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1 Introduction

The purpose of this note is to provide a brief background and some examples on the fundamental system
properties. In particular, the problems of interest have the general form,

Given a system H : X 7! Y, y(t) = (H [x])(t), determine whether it is linear, time-invariant, causal,
memoryless, stable.

As a matter of notation, y(t) = (H [x])(t) represents the output of the system, with input x and evaluated
at time t. y = H [x] denotes the output of the system with input x (the entire function). For simplicitiy,
the system is referred to as \the system H" and the precise de¯nitions of the domain and co-domain are
omitted. Unless explicitly stated otherwise, the inputs and outputs are real functions de¯ned over the real
line R.

In this context, the notations H1H2x, H1[H2x], H1[H2[x]] are used interchangeably.

2 Linearity

2.1 De¯nition: A system H is said to be linear if for any scalars a; b and any inputs x1; x2

H [ax1 + bx2] = aH [x1] + bH [x2]

55
Linear systems can be parametrized1 in terms of their impulse response as follows

y(t) =

Z 1

¡1
¹h(t; ¿)x(¿)d¿

The impulse response ¹h(t; ¿) is the response of H to a shifted impulse ±(t ¡ ¿ ). Invoking the de¯nition of
the shift operator T¿

2 we have
¹h(t; ¿ ) = H[T¿±](t)

In general, ¹h is a function of two arguments, t and ¿ .
2.2 Example: Let ¹h(t; ¿ ) = sin t cos ¿ . Then

y(t) =

Z 1

¡1
sin t cos ¿x(¿ )d¿

= sin t

Z 1

¡1
cos ¿x(¿ )d¿

1with few exceptions
2The shift operator is de¯ned by (T¿ [x])(t) = x(t¡ ¿), i.e., its output is the same as the input, but shifted (delayed) by ¿ .
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For the input x(t) = ±(t¡ t0),

y(t) =

Z 1

¡1
sin t cos ¿±(¿ ¡ t0)d¿

= sin t

Z 1

¡1
cos t0±(¿ ¡ t0)d¿

= ¹h(t; t0)

55
2.3 Example: Consider the system described by the di®erential equation

_y(t)
¢
=
dy

dt
(t) = ¡ty(t) + x(t) ; y(t0) = 0

where all signals are de¯ned on [t0;1). The solution of this di®erential equation is

y(t) =

Z t

t0

e¡(t
2¡¿2)=2x(¿ )d¿

To verify that this is the solution, note that y(t0) = 0 and, hence, it satis¯es the initial conditions. Furthermore,

_y(t) = e¡(t
2¡¿2)=2x(¿)

¯̄̄
¿=t

+

Z t

t0

@

@t
e¡(t

2¡¿2)=2x(¿)d¿

= x(t) +

Z t

t0

(¡t)e¡(t2¡¿2)=2x(¿)d¿

= x(t)¡ ty(t)

Therefore, the function y(t) satis¯es both the di®erential equation and the initial conditions; by the theorems on

existence and uniqueness of solutions of di®erential equations, y is the solution.

To bring this system in the familiar form, we need to de¯ne the signals over the whole R and rewrite the
integral with limits ¡1;1. The de¯nition of the initial conditions at some ¯nite time impose a constraint
(and a minor inconvenience). To resolve this, we may simply ignore all input values before t0, i.e., de¯ne the
new input as Tt0 [U ]x. Then,

y(t) =

Z t

¡1
e¡(t

2¡¿2)=2U(¿ ¡ t0)x(¿ )d¿

is the same as the originally de¯ned output on the interval [t0;1). Notice that the new output is de¯ned over
the whole R whereas the original output was only de¯ned on [t0;1). Although not unique, this extension is
necessary to conform with the general description of linear systems. Next, the upper limit of the integration
can be made 1 by multiplying the integrant by U(t¡ ¿ ). Thus,

y(t) =

Z 1

¡1
U(t¡ ¿ )e¡(t2¡¿2)=2U(¿ ¡ t0)x(¿ )d¿

The output is now in the standard form and we may identify the impulse response of the system as

¹h(t; ¿ ) = U(t¡ ¿ )e¡(t2¡¿2)=2U(¿ ¡ t0)

55
2.4 Example: A typical RC circuit is described by the di®erential equation

RC _y(t) + y(t) = x(t)
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In the ideal case, its initial condition is y(¡1) = 0. Performing similar calculations as in the previous
example we ¯nd that

y(t) =

Z t

¡1
e¡(t¡¿)=RC

x(¿ )

RC
d¿

Rewriting the integral with limits ¡1;1,

y(t) =

Z 1

¡1
U(t¡ ¿ )e¡(t¡¿)=RC x(¿ )

RC
d¿

Thus, ¹h(t; ¿ ) = U(t¡ ¿ )e¡(t¡¿)=RC=RC. 55
Clearly, any system of the form

y(t) =

Z 1

¡1
¹h(t; ¿)x(¿ )d¿

¢
= H [x](t)

is linear: For any scalars a; b and any input signals x1; x2, the linearity of integration yields

H [ax1 + bx2](t) =

Z 1

¡1
¹h(t; ¿)[ax1(¿ ) + bx2(¿)]d¿

= a

Z 1

¡1
¹h(t; ¿ )x1(¿ )d¿ + b

Z 1

¡1
¹h(t; ¿ )x2(¿ )d¿

= aH [x1](t) + bH[x2](t)

2.5 Example: Consider the system y(t) = sin(t)x(t). Applying the de¯nition of linearity directly, we
have

H [ax1 + bx2](t) = sin(t)[ax1(t) + bx2(t)] = a sin(t)x1(t) + b sin(t)x2(t) = aH [x1](t) + bH [x2](t)

Alternatively, we may try to transform the system to the standard integral form: Since x(t) =
R1
¡1 ±(t ¡

¿ )x(¿)d¿ , we have that

y(t) =

Z 1

¡1
sin(t)±(t¡ ¿ )x(¿ )d¿

Hence, ¹h(t; ¿ ) = sin(t)±(t¡ ¿) is its impulse response and, of course, the system is linear. 55
2.6 Example: Consider the system y(t) = sinx(t). We suspect that it is nonlinear. So, we choose

a particular test input and try to show that the linearity de¯nition is violated. In this case, the choice is
straightforward; it may not be so in general!

Let x(t) = 1 for all t. Then H [ax] should be equal to aH [x] for any a. That is sin(a ¢ 1) = a sin 1, which
is obviously wrong when a = 5. Therefore, the system is not linear. 55

3 Time-Invariance

3.1 De¯nition: A system H is said to be time-invariant if it commutes with the shift operator: HTt0 =
Tt0H , for all t0. 55

In other words, the output of the cascade combination of H and Tt0 is the same regardless of the order
that the two systems are connected.

For linear systems, an important result is that time-invariance is equivalent to

¹h(t; ¿ ) = h(t¡ ¿)

that is, the impulse response is a function of the di®erence t¡ ¿ alone and not a function of both t and ¿ .
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Given the impulse response ¹h(t; ¿), one way to show that the associated system is time-varying (not
time-invariant) is to choose di®erent values for t and ¿ such that t ¡ ¿ is the same while the value of ¹h is
di®erent. As with any counterexample, such a choice may be easy or di±cult and is highly case-dependent.

3.2 Example: Consider the system y(t) = sinx(t). Then,

Tt0 [x](t) = x(t¡ t0) ; H [Tt0 [x]](t) = sinx(t¡ t0)

On the other hand,
H [x](t) = sinx(t) ; Tt0 [H[x]](t) = sinx(t¡ t0)

Since the two are identical for any time, input signal, and shift, it follows that the system is time-invariant.
55

3.3 Example: Consider the system y(t) = sin(t)x(t). Then,

Tt0 [x](t) = x(t¡ t0) ; H [Tt0 [x]](t) = sin(t)x(t¡ t0)

On the other hand,
H [x](t) = sin(t)x(t) ; Tt0 [H [x]](t) = sin(t¡ t0)x(t¡ t0)

The two are obviously not identical for any time, input, and shift. A rigorous proof of this statement is often
tedious and requires a suitable choice of all of the above. For example, take x(t) = 1 for all t, t = 0 and
t0 = 1. Then the ¯rst value is equal to zero, while the second is sin(¡1)6= 0. Therefore, the system is not
time-invariant.

Alternatively, we may compute the impulse response of the system which turns out to be

¹h(t; ¿ ) = sin(t)±(t¡ ¿ )

This cannot be expressed as a function of t¡ ¿ alone. For example, let t1 = ¿1 = 0 and t2 = ¿2 = 1. In both
cases, the di®erence is zero. However, ¹h(0; 0) = sin(0)±(0) = 0 while ¹h(1; 1) = sin(1)±(0)6= 0. 55

3.4 Example: Consider the system

y(t) =

Z 1

¡1
U(t¡ ¿ )e¡(t2¡¿2)=2x(¿ )d¿

Here, ¹h(t; ¿ ) = U(t¡ ¿ )e¡(t2¡¿2)=2 which is not a function of t¡ ¿ alone. To see this, take t1 = 1; ¿1 = 0 and
t2 = 2; ¿2 = 1. Then ¹h(1; 0) = e

¡1=2 while ¹h(2; 1) = e¡3=2. Therefore, the system is time-varying. 55
3.5 Example: Consider the system

y(t) =

Z 1

¡1
U(t¡ ¿ )e¡(t¡¿)x(¿ )d¿

Here, ¹h(t; ¿) = U(t¡ ¿ )e¡(t¡¿) which is a function of t¡ ¿ alone and h(t) = U(t)e¡t. Therefore, the system
is time-invariant.

Notice that it is customary to use t as the argument of the impulse response h, instead of de¯ning a new
symbol to denote t¡ ¿ .

Alternatively, using the de¯nition, we can establish the same property with the following sequence of
computations:

Tt0 [x](t) = x(t¡ t0) ; H [Tt0 [x]](t) =
Z 1

¡1
U(t¡ ¿ )e¡(t¡¿)x(¿ ¡ t0)d¿

On the other hand,

H[x](t) =

Z 1

¡1
U(t¡ ¿ )e¡(t¡¿)x(¿ )d¿ ; Tt0 [H [x]](t) =

Z 1

¡1
U(t¡ t0 ¡ ¿)e¡(t¡t0¡¿)x(¿ )d¿
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Writing the ¯rst integral in the form of the second, let us de¯ne the new variable of integration ¿ 0 = ¿ ¡ t0.
It follows that d¿ 0 = d¿ ; when ¿ ! 1, ¿ 0 ! 1; and when ¿ ! ¡1, ¿ 0 ! ¡1. Hence, the ¯rst integral
becomes Z 1

¡1
U(t¡ (¿ 0 + t0))e¡(t¡(¿

0+t0))x(¿ 0)d¿ 0

which is clearly the same as the second integral. 55

4 Causality

4.1 De¯nition: A system H is said to be causal if it does not anticipate future inputs. That is, the
output at any time t depends only on the input values at or before t and is independent of the input values
after t. 55

While this de¯nition is su±cient to establish causality for many simple examples, its descriptive na-
ture makes it prone to misinterpretation. A more precise, equivalent de¯nition makes use of the so-called
truncation operator:3

A system H is causal i® PTHPT = PTH for all T .
It is interesting to observe that this de¯nition is analogous to the de¯nition of time-invariance. Since

PT = PTPT (it is a projection), causality can be de¯ned as PT (HPT ¡ PTH) = 0 for all T , that is, when
restricted to the interval (¡1; T ], the system commutes with the truncation operator. Notice, however, that
this is not equivalent to PTH = HPT !

In the special case of linear systems, causality can be determined via relatively simple tests on the impulse
response. For time-varying systems, causality is equivalent to ¹h(t; ¿ ) = 0 for ¿ > t. For time-invariant systems
this simpli¯es to h(t) = 0 for t < 0.

As a matter of terminology, systems whose output depends only on future values of the input are called
anti-causal. For example, an anti-causal linear time-invariant system has an impulse response h(t) = 0 for
t ¸ 0.

4.2 Example: It follows directly from the de¯nition that the system y(t) = sin(t+1)x(t¡ 1) is causal
but the system y(t) = sin(t¡ 1)x(t+ 1) is not causal. 55

4.3 Example: Scaling of the independent variable corresponds to a non-causal system. Consider the
system y(t) = x(at). To verify that the computation of the output requires future input information, take
t = 1 when a > 1 and t = ¡1 when a < 1. 55

4.4 Example: Consider the system

y(t) =

Z 1

¡1
sin t cos ¿x(¿ )d¿

Its impulse response is ¹h(t; ¿ ) = sin t cos ¿ which is not zero for ¿ > t (e.g., t = ¼=2; ¿ = 2¼). Hence, the
system is non-causal.

From the de¯nition,

PTHPT [x](t) = U(T ¡ t) sin t
Z T

¡1
cos ¿x(¿)d¿

PTH [x](t) = U(T ¡ t) sin t
Z 1

¡1
cos ¿x(¿)d¿

The di®erence between the two is U(T ¡ t) sin t R1
T
cos ¿x(¿ )d¿ which is not identically zero for all x; t; T .

55
3The truncation operator PT is de¯ned by PT [x](t) = x(t) if t ∙ T and PT [x](t) = 0 if t > T .
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4.5 Example: Consider the system

y(t) =

Z 1

¡1
U(t¡ ¿ )e¡(t2¡¿2)=2x(¿ )d¿

Its impulse response is ¹h(t; ¿) = U(t¡ ¿ )e¡(t2¡¿2)=2 which is zero for t < ¿ . Hence, the system is causal.
Notice that this is always the case with systems described by di®erential equations that are solved forward

in time (initial value problems). 55
4.6 Example: Consider the system

y(t) =

Z t

¡1
e¡(t¡¿)x(¿ )d¿

Converting to the standard form, we ¯nd that its impulse response is ¹h(t; ¿ ) = U(t¡ ¿ )e¡(t¡¿) which is zero
for t < ¿ . Hence, the system is causal.

We can arrive at the same conclusion by simply noticing that the upper limit of the integral is t; this
implies that the computation of y(t) requires values of the input only up to time t (past and present). 55

Finally, to visualize the application of the second de¯nition of causality, let us consider the last system
(RC circuit) with a unit step as a test input. (Of course, equality of the two resulting outputs does not prove
causality; this must hold for all possible inputs and truncation times.)

PT

PTHPT

H

x(t) PT[x](t) HPT[x](t) PTHPT[x](t)

x(t) H[x](t) HPT[x](t)

T

Figure 1: A demonstration of the sequence of operations involved in the causality de¯nition.

5 Memory

5.1 De¯nition: A system H is called memoryless if the value of the output at time t can be determined
solely from the value of the input at time t and, possibly, t. Otherwise, the system is said to have memory.

55
In other words, for a memoryless system y(t) = f(t; x(t)) where f(:; :) is a function with two arguments.
In the special case of linear systems, it follows that a memoryless system has an impulse response of the

form ¹h(t; ¿ ) = k(t)±(t ¡ ¿ ), where k(t) is a function of t. If, in addition, the system is time-invariant, then
its impulse response is of the form h(t) = k±(t), where k is a constant. Thus, linear memoryless systems are
pure gains (ideal ampli¯ers).

5.2 Example: The system y(t) = sin(t+ 1)x(t) is memoryless; it only requires the knowledge of the
value of the input at time t and the time, in order to evaluate the output. The impulse response for this
system is ¹h(t; ¿ ) = sin(t+ 1)±(t¡ ¿). 55

5.3 Example: The system y(t) = sin(t)x(t+1) has memory (is not memoryless); the output depends
on values of the input other than x(t). The impulse response for this system is ¹h(t; ¿ ) = sin(t)±(t ¡ ¿ + 1).

55
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5.4 Example: The system y(t) = d
dt
x(t + 1) (di®erentiator) has memory. The output depends on

values of the input other than x(t). A quick example of that is the functions x(t) = t and x(t) = ¡t. At
t = 0 they both have the same value but their slopes are di®erent. For the ¯rst one, the system output
would be y(0) = 1 and for the second, y(0) = ¡1. The impulse response for this system is h(t) = d

dt
±(t), the

so-called unit doublet. 55
5.5 Example: Consider the system

y(t) =

Z t

¡1
e¡(t¡¿)x(¿ )d¿

Converting to the standard form, we ¯nd that its impulse response is ¹h(t; ¿ ) = U(t¡ ¿)e¡(t¡¿) which is not
of the required form. Therefore the system has memory. This is not surprising since all values of x(t), from
¡1 to t, are needed to compute y(t). 55

6 Stability

6.1 De¯nition: A system H is said to be bounded-input, bounded-output (BIBO) stable if any bounded
input produces a bounded output 55

More precisely, if there exists a positive constant B1 such that jx(t)j ∙ B1 for all t, then there exists a
constant B2 such that jy(t)j ∙ B2, 8t, where y = H [x]. This de¯nition allows the constant B2 to depend
on both B1 and x. The latter case (x-dependence) can be a signi¯cant source of problems. The practically
interesting case is when B2 depends only on B1 and satis¯es certain growth conditions (e.g., B2 grows linearly
with B1).

For linear systems, BIBO stability is equivalent to the existence of a ¯nite constant B such thatZ 1

¡1
j¹h(t; ¿ )jd¿ ∙ B; 8t

In the linear time-invariant case, this condition is further simpli¯ed toZ 1

¡1
jh(t)jdt <1

that is, the impulse response h is absolutely integrable.
6.2 Remark: In the case of linear time-invariant systems described by di®erential equations, stability

can be assessed via simple tests on the so-called characteristic equation. More speci¯cally, a system described
by the di®erential equation

an
dn

dtn
y(t) + an¡1

dn¡1

dtn¡1
y(t) + ¢ ¢ ¢+ a1 d

dt
y(t) + a0y(t) = bm

dm

dtm
x(t) + ¢ ¢ ¢+ b1 d

dt
x(t) + b0x(t)

with m ∙ n is BIBO stable i® the roots of the characteristic equation
ans

n + an¡1sn¡1 + ¢ ¢ ¢+ a1s+ a0 = 0
are in the left half-plane (have negative real parts). 55

6.3 Example: The system y(t) = sinx(t) is BIBO stable since jy(t)j ∙ 1, in fact, regardless of the
bound of the input. 55

6.4 Example: The system y(t) = ex(t) is BIBO stable since jx(t)j ∙ B1 implies that jy(t)j ∙ B2 = eB1 ,
where we used the fact that the exponential is a non-decreasing function. 55

6.5 Example: The system y(t) = sin tx(t) is BIBO stable since for jx(t)j ∙ B1,
jy(t)j ∙ j sin tjjx(t)j ∙ B1
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55
6.6 Example: The system y(t) = etx(t) is not BIBO stable. For jx(t)j ∙ B1, jy(t)j ∙ etB1 but e

t

is not a bounded function of time. However, this inequality does not prove that the output is unbounded.
To show the instability, we construct a counterexample: Let x(t) = 1 for all t, which is obviously bounded;
then y(t) = et which is unbounded. (That is, for any numberM , there exists a time t such that jy(t)j > M .)

55
6.7 Example: Consider the system

y(t) =

Z 1

¡1
U(t¡ ¿ )e¡(t2¡¿2)=2x(¿ )d¿

Its impulse response is ¹h(t; ¿) = U(t¡ ¿ )e¡(t2¡¿2)=2. Taking the integral of its absolute value we ¯ndZ 1

¡1
j¹h(t; ¿ )jd¿ = e¡t2=2

Z t

¡1
e¿

2=2d¿

which diverges and, hence, the system is BIBO unstable (or not BIBO stable).
However, if the system starts with zero initial conditions at any ¯nite time t0 and a bounded input is

applied over the interval [t0;1), the resulting output is bounded:

jy(t)j ∙
Z 1

¡t0
j¹h(t; ¿ )jjx(¿ )jd¿ ∙ B1e¡t

2=2

Z t

t0

e¿
2=2d¿

∙ B1 e
¡t2=2| {z }
∙1

Z 1

t0

e¿
2=2d¿| {z }

C(t0)

+B1U(t¡ 1)
Z t

1

e¡(t
2¡¿2)=2d¿| {z }
D

C(t0) is a constant that depends on t0, but is ¯nite for any ¯nite t0. The term D appears only if t > 1
(hence the use of the unit step) and is bounded: From the identity t2 ¡ ¿2 = (t¡ ¿ )(t+ ¿ ) and for t; ¿ > 1,
the monotonicity of the exponential yields

e¡(t
2¡¿2)=2 ∙ e¡(t¡¿) min(t+¿)=2 ∙ e¡(t¡¿)

After a simple integration we obtain D ∙ 1¡ e¡t+1 ∙ 1. Thus, the output is bounded:

jy(t)j ∙ B1C(t0) +B1
¢
= B2

and therefore the system is stable. The constant B2 depends critically on t0 through C(t0) and in fact it
approaches in¯nity as t0 ! ¡1. This was manifested as the instability of the system with initial conditions
at ¡1. This lack of uniformity of stability with respect to the initial time may arise in linear time-varying
systems.

Notice that the same result can be obtained by using the impulse response of the system with ¯nite initial
time, derived in Example 2.3.Z 1

¡1
j¹h(t; ¿ )jd¿ =

Z 1

¡1
U(t¡ ¿ )e¡(t2¡¿2)=2U(¿ ¡ t0)d¿ =

Z t

t0

e¡(t
2¡¿2)=2d¿

The previous derivations also show that this integral is ¯nite and bounded by C(t0) + 1; hence, the system
is BIBO stable 55

In the last example, it should be emphasized that, although the derivations are quite straightforward,
the analysis relies on experience with bounding procedures and \correct" insight on the importance of the
various terms. It is included here to illustrate a type of arguments used in stability analysis. However, you
are not expected to reproduce it. (at least, not until graduate school!)
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6.8 Example: Consider the system

y(t) =

Z t

¡1
e¡(t¡¿)x(¿ )d¿

whose impulse response (after the usual conversion to the standard form) is h(t) = U(t)e¡(t). Taking the
integral of its absolute value we ¯nd Z 1

¡1
jh(t)jdt =

Z 1

0

e¡tdt = 1

Since this is ¯nite, the system is BIBO stable 55
6.9 Example: Consider the system with impulse response ¹h(t; ¿ ) = sin t cos ¿ . ThenZ 1

¡1
j¹h(t; ¿ )jd¿ = j sin tj

Z 1

¡1
j cos ¿ jd¿

The last integral diverges and, whenever sin t6= 0 the integral of the absolute value of the impulse response
is not ¯nite; hence the system is unstable. 55

6.10 Remark: An important application of the concept of stability is to provide a notion of continuity
of the system response, at least in terms of its gross properties. For example, a small change in the input
amplitude can cause only a small change in the output amplitude. To quantify this, it is important to know
the way the output bound (B2) depends on the input bound (B1). For linear systems, such an analysis can
establish the continuity of the entire trajectory. However, a much more careful (and complicated) analysis
is required for nonlinear systems. In general, drawing quick conclusions from input-output stability results
can lead to misinterpretations.

To illustrate this point, let us consider the system described by the following di®erential equation:

_y(t) = y(t)¡ ²y3(t) + x(t)

Using some fairly standard tools from nonlinear systems analysis, it can be shown that this system is BIBO
stable. However, small variations of the input do not necessarily produce small variations in the output. If we
simulate this system with ² = 0:01 and x(t) = 0:01U(t) we ¯nd that the output converges to approximately 10.
On the other hand, a simulation with x(t) = ¡0:01U(t) shows that the output converges to approximately
¡10. Moreover, the output will still converge to roughly the same values even if the input amplitude is
reduced. This example shows that, in general, even though the system may be BIBO stable, the sensitivity
of the output to small variations in the input can be arbitrarily large.

Sum
Step

S cope
s

1

Integrator

u[1] -0.01* u[1]* u[1] * u[1]

Fcn

Figure 2: Simulink model of a nonlinear system.

EEE303 K. Tsakalis 9


