple suboptimal solution of (5.3.3) can be derived under the restriction ¢N [u] ? ¢D[y]:

[±1; ±2] =

½
[jej=juj; 0] if ` < 1
[0; jej=jyj] if ` > 1

`
¢
=
jyj
juj
¹¾[P¡1]¹¾[T ]

¹¾[S]
(5.3.4)

This computation is similar to the optimal distance in the gap metric except that a speci¯c decomposition is
used and that right half-plane limitations are ignored (this is acceptable under the unfalsi¯cation approach).

Although this optimization problem depends on the actual controller, a suboptimal solution can be
computed by replacing T and S with the respective target values. Then, the uncertainty bounds are attractive
as they depend only on the desired loop properties and not the controller itself. In addition, the various
quantities have simple frequency domain de¯nition and can be readily computed via FFT's or other spectral
methods.

It should be emphasized that in this approach, the uncertainty bound estimates are a function of the
target loop and they are both determined in one step. In addition to satisfying fundamental limitation
constraints (e.g., right-half plane poles and zeros), the only essential requirement for selecting the target
T and S is that they yield a robust stability condition less than one. At ¯rst glance, this may seem as a
tedious iterative process. For the typical control objectives, however, a simple analysis of the optimization
problem indicates that the high-frequency component of the estimation error is attributed to ¢N and the
low-frequency component to ¢D. Based on this observation, it is straightforward to determine the high- and
low-bandwidth constraints and loop roll-o® rates. The ¯nal outcome of this procedure is target sensitivities
and an \optimal" uncertainty decomposition. After designing the controller, a more precise estimate of the
robust stability condition as well as an estimate of the closed-loop e®ective multiplicative uncertainty (as a
robust performance indicator) can be computed by minimizing (5.3.2) with the actual T and S. As long as
the controller results in a loop reasonably close to the target, these estimates will remain roughly unchanged.
For more di±cult problems, however, a controller design iteration may be required.

It is also worthwhile to mention that there is no loss of information when the uncertainty is split. Simply
the energy of the error is distributed to the two uncertainty blocks. Consequently, if the actual design
does not match the target loop, the resulting evaluation of the robust stability condition will simply be
suboptimal and more conservative. Based on practical experience, there is rarely a need to iterate the
uncertainty decomposition step as long as the designed closed-loop sensitivities are close to their targets.

This analysis provides only estimates of the uncertainty bound and closed-loop stability cannot be guaran-
teed in a strict sense. However, practical experience indicates that there is a very strong correlation between
these bounds and successful controller designs. Furthermore, it is implicitly assumed that the source of the
estimation error is unmodeled dynamics. If part of the error is due to bounded noise and/or disturbances,
this would make the conditions conservative. On the other hand, such an \all-inclusive" computation has the
following desirable by-product: When the identi¯cation experiment is performed under normal operation,
the computed uncertainty bounds re°ect correctly the amount of sensitivity reduction required to attenuate
the typical low-frequency disturbances entering the loop.
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5.4 Controller Design

Using a (sensitivity) loop-shaping approach the uncertainty bounds obtained in the system identi¯cation
step can be used to de¯ne simple sensitivity and complementary sensitivity weights. These weights are
chosen to maximize the disturbance attenuation properties without violating the constraints imposed by the
uncertainty estimates. An H1 approach was selected for the controller computations because it minimizes
the weight selection iterations for achieving a target loop shape. It also o®ers excellent model-matching
properties with few -if any- controller design iterations. Of course, other controller design tools may be used
as well, as long as the loop-shaping objectives are met. The computation of the controller solving (5.3.1)
can be performed with widely available software (MATLAB's Robust Control Toolbox).

5.4.1 The standard H1 problem

u1 y1
P

 K

y2u2

Figure 5.4: Augmented-plant/controller interconnections in the standard H-in¯nity problem.

The standard H1 problem is stated as follows: Consider the system in Fig. 5.4 where

P (s)$ [A;B;C;D]$
24 A B1 B2
C1 D11 D12
C2 D21 D22

35
with the obvious partitioning. (Here we use the symbol K for the controller to avoid possible confusion with
the system output matrix C.) We seek to ¯nd a stabilizing control law u2 = K[y2] such that the transfer
function matrix Tu1;y1 : u1 7! y1 is small, e.g.:

Optimal H1 control: min
K
kTu1;y1k1 ; Standard H1 control: K : kTu1;y1k1 < °

This transfer function is also referred to as a linear fractional transformation and has the form

Tu1;y1(s) = P11(s) + P12(s)[I ¡K(s)P22(s)]¡1K(s)P21(s)

It represents the transfer function between external signals (u1) and outputs of interest (y1) that should be
minimized. The transformation of a controller design problem into the standard H1 problem is discussed
in the next subsection.

The following theorem describes the solution in a special case that contains the essential features of
the theory without being overly complicated. The general solution is omitted as it is much more involved
algebraically.

5.4.1 Theorem: Consider the special case where the following assumptions hold:

1. [A;B1] is stabilizable and [A;C1] is detectable;

2. [A;B2] is stabilizable and [A;C2] is detectable;

3. D11 = 0, D21 = 0;
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4. D>
12[C1; D12] = [0; I];

5.

∙
B1
D21

¸
D>
21 =

∙
0
I

¸
.

Then, there exists an admissible controller such that kTu1;y1k1 < ° i® the following conditions hold

1. There exists X ¸ 0 such that A>X +XA+X(°¡2B1B>1 ¡ B2B>2 )X + C>1 C1 = 0 (Control Riccati);

2. There exists Y ¸ 0 such that Y A> +AY + Y (°¡2C>1 C1 ¡ C>2 C2)Y +B1B>1 = 0 (Observer Riccati);
3. ¸max(XY ) < °

2 (Spectral radius; can also be written as Y ¡1 ¡X=°2 > 0)
Moreover, when these conditions hold, one such controller is

K1(s)$
∙
A1 ¡Z1L1
F1 0

¸
where

A1 = A+ °¡2B1B>1 X +B2F1 + Z1L1C2
F1 = ¡B>2 X
L1 = ¡Y C>2
Z1 = (I ¡ °¡2Y X)¡1

This controller is often called the central controller or minimum entropy controller. The set of all possible
solutions is then described as a linear fractional transformation of the central controller with a stable ¯lter.

55
Some interesting properties of the (general) solution are listed next.

² The H1 controller maintains a (less obvious) full-state/observer separation structure. The coupling
between the controller and observer design is introduced by the parameter ° in the two Riccati equa-
tions. These are non-standard Riccati in the sense that the matrix of the quadratic term may be
inde¯nite.3

² The optimal H1 problem is solved as a sequence of standard problems kTu1;y1k1 < ° with one
adjustable parameter °; this is usually referred to as the ° iteration.

² Solutions to this problem exist i® four conditions hold: D11 small enough; control Riccati X ¸ 0;
observer Riccati Y ¸ 0; spectral radius ¸max(XY ) < 1.

² The H1-optimal cost function Tu1;y1 is all-pass (¾(Tu1;y1) = 1).
² An H1 suboptimal controller has order equal to the augmented plant.

² In weighted mixed-sensitivity problems, the H1 controller always cancels the stable plant poles with
its transmission zeros. Unstable plant poles inside the control bandwidth are shifted approximately to
their jw-axis mirror image.

3Non-standard Riccati are related to the problem of determining the H1 norm of a transfer function matrix: Let G(s)$
[A;B;C; 0]. Then kGk1 < ° i® there exists X ¸ 0 such that XA+A>X + °¡2XBB>X + C>C = 0.
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5.4.2 Transformation to the standard H1 problem

In the system identi¯cation section we discussed how the nominal system can be identifed from input-output
data. The identi¯cation uncertainty was also expressed as (approximate) constraints on the sensitivity and
complementary sensitivity transfer function matrices. Furthermore, performance objectives (disturbance
attenuation) are usually de¯ned in terms of a target sensitivity. Thus, the typical controller design problem
takes the form of a loop-shaping weighted mixed sensitivity optimization

min
C
° : ¹¾

∙
W3T
W1S

¸
< ° (5.4.1)

The selection of the two weights is such that W¡1
1 is minimized subject to jW¡1

1 j+ jW¡1
3 j ¸ 1 (imposed by

S + T = 1) and W¡1
3 obeying the corresponding uncertainty constraint. Additional considerations follow

the classical loop-shaping principles, e.g., location of right-half plane poles (minimum bandwidth) and zeros
(maximum bandwidth), lightly damped modes etc.
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Figure 5.5: Transformation of the loop-shaping to the standard H1 problem.

To transform this problem to the standard H1 problem, the weights are appended to the closed loop
system as ¯lters on the quantities of interest (see Fig. 5.5). Notice that an additional weight W2 is used to
penalize the control input. This serves to ensure that the problem is well-posed and can be chosen as ²I
where ² is a small number. Of course, di®erent selections ofW2 are possible, as long as there is su±cient and
concrete justi¯cation. Now, it is a tedious but straightforward exercise to write a state-space representation
for the augmented plant (or, super-plant) from the two inputs u1; u2 to the two outputs [y11; y12; y13]

> and y2.
The controller, in a state-space realization, can then be obtained using standard software (e.g., MATLAB).

In the solution of the H1 optimization, ° controls the amount of relaxation of the constraints de¯ned by
the weights, until a solution is feasible. Recall that at the optimum, the cost objective is all-pass, so roughly,
T = °W¡1

3 and S = °W¡1
1 . Thus, a value of ° = 1 means that the constraints are feasible but tighter

constraints are not. A value of ° = :1 means that the weights can be increased by a factor of 10 (tighter
constraints) and a solution is still feasible. And a value of ° = 10 means that the weights must be reduced
by a factor of 10 (more relaxed constraints) before a solution becomes feasible. In general, the optimum
° should be around unity so that the prescribed loop shape is achieved. Large deviations from this value
mean that the weights need to be considerably adjusted before computing the solution. Their automatic
adjustment (through °), however, is not necessarily in a desirable direction (keeping the crossover region
small so as to achieve the best sensitivity reduction). Practical experience indicates that good designs are
obtained with ° » 1=0:8¡ 1=0:5. Notice that in the Robust Control Toolbox the role of ° is inverted so that
the right-hand side is always normalized to one.
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5.5 Controller Adjustments

5.5.1 Model Reduction

Before its ¯nal implementation, the controller obtained from an H1 design needs to undergo several adjust-
ments and modi¯cations. The ¯rst adjustment is a model-order reduction, necessitated by the usually very
high order of the controller (same as the augmented plant). The general and uni¯ed H1 problem formulation
and the selection of convenient bi-proper weights introduce arti¯cial modes in the controller that are essen-
tially irrelevant for its performance and can potentially degrade its reliability and discretization properties.
For this reason, a three-step order reduction is performed. The ¯rst two steps remove fast and slow modes,
by using a \slow-fast" decomposition algorithm and singular perturbation principles. Modes much faster
than the closed-loop bandwidth are undesirable for discretization and for their numerical sensitivity. Modes
much slower than the bandwidth are arti¯cial and will cause the appearance of residual terms in the response
that are small but decay very slowly with time. In the last step a simple frequency-weighted balanced model
reduction is used to eliminate other controller states with small contributions. A considerable part of the
literature has focused on the subject of controller reduction with the objective of o®ering closed-loop stability
and performance guarantees. However, without attempting to minimize the controller order and by allowing
for user input, the previous reduction sequence can be automated to become almost transparent to the user.

5.5.2 Response to reference inputs

The primary responsibility of the controller is to attenuate disturbances and maintain robust stability.
Although important, achieving a good response to commands is addressed separately. There are three
di®erent (but related) approaches to command response. One is the design of a pre¯lter (u = Ke+Fr) that
can be handled as an approximation problem. A second is through the design of an outer loop controller.
The third involves the separation of the controller into a cascade and feedback part (two-degrees-of-freedom
compensators). Each method has its own individual characteristics in terms of computations, handling
saturations and sensitivity. All methods, on the other hand, share the same principle, that the command
response can be shaped roughly up to the bandwidth of the sensitivity; the latter is nothing more than the
frequency range where the closed-loop transfer function can be con¯dently inverted.

r y
P(s)

u
KKF

-1(s)

KF(s)

d

n

Figure 5.6: Simpli¯ed pre¯lter design as a 2-DOF compensator

Here, we consider only a special case of the third method where the compensator is split into a cascade
and a forward path, i.e., K = KcKf . With a suitable factorization, slow zeros of the compensator are
included in the feedback path and, thus, they do not appear in the transfer function from the reference
to the output. Observe that, regardless of the split, the loop transfer function remains the same and so
do the sensitivity and complementary sensitivity of the feedback systems. The general factorization can
be somewhat involved and double the order of the controller. Instead, a simpler approach may be used
to handle certain special cases. For example, when the plant contains an integrator or slow dynamics, the
complementary sensitivity will necessarily exhibit an overshoot. Often, it is su±cient to use a low-pass ¯lter,
say F = s+z

s+p
; z > p > 0, at the reference to avoid such overshoots in the command response. Bringing this

¯lter inside the loop (see Fig. 5.6), we have that Kf = F
¡1 and Kc = KF . The advantage of this form of

pre¯ltering is that it remains active, even when the control input saturates.
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5.5.3 Anti-windup modi¯cations

Integrator windup is an old and serious problem, recognized from the days of the ¯rst PID controllers.
It occurs when the input saturates and the controller keeps integrating the error, demanding even higher
levels of control input. This results in unacceptable overshoots and potential controller instability. With
simple PID controllers, a simple e®ective anti-windup strategy is to stop the error integration when the
input saturates. On the other hand, general multivariable controllers require more elaborate anti-windup
strategies.

Several techniques to approach the anti-windup problem can be found in the literature. The simplest,
and often su±cient, is the augmentation of the controller with an observer-based feedback. That is,

_xc = Acxc +Bce+ L(u¡ usat) ; u = Ccxc +Dce

where [Ac; Bc; Cc; Dc] is the controller state-space representation, e is the controller input (usually an error
signal) and usat is the saturated control input. The main idea behind this approach is to prevent the
controller states from diverging too far while the input is saturated. An essential condition for the success
of the design is that the the system will recover from the saturation. This is not easy to guarantee with
multivariable systems that exhibit strong interactions. A partial remedy for that is to adjust the observer
to maintain an a priori known, desirable directionality for the saturation (e.g., \cold-start" and \free-fall"
behavior). A reasonable design of the observer gain L is through a Riccati equation:

L = ¡PC>c R¡1 ; PA>c +AcP ¡ PC>R¡1CP +Q = 0

where Q = ±I +BcB
>
c (±

1) and R = diag(½1; : : : ; ½m). In this form, the directionality properties of the anti-windup modi¯cation can
be adjusted by manipulating the entries of R (e.g., via simulation trial-and-error).

As a last comment, notice that most controllers are now implemented in discrete time. Typically, as
long as the sampling frequency is well above the closed-loop bandwidth, the discretization should present no
special problems. However, it is a good practice to perform the discretization using backwards di®erences or a
Tustin transformation to ensure that fast controller poles map to stable poles in discrete-time. Furthermore,
to avoid similar discretization problems, it is preferable that the design of the anti-windup modi¯cation is
performed entirely in discrete time.
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