#### EEE 481

### **Computer Controlled Systems**

#### Course outline

Wk 1: Introduction, Matlab and Simulink, PC104 platform, System simulation and Real-Time applications (Notes)

- Wk 2: Computer Interfacing for Data Acquisition and Control, ADC-DAC, Signal conditioning, quantization (Notes)
- Wk 3: Review of Z-transform and State Variables (Ch.2)
- Wk 4: Z-transform and state variables, Linearization (Ch.2)
- Wk 5: Sampling and Reconstruction, CT-DT conversions, Discretization (Ch.3, Notes)
- Wk 6: Discretization, Open-loop DT systems (Ch.4, Notes)
- Wk 7: Closed-Loop systems, Time/Frequency response characteristics (Notes, Ch. 5,6)
- Wk 8-9: Feedback and Feedforward Control, Stability Analysis, Nyquist/Bode (Notes, Ch. 7)
- Wk 10: PID controllers and tuning (Notes, Ch.8: Specs, PID)
- Wk 11: PID tuning and Controller Discretization (Notes)
- Wk 12: Feedforward Compensation (Notes)
- Wk 13: State Estimation (Ch.9: Observers)
- Wk 14: Model Identification (Notes, Ch. 10)
- Wk 15: Sensors, Actuators (Notes)

#### • (rev 9/2/15)



## Introduction: The PC-104 Standard

- Low-power, general-purpose embedded applications
- Standard (small) size, stackable
  - Sound, PCMCIA, GPS, additional LAN, ADC-DAC,+...
- Advantech's PCM 3350
  - Stable geode processor (Pentium 300Mhz), on-chip PCI
     VGA, Intel82559 ER high performance Ethernet chip
  - 2 RS-232 serial ports
  - 128M RAM and FLASH memory (replacing the hard drive)



## Introduction: The PC-104 Standard

- MATLAB compatibility: supported Ethernet chip for fast code download and testing.
  - Not crucial; one serial port can satisfy
     MATLAB's requirement for a comm. link; but
     communication is very slow and the port is lost
     to the application.
  - check details in the web (advantech.com)
- Operating system: DOS or Windows (CE).
  - DOS suffices for downloading MATLAB's realtime kernel and application program



## Introduction: The PC-104 Standard

- Data acquisition and Control board: Diamond MM
  - Analog-to-Digital Conversion (ADC or A/D): 16 single ended or 8 differential analog inputs, 12-bit resolution, 2kHz software, 20kHz interrupt routine, 100kHz in DMA operation
  - Digital-to-Analog Conversion (DAC or D/A): 2 analog outputs, 12-bit resolution
  - 16 digital I/O lines (8 in, 8 out)
  - MATLAB compatibility: important to obtain quick results; but it offers only partial access to the board functions
  - web page: diamondsystems.com

- Microprocessor, motherboard, memory
  - address, data, control buses
  - CPU: Arithmetic Logic Unit, Accumulator,
     Program Counter, Instruction Register,
     Condition Codes Register, Control Unit, Clock
     speed, MIPS, FLOPS
  - TPA (Transient Program Area): operating system, Commands, I/O, BIOS, Interrupt vector
  - XMS (Extended Memory System)

#### Memory characteristics (older data)

| TYPE        | AVG.   | AVG.   | REL. |
|-------------|--------|--------|------|
|             | CAPAC. | ACCESS | COST |
| Cache       | 0.5M   | 2ns    | 10   |
| Main        | 50M    | 20ns   | 1    |
| Hard Disk   | 50G    | 10ms   | 10-2 |
| Floppy Disk | 10M    | 500ms  | 10-3 |
| Magnetic    | 5G     | 25s    | 10-3 |
| CDROM       | 600M   | 500ms  | 10-4 |
| DVDROM      | 8G     | 500ms  | 10-5 |

- I/O interfaces
  - isolated (IN-OUT instructions) and memorymapped I/O
- Communication with external devices
  - polling: checking each device for service periodically (simple but inefficient)
  - interrupts: each device generates an interrupt that is serviced according to its priority level, in case of simultaneous arrivals

- Arithmetic Computations (7 x 6, 7/2)
  - Integer:
    - 0111 x 0110 = 01110+011100 = 101010
    - 0111 / 0010 = (011.1) = 011
    - Answer length increases by one bit in additions and one word in multiplications. Scaling and truncation is necessary for fixed word lengths
  - Floating point: (binary 5e3 format)
    - 0.11100e011 x 0.11000e011 =
       (0.01110+0.00111)e{011+011} = 0.10101e110
    - 0.111e011 / 0.100e010 = (1.11)e{011-010} = 0.111e010

- Math coprocessors perform a large variety of arithmetic operations (+,-,x,/,sqrt,sin,log,...)
  - fast and high precision
  - hardware implementation of operations
  - computation uses algorithms and look-up tables
  - Newer CPUs have a built-in math coprocessor; nowadays, they are only absent in very-low-cost, or very-fast applications

## Introduction: Parallel Communication

- Timing circuits: counters and clocks
  - Real-time applications require independent clocks that are not affected by processor operations
- Parallel I/O port, parallel interface adapter



## Introduction: Serial Communication

- Serial I/O port: transmission and reception one bit at a time
- Synchronous serial communication: separate clock signal



## Introduction: Serial Communication

- Asynchronous serial communication
  - Start/stop/parity bits, baud rate (bits per sec.)
  - Universal Asynchronous Receiver Transmitter (UART)
  - Example of asynchronous serial communication, 1 start bit, 1 stop bit, 8 data bits, no parity

    0
    0
    1
    1
    1
    1

    0
    0
    0
    5top bit

    Start
    Data bits

## Introduction: RS-232

- Voltage level, DB-25, DB-9 connectors, ~20 kbaud (k-bits/sec), 50 ft. Physical-electricalfunctional standards.
- As few as 3 pins used.
- Null modem or crossover cable: connection between computers instead of computer to device.

## Introduction: Plug-in-slots

- Slots: electrical connections to CPU and other parts
  - Diskette drive, serial port, memory expansion, data acquisition and control, sound card.
  - Configuration: interrupt request level (IRQ), I/O port address, direct memory access (DMA) channels

## Introduction: Bus

#### • Bus:

- Industrial Standard Architecture (ISA), Extended ISA (EISA)
- The "plug-and-play" concept
- Peripheral Component Interconnect (PCI) bus:
  - PCI chip between slots and processor, uses registers to store configuration info
  - high throughput tasks
  - No need for jumpers or dip switches and no conflicts

## Introduction: Bus

- Personal Computer Memory Card International Association (PCMCIA)
  - Memory and modems for portables.
  - More devices (Ethernet, SCSI interface, CDburners, data acquisition, etc)
  - Fast access (but recent USB standard offers a convenient alternative)
- Small Computer System Interface (SCSI): high speed parallel interface bus (daisy chain)

## Introduction: Computer Languages

- Machine-assembly
- BASIC (high-level, interpreter-based, low storage requirements)
- C (high level, transportable, efficient)
- MATLAB (and others; C-based-kernel, arrays, very-high-level math macros inv(A), A\*B)
- Simulink: MATLAB GUI, system simulation, block diagram definitions

## Introduction: Computer Languages

- MATLAB/SIMULINK: expansion via toolboxes (collection of functions written in MATLAB, (or C, Fortran, then converted to an executable .dll or .mex for older versions)
- Recent developments: ability to compile MATLAB code and create stand-alone executables
- xPC, xPC-target: real-time stand-alone applications from SIMULINK code

## Introduction: Computer Languages

- xPC: Ability to perform rapid prototyping by constructing real-time code with very-highlevel GUI.
  - Good for standard I/O interfacing
  - Easy-to-maintain code (SIMULINK)
  - More complicated applications may require the development of new interface drivers
  - More info: on-line or web help from mathworks

- MATLAB: Initially, computations with arrays e.g., A\*b, A\b, eig(A), svd(A). Then expanded to address all "signal and system" topics.
- Basic file structure:
  - m-files: scripts or functions, with high level interpreter commands
  - mat-files: data in binary format (see LOAD/SAVE)
  - .dll: executable code

- Other commands
  - "help:" the most important command...
  - Commands for systems, control, signal processing, image processing, neural networks, ...
  - arranged in "toolboxes", i.e. directories with mfiles
    - tree structure is only important for indexing and help but not for operation
    - Matlab will only look in the defined "path" for functions and data. A useful trick is to copy a shortcut in each data directory having an empty option at "Start in". Then, double click the shortcut to open a MATLAB session and include the current directory in the path.

- SIMULINK: MATLAB GUI to define simulation systems in block-diagram form
  - mixed continuous and discrete time, but not as "easy" as it used to be...
  - .mdl files contain an ASCII description of the parameters of each block
  - s-functions: key building block of the simulator, relying on the concept of the state; fairly easy to create custom blocks but becomes complicated if real time executables are created



A SIMULINK example with: A main block (Furnace emulator), RS-232 I/O, Analog I/O, and Screen output More details in Furnace Notes.doc

# Typical Configuration of a data acquisition and control system



## Computer Interfacing for Data Acquisition and Control

- Data acquisition: discretization in time and quantization in state-space
- Sampling theorem, Nyquist frequency.
  - No-aliasing condition: Tsample = 1/(2 fmax)
  - Practical selection: Tsample = 1/(20fmax)
  - Use of anti-aliasing filters (Review!)
- Quantization resolution = full scale/2<sup>n</sup>

## **Digital Signals**

- PLC (Programmable Logic Controllers): well suited for Boolean Algebra implementations
  - E.g., Alarm when
    - low level and high pressure
    - high level and high temperature
    - high level and low temperature and high pressure
  - Analog implementation of a two-level signal with hysteresis: op-amp with positive feedback

## **Digital Components**

- TTL, CMOS
  - Digital logic circuits will not drive actuators directly
- Electromechanical or solid-state relays
  - Switch high currents and voltages
  - Considerations: wear, corrosion, arcing, robustness, speed, noise immunity
- Encoders, counters, latches, tri-state buffers

- The 4-20mA standard: current signal information ranging between 4 and 20mA.
  - 4mA minimum to check integrity, 20mA maximum to indicate malfunctions
  - can drive various instrumentation devices with standardized input
  - many actuators follow the same standard and work with 4-20mA inputs
  - 3-15psi (20-100kPa) pneumatic loop standard

- Signal buffering with op-amps
  - voltage following to minimize loading in the sensor and electrically isolate the sensor from the circuit
- Offset correction, filtering of unwanted frequencies (typically with low-pass filters)
- Isolation: opto-couplers, magnetic coupling





- Active filters, low-pass, high pass, notch, etc.
- Voltage followers (high input impedance, low output impedance)
- Summation, difference, current-to-voltage conversion, voltage-to-current conversion
- Nonlinear function inversion (when Zo = diode (exponential  $i = e^{aV_o}$ ) => logarithmic amplifier

- Analog Switches (JFET, MOSFET).
  - In Multiplexers and Sample-and-Hold circuits
  - S&H example:
    - computer controlled switch (digital out)
    - hi-quality capacitor maintains "constant" voltage during conversion time



#### DAC-ADC

#### • DAC

- "Binary ladder" networks (requires large resistances)
- "R-2R ladder" network



#### DAC-ADC

#### • ADC

- Counter or ramp (slow, 2<sup>n</sup> cycles)
- Dual slope (noise averaging, slow)
- Successive Approximation (fast, n cycles)



## Quantization

- A special type of error: uncertainty reduction but with reduced accuracy
- 12-bit A/D, 0-5V =>5/2<sup>12</sup> =1.2mV resolution
- Model of the quantization process x quantization  $x_q$  <=> x  $x_q$   $x_q$ 
  - Signal conditioning: Scaling to full range

## Quantization

- Need for scaling:
  - Temperature range 0-2000°C. Thermocouple output 0-30mV (assumed linear). 12bit A/D, 0-5V. Resolution: 1.2mV (from before) ~ (2000/30m)\*1.2m = 80 °C => measurement = value +/- 40°C!
  - Amplify TC measurement by 5/0.03 = 166.67.
     Resolution: (2000/5)\*1.2m = 0.48 °C (reasonable)

## Quantization II

- Quantization issues in Filtering and Control
  - Finite precision introduces errors in the computations as well as in the filter implementation.
  - Fixed-point arithmetic: bounded noise
  - 3 classes of errors:



- 1. A/D conversion: Type 1 errors due to signal quantization. Typical error is <sup>1</sup>/<sub>2</sub> LSB
- Multiplication: Type 2 errors due to signal quantization and truncation. Loss of several LSBs
- Coefficients: Type 3 errors due to finite wordlength in filter implementation. Can cause filter instability. More important in FeedForward control.


#### • Type 1 and 2 quantization errors

- Modeled as independent random noise with uniform distribution.
- Error analysis: Compute the overall transfer function H(s) from the quantization error(s) "q" to the output of interest "e" and use an appropriate metric to quantify the effect of q on e
  - 1. Maximum error bound (very conservative)
  - 2. RMS error bound (usually conservative)
  - 3. Variance (good estimate, most appropriate for this case)
  - Note: The conservatism of the estimate does not mean that the metric is not important, just that the analysis is not tight.



#### • Error bounds:

Max.Amplitude:  $||e||_{m} \leq ||H||_{im} ||q||_{m}$ where:  $||H||_{i\infty} = \int |h(t)| dt$ ,  $h(t) = L^{-1}\{H(s)\}$ (MATLAB: sum(abs(impulse(H)))\*DT) **RMS**:  $||e||_{RMS} \le ||H||_{i2} ||q||_{RMS}$ where:  $||H||_{i^2} = \max_{w} |H(jw)|$  (for stable H) (MATLAB: norm(H,inf)) Variance:  $\operatorname{var}(e) \leq ||H||_2^2 \operatorname{var}(q)$ where:  $||H||_2^2 = \frac{1}{2\pi} \int trace(H^*(jw)H(jw))dw$ (MATLAB: norm(H,2))



- Example:
  - Consider the plant P(s)=1/s, with the controller C(s)=(s+1)/s. Analyze the effect of a 10-bit input quantization on the output.
  - Discretization interval 0.01s, ZOH
  - $H = P/(1+PC) = s/(s^2+s+1)$
  - Hd =  $0.01(z-1)/(z^2-1.99z+0.9901)$
  - CT:t=[0:.001:50]';h=impulse(H,t);plot(t,h);Hii=sum(abs(h))\*.001
  - Hii =1.306, Hi2 = norm(H,inf) = 1, H22 = norm(H,2) ^2 = 0.5
  - DT:k=[0:10000]';h=impulse(Hd,k\*.01);plot(k,h);Hii=sum(abs(h))
  - Hii =1.3181, Hi2 = norm(H,inf) = 1.0044, H22 = norm(H,2) ^2 = 0.0051



- Example (cont): Compute bound estimates
  - q<sub>max</sub>=1/2<sup>11</sup>, variance (uniform density) = q<sub>max</sub><sup>2</sup>/3 = 7.947e-8, RMS ~ sqrt(var) = 2.819e-4
- max(|e|) < Hii q<sub>max</sub> = 6.4359e-004
- RMS(e) < Hi2 RMS(q) = 2.8313e-004
- var(e)<H22 var(q) = 4.0337e-010</p>
- The variance estimate appears to be much better than the RMS: sqrt{var} = 2.0084e-005 << 2.8313e-004</li>



- Example (cont): Evaluate the estimates by simulation
- qm=1/2^11;q=(rand(10000,1)-0.5)\*2\*qm;k=[0:10000-1]';subplot(121),plot(k,q), title('q vs sample')
- Hd=fbk(c2d(P,.01),c2d(C,.01)),e=lsim(Hd,q);subplot(122),plot(k,e),title('e=H[q] vs sample')
- [max(abs(e)),sum(abs(h))\*max(abs(q))] = 6.2659e-005 6.4352e-004
- [rms(e),norm(H,inf)\*rms(q)] = 1.9416e-005 2.7953e-004
- [var(e),norm(H,2)^2\*





#### • Comments:

- The max abs estimate is conservative by an order of magnitude.
- The var estimate is much better than the RMS.
- However, from the theory we know that the RMS bound is tight. The apparent discrepancy is due to the fact that var is defined for stochastic signals and RMS^2 is just its estimate from one realization. The variance estimate is good for stochastic inputs only and it is not an upper bound for deterministic signals as the next computation shows:
  - z=sin(.01\*k); y=lsim(H,z);
  - [rms(y),norm(H,inf)\*rms(z)]=7.0490e-001 7.1171e-001
  - [var(y),norm(H,2)^2\*var(z)]=4.9686e-001 2.5490e-003
  - Notice that norm(H,2)^2\*var(z) is NOT a bound on var(y) any more!
  - But the bound norm(H,inf) \*rms(z) on rms(y) is now tight.

#### Quantization issues in Filtering and Control

- Due to the sensitivity of roots of polynomials to perturbations, the quantization of the filter coefficients can result in a different, possibly unstable filter
- Different filter realizations can be more or less susceptible to quantization problems (parallel or cascades of 1st or 2nd order are preferred over direct forms)
- Problems become more pronounced as the sampling rate increases (the discrete poles accumulate around 1 and there is loss of resolution)

- Example
  - Start with the heated-water-tube transfer function
  - P=tf([-.5 1],[.5 1])\*tf(1,[40 2])
  - Discretize: PD=c2d(P,.001)
  - Enter the same transfer function with 4 significant digits: PD2=tf([-2.495e-5 2.5e-5],[1 -1.998 .998])
  - The first is stable with poles 9.9995e-00, 9.9800e-001
  - The second is unstable with poles 1.0000e+000, 9.9800e-001

 The difference is apparent in terms of step and frequency response



- Repeat for sampling time 0.1:
- Discretize: PD=c2d(P,.1)
- Enter the same transfer function with 4 significant digits:
  PD2=tf([-.002026.002478],[1-1.814.8146],.1)
- The first is stable with poles 9.9501e-001 8.1873e-001
- The second is stable with poles 9.9672e-001 8.1728e-001



- Some insight
  - roots of 2nd order polynomial whose coefficients, are quantized to 0.1



Cables

- Flat cables: 1-10V, 100mA
- Twisted pair, shielded or unshielded
- Coaxial (less interference but not too popular)
- Digital connections, cheaper for low data rates
- Buffering (amplifying) and latching, for signals on a bus

- Multifunctional cards: A/D, D/A, digital I/O, counter/timer operations
  - 4-16 multiplexed A/D, 1-2 D/A, (max rate quoted for all channels combined)
  - programming commands (in C or high-level)
- Industrial signal conditioners
  - thermocouple linearization and cold junction compensation, filtering and amplification, strain gauge linearization, etc.

- Signal Conditioning Extensions for Instrumentation (SCXI): high performance system for use with PCI
- Remote I/O modules. Standard RS-232, RS-485 interfaces for 15-bit measurement resolution
- IEEE-488 GPIB (general purpose interface bus)
  - rigidly defined, 1Mbyte/s transfer rates, multiple (15) devices to a single network

- IEEE-488 GPIB hardware specs
  - total cable length 20m, individual device cable 2m
  - 24 lines in the cable, clearly defined; 8 data, 8 handshaking, 8 grounding and shielding
  - star, daisy chain, mixed networks
- GPIB devices
  - Talkers, listeners, controllers; interconnected via back plane.

- Backplane Bus
  - Board on which connectors are mounted; provides data, address, control signals
- STE Bus
  - 8 bit, 20 address lines (1MB memory), 4kB addressable I/O
  - Compact cards, robust two part connector, shock and vibration resistant
  - IEEE-1000 standard

- VME Bus
  - Motorola design for the 32 bit 68000-based system.
  - 24MHz data transfer rate
  - 32 bit address bus
- VXI Bus (VME extension for instrumentation)
  - Improvement over GPIB in communication speed, synchronization and triggering
  - Various possible system configurations including GPIB

# Microcontrollers

- Microprocessors with analog and binary I/O, timers, counters, to perform real-time control functions (8, 16, 32 bit)
  - Characteristics: 4kB ROM, 128B RAM, single byte instructions, built-in counters, timers, I/O ports
  - Intel 8051, 8096, Motorola MCH68HC11, etc.
  - DSP (Digital Signal Processors): special architecture for high speed numerical tasks.
     Separate data bus from instruction bus.

## Microcontrollers

- The Arduino family
  - Inexpensive evaluation boards (low-medium capabilities)
  - Available drivers making their programming easy (albeit with some restrictions)
  - Large development forums (software and 3<sup>rd</sup> party hardware support)

- Increased complexity is less of an issue
- Additional functions over older analog systems (redundancy, failure detection, communication, data storage, adaptation/scheduling)
- Overall more reliable, less susceptible to computational noise, controllers are not degrading with time
- Low cost

- Process control applications
  - Plant automation
  - Programmable logic controllers (PLC, sequencing jobs)
  - Regulatory process control: single loop PID or Distributed
    Control System (DCS) for large-scale applications
  - Batch processes: repetitive nature; "run-to-run" optimization schemes
  - Advanced applications (identification and control)

- Computer networks, different topologies
  - For control over networks, the issues of reliability, and deterministic message transmission must be addressed
  - Network communications: common modular set of rules for generating and interpreting messages
  - Open System Interconnection (OSI): 7-layer architecture; Physical, Data link, Network, Transport, Session, Presentation, Application

- OSI components
  - Repeater, at the physical layer
  - Bridge, at data link layer
  - Router, at network layer
  - Gateway, at higher levels
- Communication protocols define connectors, cables, signals, data formats, error checking, algorithms for network interfaces and nodes

- Communication protocols
  - Simple: polling and interrupt driven
  - Token ring and Token Bus
  - Carrier sense multiple access with collision detection (CSMA/CD)
    - IEEE 802.3. Check for network activity. If idle, a node may transmit, then the network becomes busy. In case of collision, transmission is aborted and a random wait time is introduced.

#### - CSMA/CD

- Simple algorithm, non-deterministic, priorities not supported, collisions a problem at high network loads, analog technology for collision detection
- Ethernet is an implementation of CSMA/CD network. 10Mb/s, coaxial cable or twisted pair. E.g., National Semiconductor 3-chip implementation: Network interface controller (protocol, information movement), Serial network interface (clock), Coaxial transceiver interface (coaxial versions)
- Token ring and Token Bus

- Several DCS platforms from major manufacturers
  - Honeywell, Foxboro, Fisher and Porter,
    Westinghouse, EMC control, Reliance Electric,
    Beckman Instruments
- Recently, PC or workstation based systems, supervising local embedded controller boards

# **Examples of Computer Control**

- Industrial processes versus laboratory experiments
- Several aspects:
  - Process description and modeling
  - Sensors and actuators
  - Controller design (algorithm and structure)
  - Discretization and implementation
  - Auxiliary functionality

# **Examples of Computer Control**

- Liquid level system
  - Tank valve pump in different configurations
  - Differential pressure transducer (translating to level). Other options: floaters, resistivity measurements.
  - Valve as a final control element (with or without a pump). Electric valve, pneumatic valve (common), electric actuation via I/P current-topressure converter

# Analysis of the Liquid Level Control Experiment

- One example: control the level by manipulating the inlet stream or the outlet.
  - Fin, Fout: flowrates in and out. h: level
  - Bernoulli:

 $P + \frac{1}{2}\rho v^2 + \rho gh = const.$ 

- P: pressure, r: density,
- g: grav. accel., v: velocity





#### Fin Analysis of the Liquid Level Control DPT Fout ADC PC DAC

- ODE for h, nonlinear: slower than linear response for large levels h; faster for small h.
  - Tank drains in finite time
  - Addition of a pump: reduced sensitivity of outflow to liquid level in the tank
- Next, the manipulated variable: We open or close the valve, i.e., we effectively modify the outlet cross section area.

### Fin Analysis of the Liquid Level Control DEFT Fout ADC - PC - DAC

- Valves
  - Many types with different characteristics (pressure drop, open/close speed, size, linearity, sealing).
  - Ball (common, e.g., manual/auto sprinkler valves at the store)



### Fin Analysis of the Liquid Level Control DEFT Fout ADC - PC - DAC

- Let us select a gate valve with a motorized screw as an opening/closing mechanism.
- We manipulate the current to the motor or, in a high friction simplification, the motor speed.
  - Suppose that at max speed, it takes 2 sec from full-open to full-close
- Other options: Manipulate the set-point of a valve controller, for a %-open value; pneumatic valves with a I/P converter.

#### Fin Analysis of the Liquid Level Control DPT Fout ADC PC DAC

- Compute cross section area as a function of %-open (distance between gate center and pipe center)
  - shaded area = 2x[sector triangle area]

$$-\theta = \cos^{-1}\left(\frac{d}{2r}\right), SECTOR.AREA = r^2 \cos^{-1}\left(\frac{d}{2r}\right)$$

TRIANGLE.AREA = ld/4,  $l = \sqrt{4r^2 - d^2}$  $\Rightarrow \dots \Rightarrow A_o = 2r^2 \left[ \cos^{-1}(D) - D\sqrt{1 - D^2} \right], D = \frac{d}{2r}$ 

- Relation to control input:  $\dot{d} = u$ 

d

2θ



#### Fin Analysis of the Liquid Level Control Fout ADC- PC-DAC

- Simulink Implementation
  - Test the analytical no-inlet discharge time.  $\dot{h} = \alpha \sqrt{h}$
  - Test analytical steady-state results for Fin constant.
  - Discretization: Estimate natural time constant and controlled (closed loop) time constant; sample an order of magnitude faster; check responses visually.
  - Use saturation nonlinear blocks to observe physical limitations
#### Fin Analysis of the Liquid Level Control DPT Fout ADC - PC - DAC

- Simulink Implementation
  - Linearization (for analysis and controller design)
    - Derive variations around a steady state, analytically or using linmod (self study)
    - Parameters: 4cm pipe diam., 30cm tank diam.
    - Linearization equations (at a nominal steady state where h,D=const., D~0.5,  $\delta u$  = normalized in 0-1)

$$\delta \dot{h}_{i} = \frac{A_{o}(D)g}{A_{i}\sqrt{2gh_{i}}} \bigg|_{nom.ss} \delta h_{i} - \frac{\sqrt{2gh_{i}}}{A_{i}} \bigg|_{nom.ss} \frac{\partial A_{o}(D)}{\partial D} \bigg|_{nom.ss} \delta D$$
$$\delta \dot{D} = \delta u$$



- Multivariable system, approximating distributed sensing and actuation
  - Measure temperatures at different points inside the tube (profile) and outside of the tube, near the heating element (spike)
  - Apply heating power through SCR actuating modules roughly in the same zones







- Modeling:
  - Basic heat balance equation

$$mc_{p}\dot{T} = H_{in} - H_{out}$$
$$= q - hA(T - T_{ambient}) - \sigma FA(T^{4} - T_{amb}^{4})$$

- m = mass,  $c_p$  = specific heat, T = absolute Temperature, h = heat transfer coefficient (convection), A = surface area,  $\sigma$  = Boltzmann constant (radiation), F = view factor, q = externally supplied heat
- Apply to differential volumes and obtain a PDE model (details in EEE480 model notes and EEE482 Furnace notes)



- Sensors: Thermocouples for high temperatures (some operations above 1000deg.C). Pyrometry is another option for single wafer reactors.
  - Issues: Cold-junction compensation, amplification, and table look-up linearization. RF interference may appear from SCR application of electrical power
- Actuators: SCR modules
  - Issues: resolution switching transient trade-off



- Need for elaborate and precise controllers
  - Newer furnaces have more (5) heating zones for more resolution and improved uniformity (temperature coupling is higher than in the older 3-zone furnaces)
  - Due to radiation nonlinearity, different controllers may be necessary to cover a big temperature range
  - Nonlinearity and coupling are more pronounced in singlewafer rapid thermal processors (RTP), using arrays of heating lamps



#### Controller communications





#### Process description



Figure 1. Paper Machine Schematic

• K. Tsakalis, S. Dash, A. Green, and W. MacArthur, "Loop-Shaping Controller Design From Input– Output Data: Application to a Paper Machine Simulator," IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 1, 127-136, JANUARY 2002



- Control Inputs (manipulated variables)
  - stock flow (solids), dryer temperatures (as set points to local PID loops), machine speed (as set point to drum motors)
- Process Outputs (controlled variables)
  - paper dry weight (~solids), Moisture content (at different points), machine speed (actual)

#### Disturbances

 Operators can change set-points in other loops to maintain the overall product quality. Feed consistency is a major disturbance, especially after paper breaks (re-circulation).



- Challenges in Paper Machine control
  - Consistency control (in the direction of production)
  - Cross-directional control (across the paper; distributed control, not discussed here)
  - Interacting variables, wide range of process responses.
    Standard decoupled single-loop control not very effective
  - E.g., Stock/Weight has long dead-time, short settling time, Steam/Moisture has short dead-time and long time constant, Machine Speed has minimal dead-time and fast dynamics. These features can have an adverse effect on both the identification and the robust control of a paper machine.



- Some ballpark numbers:
  - Total length of paper line ~500–1000m, speed 10–30 m/s (20–60 mi/h), dryer drums 2–3 m diam.
  - Sensors scan moisture and dry weight across the width of the paper. Scanning interval can be as large as 35 s.
  - Steam/moisture dynamics
    - ~temperature response of the drums (local PID control, closedloop time constant in the order of a few minutes)
    - Short time-delays (scanners, drum-sensor distance), but larger delays for reel moisture (measured at the end of the line)
    - "Noise" from the interaction of the paper sheet with the environment



- Stock flow/dry weight dynamics
  - Larger delay since the actuator is located at the beginning of the line
  - Quick settling time, essentially determined by the stock mixing process
  - Any changes in the stock flow also have a significant effect on moisture, since it changes the net water content of the paper sheet
  - Changes in the drum temperatures or moisture leave the dry weight unaffected
- Machine speed
  - Can be controlled much faster than the other variables. Unaffected by steam or stock flow variations, but it has a significant effect on moisture and dry weight.

#### Heat Exchanger Control Example

- Multivariable system (see textbook), both feedback and feedforward control
  - Measure inlet temperatures and water outlet temperature (controlled variable)
  - Manipulate steam inflow, water inflow through pneumatic valves
  - Water flow is a controlled variable, either to be maximized or to track a setpoint
  - Other values and instruments to enable monitoring and ensure integrity

#### **Plastic Injection Molding Process**

- Multivariable system, approximating distributed sensing and actuation (see textbook)
  - Measure temperatures at different points
  - Apply heating power through SCR actuating modules at the same points
  - Accuracy is important

### **Other Control Examples**

- Aerospace applications
  - high performance fighter aircraft, helicopters, jet engines
- Electromechanical systems
  - robotic arms, pendulum, cart and pendulum
- Automotive
  - intelligent vehicle highway systems, platooning, traffic control
  - engine management, anti-lock brakes, active suspension
- Manufacturing processes, scheduling of operations



- Controller Design Procedure:
  - Determine inputs and outputs
  - Model or identify the system
  - Define the control objectives and specifications
  - Design the controller (algorithm and parameters)
  - Discretize (if working in continuous time), quantize and implement (code + hardware)
  - Anti-windups and other nonlinear modifications: integrated (recent methods) or "post-mortem"



• On the controller design: computation of the transfer function(s) of the "controller"

• General controller structure: external





• Feedback control objective: Reduce the effect of disturbances on the output

$$y = d_{y} + P[u + d_{u} + v]$$
  
=  $d_{y} + PC[r - F[y - n]] + Pd_{u} + Pv$   
=  $Sd_{y} + SPCr - SPCFn + SPd_{u} + SPv$   
where  $S = (1 + PCF)^{-1}$  (Sensitivity)

- the disturbance contributions decrease when S is smaller, i.e., when CF is larger
- the noise contribution decreases when CF is smaller



- Feedback controller design:
  - stable loop
    - PCF must produce a stable loop (crossover frequency characteristics)
  - large gain (magnitude) in the region where the sensor is reliable
    - in the same vein, respect uncertainty-imposed constraints (avoid excessive peaks/resonances in S)
    - can only attenuate disturbances where the sensor information is reliable



- A typical feedback controller design (math):
  - frequency domain
  - observe fundamental limitations
    - RHP poles < bandwidth < RHP zeros
    - modeling uncertainty, sensor noise => max bandwidth

#### – At the gain crossover frequency

 $\omega_c :| PCF(j\omega_c)| = 1, \quad \angle PCF(j\omega_c) \approx -130 \pm 10^{\circ}$ 

• crossover separates the frequency range of high loop gain (disturbance attenuation) and low loop gain (sensor noise attenuation). Roughly,  $BW \approx 1.5\omega_c$ 



- Feedback controller design:
  - Software automating most of the computations
    - Tuning of PID, robust multivariable, LPV...
    - Usually, concepts are understood in terms of transfer functions and in the frequency domain but the computations are performed in the state-space relying on time-domain optimal control theory
    - Here: simple PID tuning (Ziegler-Nichols, or pidqtune)
  - Still, the selection of reasonable objectives is essential



V

Η

**P**1

• Feedforward control objective: cancel the effect of a measurable disturbance at the output  $P_2$ 

m

– General setting:

$$y = P_1 v + P_2 m = [P_1 H + P_2]m$$

 $\Rightarrow \min || P_1 H + P_2 ||$ 

- If  $P_1$  were invertible,  $H = -P_1^{-1}P_2$ 
  - Usually this is not the case



- Typical feedforward controller design:
  - separate invertible (outer) and non-invertible (inner) parts:  $P_1 = P_{1i}P_{1o}$ ,  $(P_{1i} \sim P_{1i} = I)$ 
    - Inner-outer factorization for multivariable systems, by inspection in SISO. Inner: all-pass (unity magnitude)
  - Solve the associated minimization problem
    - "By inspection" in SISO. Easy in 2-norm minimizing error variance for gaussian inputs. More complicated in inf-norm minimizing error energy for energy inputs.

– Invert or approximate the inverse of the outer part



- Typical feedforward controller design (math)
  - inner-outer factorization  $P_1 = P_{1i}P_{1o}$ ,  $(P_{1i} P_{1i} = I)$
  - minimization problem

 $\min ||P_1H + P_2|| = \min ||P_{1i}(P_{1o}H) + P_2|| =$ 

 $\min \| (P_{1o}H) + P_{1i}P_2 \| \quad (\text{since } P_{1i}P_{1i} = I \text{ and } \| P_{1i} \| = 1)$ 

1.  $||.||_2$ :  $H = (P_{1o})^{-1} (P_{1i} P_2)^-$  (H2 - stable projection)

2.  $||.||_{\infty}$ :  $H = (P_{1o})^{-1} \{ \arg \min_{X} ||X + P_{1i} P_2 ||_{\infty} \}$  (Hinf - Nehari) If  $P_{1o}$  strictly proper,  $(P_{1o})^{-1}$  is not well defined

(then, approximate, add weights, or regularize)



- Example of a (simplified) complete design:
  - Heating a tube of water, 10liters, 0.1m diameter.
  - Lumped model  $mc_p \dot{T} = -hA(T T_0) + q$

$$y = T, \quad u = q, \quad d = T_0$$
$$y = \frac{hA}{mc_p s + hA} d + \frac{1}{mc_p s + hA} u$$

•  $mc_p \sim 40, h=5, A = \pi DL = 0.4$ 

- Also, suppose that  $T_0$  is measurable and there is a 1sec delay in applying the control input (u: q(t) = u(t-1)), modeled by a 1<sup>st</sup> ord. Pade approximation



• Model 
$$y = \frac{2}{\underbrace{40s+2}_{Q}}d + \underbrace{\frac{1}{40s+2}}_{P} \underbrace{\frac{-0.5s+1}{0.5s+1}}_{P}u$$

• Feedback-feedforward controller





- Feedback controller tuning:
  - Choose BW < 2, e.g., 0.2rad/s, (other design objectives and constraints would be included in this choice) => target crossover 0.2/1.5 = 0.133
  - Plant transfer function and frequency response
    - P=tf([-.5 1],[.5 1])\*tf(1,[40 2])
    - bode(P)
  - phase at crossover: -77°





- Feedback controller tuning:
  - PI controller: C = K(s+a)/s.
  - Adds phase at crossover:  $\tan^{-1}(0.133/a) 90^{\circ}$
  - For 50° phase margin,  $\tan^{-1}(0.133/a) = 37^{\circ}$

$$\Rightarrow a = 0.1765$$

- Find corresponding gain K:
  - C=tf([1.1765],[10]); bode(P\*C)
  - evaluate magnitude at 0.133





- Feedback controller tuning:
  - Final controller: C=tf([3.43 0.61],[1 0])
  - Check step response and bandwidth
  - step(feedback(P\*C,1)) -> 23% overshoot
  - bode(feedback(P\*C,1)) -> 0.2 rad/s bandwidth
  - sampling time < 1/0.2/10, (wT/2 < 0.1) say 0.1s</p>
  - control signal limits 0-1000(W)



- Feedback controller testing:
  - Test in Simulink
    - 50 deg. step. 10 deg., 0.01 Hz disturbance
  - PI controlled response vs. uncontrolled response
    - faster response
    - disturbance attenuation







- Feedforward control
  - Develop expressions

 $y = SPCr - SPHd + SQd \Longrightarrow H : \min_{H} (||SPH - SQ||)$ 

Subtract the feedforward signal to obtain the standard minimization problem

- Frequency weighting and control penalty

$$H:\min_{H} \begin{bmatrix} WSP\\ \rho I \end{bmatrix} H - \begin{bmatrix} WSQ\\ 0 \end{bmatrix}$$

 W=tf([.5 1],[1 1e-4]); rho=1e-3 % This W improves lowfrequency performance; the control penalty *rho* << 1, avoids ill-posed problems; larger values yield smoother controls



- Feedforward control computations
  - S=feedback(1,P\*C); SP=feedback(P,C); SQ=Q\*S;
  - % Use the "feedback" function instead of just algebra
  - G=[W\*SP;r]; WT=([W\*SQ;0]);
  - [SPi,SPip,SPo]=iofr(ss(G)); Stil=inv([SPi,SPip]);
  - R=minreal(Stil\*WT);
  - % Inner-outer factorization, minimal realization to keep system order low
  - X2=stabproj(R-R.d)+R.d; H2o=minreal(inv(SPo)\*[1 0]\*X2);
  - % Solve the associated net H-2 minimization problem but keep the throughput R.d in the stable part instead of splitting it (default in "stabproj")



#### computations continued

- cut=sum((abs(eig(H2o))<1e-2));</pre>
- [H2s,H2f]=slowfast(H2o-H2o.d,cut);H2f=H2f+H2o.d;
- [a,b,c,d]=h\_sysred(H2f,[],[]); H2=ss(a,b,c,d);
- % Perform model reduction (the price of generality). "slowfast" to remove irrelevant slow modes. "h\_sysred" is a custom function, based on balanced truncation. Works with the old state-space format.
- % Details in "Stability, Controllability, Observability notes," http://www.fulton.asu.edu/~tsakalis/notes/sco.pdf



#### • H-inf computations

- minimizes the worst case; but the solution is more complicated -the so called 2block problem with gamma-iteration. "nehari" solves the H-inf problem; it is a custom program with the (older) state-space format.
- gmax=norm(WT,inf); gmin=norm(R(2),inf);
- while gmax-gmin>0.001
- gam=(gmax+gmin)/2; r0=(sfl(minreal(R(2))/gam))\*gam;
- r1=minreal(R(1)\*inv(r0));[a,b,c,d]=nehari(r1.a,r1.b,r1.c,r1.d,0);qm=ss(a,b,c,d);
- q=minreal(inv(SPo)\*qm\*r0); gtest=norm((r(1)-qm)\*inv(r0),inf);
- if gtest < 1; gmax=gam; else gmin=gam;end</li>
- end
- cut=length(find(abs(eig(q))<1e-2));[qs,qf]=slowfast(q-q.d,cut);qf=qf+q.d;</p>
- [a,b,c,d]=h\_sysred(qf,[],[]); Hi=ss(a,b,c,d);



- Controller Evaluation
  - Top Fig.: 2nd and full order feedforward filters are nearly the same
  - Bottom Fig.: Error transfer function for the 2nd and full order filters and the obvious choice (without the -20 delay), H=2.
  - sigma(SP\*2-SQ,SP\*H2-SQ,SP\*Hi-SQ)
  - The H-2/H-inf methods produce optimal results systematically
  - More pronounced differences for more difficult problems







- Feedforward control implementation
  - Discretize the filter
    - [nu,de]=tfdata(bilin(H2,1,'bwdrec',.1),'v')
    - [nu,de]=tfdata(c2d(H2,.1,'tustin'),'v')
    - % use "bilin" with 'bwdrec' option or "c2d" with 'tustin'
  - Introduce the filter in the Simulink model





- Feedback and Feedforward control testing
  - No feedforward (blue),
  - H2 solution (red),
  - Simple choice H=2 (cyan)






### Feedback and Feedforward Control

- Feedback
  - Stabilizes or improves stability margin
  - Reduces sensitivity to unknown perturbations and model imprecision
  - Requires good sensors of process output
- Feedforward
  - Leaves sensitivity and stability unaffected
  - Provides faster corrections (than feedback)
  - Requires good models and good sensors of disturbance



### Feedback and Feedforward Control

- Other Design Methods
  - Feedback
    - Linear Quadratic Regulator (LQR) methods
    - General H2 and Hinf solutions to weighted sensitivity minimization (more complicated problem statement)
    - Model Predictive Control (MPC, on-line solution of an LQR optimization problem)
    - Other heuristic, optimization-based methods (e.g., PID)
  - Feedforward
    - Heuristic, algebraic
  - Discrete-time (sampled data) solutions



# and Feedforward Control

- References
  - Anderson-Moore (LQR),
  - Zhou, Macejiowski (Hx, model reduction, feedforward),
  - Francis (Hx fundamentals),
  - McFarlane-Glover (Coprime factor methods)
  - Glad-Ljung (Linear/nonlinear/MPC... excellent survey)
  - Astrom (PID control)

Feedback



- PID Tuning
  - PID is the industry workhorse

$$u = K_p e + K_i \int e + K_d \, \frac{de}{dt}$$

 Proportional, Integral, and Derivative action to achieve all the basic feedback objectives: adjust bandwidth, introduce phase lead for stabilization, increase gain at low frequencies for disturbance attenuation

PID Control



- PID Tuning
  - Pseudo-differentiator: more realistic and avoids numerical problems in the design

$$u = K_p e + K_i \int e + \frac{K_d}{T} (e - v)$$

$$T\dot{v} = -v + e$$

– Transfer function:

$$C(s) = K_p + \frac{K_i}{s} + \frac{K_d s}{Ts+1}$$
$$= \frac{(K_d + TK_p)s^2 + (K_p + TK_i)s + K_i}{s(Ts+1)}$$



### • PID Tuning

- Choosing *T*: minimum value is the sampling time for discrete implementation. It does not affect the design very much as long as 1/T > 10 BW
- Tuning the PID: choosing the gain and the two zeros in the numerator (the num. is a 2nd degree, arbitrary polynomial, the den. is fixed)
  - Typically, the two zeros are chosen the same  $PID = \frac{K(s+a)^2}{s(Ts+1)}$
  - PI: a special lag compensator  $PI = \frac{K(s+a)}{s}$
  - PD: a lead compensator  $PD = \frac{K(s+a)}{(Ts+1)}$



- PID Tuning
  - Classical theory
    - phase margin at the intended crossover
  - Ziegler-Nichols
    - Practical methods based on simple models
  - Optimization and Loop-shaping
    - MATLAB custom function "pidqtune" minimizes the distance from a desirable target; target selected using LQR theory so that the closed loop is at least feasible
    - files in http://www.fulton.asu.edu/~tsakalis/notes



- Ziegler-Nichols rules
- From step response data:
  - R = effective slope (e.g., 5%-15%)
     R~bandwidth
  - L = delay
- Experimentally, based on ultimate sensitivity:
  - Ku = ultimate gain
  - Pu = ultimate period.
  - Note: Z-N tunings are such that the ideal PID (with  $\tau = 0$ ) has a double zero, i.e.,  $Kp^2 = 4KiKd$ .

| <u>1</u>       | Р                      | PI                               | PID                             |
|----------------|------------------------|----------------------------------|---------------------------------|
| Кр             | 1/RL                   | 0.9/RL                           | 1.2/RL                          |
| Ki             | -                      | $0.27/RL^{2}$                    | $0.6/RL^{2}$                    |
| Kd             | -                      | -                                | 0.5/R                           |
|                |                        |                                  |                                 |
| 1              | р                      | РТ                               | РІП                             |
| <u>1</u>       | Р                      | PI                               | PID                             |
| <u>1</u><br>Кр | <b>Р</b><br>0.5Ки      | <i>PI</i><br>0.45Ku              | <i>PID</i><br>0.6Ku             |
| 1<br>Kp<br>Ki  | <b>Р</b><br>0.5Ки<br>- | <i>PI</i><br>0.45Ku<br>0.54Ku/Pu | <i>PID</i><br>0.6Ku<br>1.2Ku/Pu |



• PID Discrete Implementation

$$u_{k} = K_{p}e_{k} + K_{i}s_{k} + K_{d}(e_{k} - e_{k-1})$$

$$s_{k+1} = s_k + e_k$$

several different but equivalent implementation equations,

e.g., 
$$\Delta u_k = u_{k+1} - u_k = \cdots$$

- Integrator windup
  - Nonlinear behavior when the control input saturates (can lead to instability)
  - Remedy: Anti-windup modification (limited integrators)  $s_{k+1} = \min[\max\{s_k + e_k, \frac{u_{\min}}{K_i}\}, \frac{u_{\max}}{K_i}]$ 117



• Discretization



- MATLAB: "bilin" with 'bwdrec' (backward rectangular), 'fwdrec', 'tustin', etc.
- "c2d" function for system objects, with 'zoh' (zero order hold) option, etc.



• Discretization derivations

Forward Euler  $\dot{x} = Ax + Bu \rightarrow \frac{x_{k+1} - x_k}{T} = Ax_k + Bu_k$ 

 $G(z) = D + C[zI - (I + AT)]^{-1}TB$ 

Backward Euler  $\dot{x} = Ax + Bu \rightarrow \frac{x_k - x_{k-1}}{T} = Ax_k + Bu_k$ 

$$G(z) = D + C[zI - (I - AT)^{-1}]^{-1}(I - AT)^{-1}TBz$$
  
=  $D + C[zI - (I - AT)^{-1}]^{-1} \{z \pm (I - AT)^{-1}\}(I - AT)^{-1}TB$   
=  $[D + C(I - AT)^{-1}TB] + C(I - AT)^{-1}[zI - (I - AT)^{-1}]^{-1}(I - AT)^{-1}TB$ 



### • Discretization derivations

ZOH equivalent

(sampled data response with piecewise constant inputs):

$$\dot{x} = Ax + Bu \to x(t+T) = e^{AT}x(t) + \int_{t}^{t+T} e^{A(t+T-\tau)}Bu(\tau)d\tau$$
$$\to x_{k+1} = \{e^{AT}\}x_k + \{A^{-1}(e^{AT} - I)B\}u_k, y_k = Cx_k + Du_k$$

Tustin :

$$s = \frac{2}{T} \frac{z-1}{z+1}, \quad \left(z^{-1} = e^{-sT} \stackrel{Pade}{=} \frac{1-sT/2}{1+sT/2} \Longrightarrow s = ...\right)$$



- Comparison of different discretizations
  - essentially the same results up to an order of magnitude below sampling rate (see bode plots below, Ts = 0.1, 1)
  - Slower sampling rates require either careful selection of discretization method or discrete design altogether





- Discretization comments
  - Continuous time design: done once, discretized easily for different sampling times (Ts) -by any method.
  - When approaching the sampling frequency, the discretized systems start deviating "unpredictably" from the continuous time frequency response and from each other
  - In such a case, there is no guarantee that a controller/filter will work as expected (e.g., discretizing a slow system with a slow sampling rate but asking for a very fast response)



- Remedy: Obtain the ZOH equivalent response of the system and design a discrete controller/filter using the equivalent DT techniques (similar to CT but different computations)
- To illustrate the process, let us repeat the previous exercise (water tube) but with a 10sec sampling time
  - The system time constant is 20sec, so this discretization is somewhat adequate to describe the open loop. But the required closed-loop bandwidth is 0.2, (~5sec time constant) and therefore the sampling is too coarse to approximate the continuous time response.



Using the previous (CT) design and discretizing the controller at 10sec, the closed-loop is unstable for ZOH and forward Euler discretization and stable for backward Euler; even for this, the response differs considerably from the continuous time design





- Redesign the discrete PI(D) controller K(z+a)/(z-1)
- Pd = c2d(P,10) = (0.1812 z + 0.01555)/(z^2 0.6065 z)
- Let C = tf(1,[1-1],10), and get bode(Pd\*C)
- At crossover, phase = -245°
- Need 115° phase lead from *z*+*a*  $a = \frac{\sin(0.133*10)}{\tan(\frac{115\pi}{180})} - \cos(0.133*10)$ = -0.6913
- Adjust C = tf([1 -.6913],[1 -1],10)
- and re-compute bode to find the gain K





- We need K = 10<sup>(16.2/20)</sup> = 6.456 to have 0.13 as the crossover frequency (with 50° phase margin). So,
- C = tf(6.456\*[1-.6913],[1-1],10)
- Good feedback performance!







- An alternative to the complete DT redesign is to adjust the CT PID for the phase lag of the ZOH at crossover (~ wT/2) and then discretize using the Tustin transformation to preserve the CT frequency response; the method works well as long as the crossover is well-below the Nyquist frequency.
- At crossover, the ZOH lag is approx. 0.665rad, or 38deg; design C for PM = 50+38 deg => C = (5.504 s + 0.1956)/s
- Discretize at 10 sec (Tustin) ; D = c2d(c1,10,'tustin') =>

D = (6.482 z - 4.526)/(z-1)

(very close to the fully DT design)



- Also need to redesign the FFC
  - The procedure is similar:
  - Discretize (ZOH equivalent) the plant model and form the various systems
  - Apply Tustin bilinear transform (norm preserving) to get a continuous-time equivalent problem
  - Solve for the FFC as before
  - Recover the discrete time solution by the inverse Tustin transform.



- DT-FFC results
  - The redesigned DT FFC response (blue) shows significant improvement over the 10sec discretization of the CT solution (blue)
  - But even though the error singular value plot is very small (red), the disturbance effect is not negligible...





- DT-FFC results
  - The explanation is that the DT solution is accurate (no "unstable" zeros) but only for piecewise constant inputs in 10sec intervals. Our disturbance is a continuous sinusoid.
  - Indeed, when adding a ZOH after the disturbance source, the DT redesigned FFC works very well while the CT discretized does not.
  - Unfortunately real disturbances are not
     ZOH-sampled and lower sampling rates
     are detrimental to controller performance



- Parametric Model Identification from I/O data.
  - Non-parametric vs. Parametric models
  - Model parameterization:  $y = P[u;\theta]$
  - Estimation error (to be minimized)
  - Batch/Recursive update equations
- For more details: Notes on adaptive algorithms, http://www.eas.asu.edu/~tsakalis/notes/ad\_alg.pdf
- other bibliography: Ljung, Soderstrom-Stoica, Ioannou-Sun, Goodwin-Sin

- Data conditioning (pre-processing): avoid estimation of uninteresting effects
  - High frequency filtering
  - Offset and Drift removal (low-frequency filtering)
    - Justified by linearization principles
  - Scaling/conditioning
    - Numerical Sensitivity, uncertainty interpretations
    - Speed of convergence in recursive algorithms
- SNR and record-length issues

# Model parametrization ẋ = Ax + Bu; y = Cx + Du; θ = [A, B, C, D] x<sub>k+1</sub> = Ax<sub>k</sub> + Bu<sub>k</sub>; y<sub>k</sub> = Cx<sub>k</sub> + Du<sub>k</sub>; θ = [A, B, C, D] y<sub>k+1</sub> = b<sub>n</sub>u<sub>k</sub> + b<sub>n-1</sub>u<sub>k-1</sub> + ··· + a<sub>n</sub>y<sub>k</sub> + a<sub>n-1</sub>y<sub>k-1</sub> + ···; θ = [b<sub>n</sub>,...a<sub>n</sub>] Models may include other external inputs such as noise, disturbances, effects of initial conditions (short data records/batch ID)

- Parsimonious models: independent parameters, minimal parameter count. Identifiability
- Persistent and Sufficient Excitation

- Parameter Estimation Objective
  - Estimation error formulation, equation error
  - $-e = y \phi^T \theta; \phi = regressor.$ 
    - Linear-in-the-parameters (efficient algorithms exist)
    - Left factorization (observer), Coprime factor uncertainty
  - $-e = y P[u;\theta]$ 
    - Usually NonLinear-in-the-parameters
    - Additive uncertainty

- Parameter Estimation Methods
  - Least-squares, exponential weighting/fading memory
    - Fast recursive algorithms, Ellipsoidal parameter uncertainty
  - RMS (asymptotic)
    - Simple gradient algorithms, ultra-fast execution, slow convergence
  - Min-max (L-inf)
    - Linear programming algorithms, non recursive (except for sub-optimal approximations), Polytopic parameter uncertainty

- Estimation algorithms
  - Linear model estimation error  $e_k = y_k \phi_k^T \theta_k$

Gradient: 
$$\theta_{k+1} = \theta_k + \frac{P\phi_k e_k}{1 + \phi_k^T P\phi_k}, \quad P > 0$$
  
Least - Squares: 
$$\begin{cases} P_{k+1} = \frac{1}{\lambda} \left[ P_k - \frac{P_k \phi_k \phi_k^T P_k}{\lambda + \phi_k^T P_k \phi_k} \right], \quad 0 < \lambda \le 1 \\ \theta_{k+1} = \theta_k + P_{k+1} \phi_k e_k \end{cases}$$

-  $\lambda$ : exponential weighting (forgetting factor). Typical values 0.990-0.999; depends on the number of parameters, excitation properties, parameter variations with time, etc.

• Estimation algorithms, Kalman Filter

– Given the model

$$x_{k+1} = A_k x_k + v_k$$
$$y_k = C_k x_k + n_k$$

where, [v,n] is white noise with intensity diag(Q,R)

- An optimal (min variance) estimate of the state x is  $\hat{x}_{k+1} = A_k \hat{x}_k + L_k (y_k - C_k \hat{x}_k)$   $L_k = A_k P_k C_k^T (C_k P_k C_k^T + R)^{-1}$   $P_{k+1} = A_k P_k A_k^T + Q - A_k P_k C_k^T (C_k P_k C_k^T + R)^{-1} C_k P_k A_k^T$ 137

### • Kalman Filter details

- Assumptions: R>0, (A,C) observable, (A,Q) controllable
- P-update: at steady-state becomes the discrete time filter algebraic Riccati equation. Its positive definite solution guarantees that (A-LC) is stable.
- Returning to our estimation problem, write the linear model as a dynamical system  $\theta_{k+1} = I\theta_k + v_k$ ,  $y_k = \phi_k^T \theta_k + n_k$

$$\hat{\theta}_{k+1} = \hat{\theta}_{k} + L_{k} \left( y_{k} - \phi_{k}^{T} \hat{\theta}_{k} \right), \quad L_{k} = P_{k} \phi_{k} \left( \phi_{k}^{T} P_{k} \phi_{k} + R \right)^{-1}$$
$$P_{k+1} = P_{k} + Q - P_{k} \phi_{k} \left( \phi_{k}^{T} P_{k} \phi_{k} + R \right)^{-1} \phi_{k}^{T} P_{k}$$

- Take R=1 (for a scalar output) and Q --> 0 to recover the standard LS updates
  - Some expressions may "look" different but they become identical after some algebraic manipulations
- Observability is equivalent to persistent excitation of  $\phi$
- The difference in implementation becomes important when adding constraints to parameters
- The KF handles parameter variations naturally through the noise term v and its covariance Q; if desired an exponentially weighted formulation can be derived to obtain the previous expressions; although it is not equivalent, the effect is similar

- An alternative algorithm for System Identification: Concatenate parameters and states into a big model (still linear but time-varying) and apply KF
  - this requires the system description in an observable form (left factorization); its generality is justified as follows:
  - $x_{k+1} = Ax_k + Bu_k \implies x_{k+1} = Fx_k + \theta_1 y_k + \theta_2 u_k$  $= (A LC)x_k + LCx_k + Bu_k \qquad y_k = Cx_k + \theta_3 u_k$  $= Fx_k + Ly_k + (B LD)u_k$
  - $y_k = Cx_k + Du_k$ 
    - F,C are design parameters: F should be stable and (F,C) should be observable

• Collect states and apply KF to estimate both states and parameters

$$\begin{bmatrix} x_{k+1} \\ \theta_{1,k+1} \\ \theta_{2,k+1} \\ \theta_{3,k+1} \end{bmatrix} = \begin{bmatrix} F & Iy_k & Iu_k & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \end{bmatrix} \begin{bmatrix} x_k \\ \theta_{1,k} \\ \theta_{2,k} \\ \theta_{3,k} \end{bmatrix}, \quad y_k = [C,0,0,u_k] \begin{bmatrix} x_k \\ \theta_{1,k} \\ \theta_{2,k} \\ \theta_{3,k} \end{bmatrix}$$

- Notice that the model is nonlinear in the states and parameters but it becomes linear if the output is measured (and becomes an external timevarying parameter).
- Drawback: output additive noise enters nonlinearly in this model
- Choose  $Q_{11} >> Q_{22}$  (states vary much faster than parameters)
- Convergence condition is again the persistence of excitation

- Other Issues
  - Persistent excitation  $\exists \delta, n > 0: \sum_{k=1}^{N} \phi_k \phi_k^T > \delta I > 0$ , for all N
  - Possible parameter drifts in the absence of sufficient excitation (noise can mask the system)
    - Various modifications: Parameter projection, dead-zone, regularization noise, excitation monitoring
  - Modeling and estimation of dynamic uncertainty (region of model validity; analysis of residuals)

- Estimator modifications
  - Parameter projection
    - Knowledge of a convex set containing the parameters; find the best estimate in the set
  - Dead-zone
    - Do not update when the error is below the noise level
  - Regularization noise
    - Add artificial noise to the I/O pair used for estmation.
       Penalizes large estimates (~ min norm solution), ensures covariance boundedness, at the expense of a small bias
  - Excitation monitoring (high level logic)

- Example
  - Temperature control of a heating element with online identification of its transfer function (Experiment 5)
  - Plant (top layer)


- Example
  - Plant model



• Example

- Controller (top layer)



• Example

#### – Controller block: PID, LSE



INITIALIZATION: Tsa=.2;N=2;rho=1e3;lambda=.995;u\_noise=1e-1;y\_noise=1e0;

• Example

- Fading Memory Least Squares Estimator



- Example
  - Experiment with different regularization noise levels, different estimators
    - LS parameter (textbook), LS/KF parameter (notes), KF parameter+state (notes)
  - Get familiar with the embedded function block and analyze the impact on execution speed
  - Try different model orders, add disturbances and monitor the excitation for different reference inputs...
  - Use prefilters on I/O data to remove nonlinear DC bias from linearization

- Example
  - Supplied functions:
    - Various estimator blocks (in idblocks)
    - Code to extract the state-space or transfer function model from the parameter vector in comments inside each block; remember to adjust the code when changing the model order or model structure
    - exp6KF.mdl contains a non-real-time version of the simulator to illustrate the operation of the parameter estimators

#### Instrument Ratings

151

- Usually static characteristics from manufacturers
  - Sensitivity: output magnitude to unit input
  - Dynamic range: upper-lower limits. Often expressed as a ratio in dB, usually range/resolution
  - Resolution: smallest change that can be detected
  - Linearity: maximum deviation from straight line
  - Zero/full scale drift: drift when input is maintained steady for a long period

#### **Accuracy-Precision**

- Errors can be deterministic (systematic) or random
  - Measurement accuracy = closeness of the measured value to the true value
  - Instrument accuracy = worst case accuracy within the dynamic range
  - Precision = reproducibility or repeatability
    - precision = measurement range/error variance
    - precision ~ measurement variance for constant input

# Significance in measurement and computations

- Is a measurement 0.1V the same as 100mV?
   Or, is a resistance value 4.7kΩ = 4700Ω?
   What is the current flowing through a 3.3kΩ resistor when the voltage is 1.0V?
- Unless otherwise specified, the value is accurate to within 1 (or 1/2) least significant digit. So,
  - -0.1V = 0.1V + 0.1V
  - -100mV = 100mV + 1mV = 0.100V + 0.001V

# Significance in measurement and computations

 In computations, the answer should have the same significant digits as the least of the numbers used in the calculation:

– Current = Voltage / Resistance = (1.0 /3.3k)A =

from (0.3030...m)A = 0.30mA

- Significant digits: digits past first nonzero digit  $1.0V/3300\Omega = (0.0003030...)A = 0.00030A$
- <u>Note</u>: calculators compute with a fixed number of digits. Scientific notation is consistent with the significant digit concept.

#### Sensors and Actuators

- Sensors:
  - "Process Variable" to "Data" conversion
  - Change in certain material properties with changes in a process variable
  - Variety of sensor outputs: Electrical (potentiometers, thermocouples, thermistors, strain gauge), mechanical (bi-metallic thermometers), numeric (counters, optical sensors)

# Examples of Sensors and Actuators

- Actuators:
  - "Data" to "Process manipulated variable" conversion
  - Variety of actuator inputs: Electrical (analog control circuits), numeric (computer control systems), pneumatic (some industrial controls)
  - Actuators/Final Control Elements: Heater (electric coil, gas burner, steam flow), Valve (pneumatic, solenoid, motor-driven), Light, Relay, Switch

#### Sensors

- Sensor Signal Conditioning
  - Convert signals to a form suitable for interfacing with the other elements of the process control loop
  - Digital form: advantages in computations, maintenance, reliability, cost
  - Typical operations: Amplification, Linearization,
     Filtering and Impedance Matching

# Sensors: Signal Conditioning

- Type of signal (variation/range) is usually fixed,
   depending on physical properties, (e.g., changes in resistance, voltage, etc).
- Amplification: Adjust the usually low signal level.
   Input impedance (transfer function) is important to assess speed of sensor response
- Linearization: Usually required; mild to severe nonlinearities; look-up tables and fitting functions; accuracy vs. precision

# Sensors: Signal Conditioning

- Signal Conversion example: change in resistance to change in voltage or current
- Bridges to handle small fractional changes in resistance
- Analog Filtering to reduce aliasing effects.
- Impedance matching to improve dynamics and sensor signal strength (a power transfer problem)
- Active or passive filters; input impedance considerations

#### Sensors: Signal Conditioning

 Wheatstone bridge, current balance bridge: detection of a null condition (irrespective of voltage drifts)



- Thermal Energy ~ atom vibrations, atom speed
  - Average energy per molecule
  - Different Scales (K,C and R,F)
  - Thermal Energy of one molecule
    - 3/2 kT, k = 1.38 10<sup>-23</sup> J/K (Boltzmann)
  - Average thermal speed  $\sqrt{\frac{3kT}{m}}$  O<sub>2</sub>, 90F, v = 488m/s
- Key sensor property: resistance vs Temperature

- Metal resistance increases with temperature (more electron collisions).
  - Resistance Temperature Detector (RTD)
  - Pt: almost linear in [-100,600], repeatable, 0.004/°C sensitivity.
  - Ni: nonlinear, less repeatable, 0.005/°C sensitivity
  - measurement with a bridge
  - response: time for wire to acquire temperature
  - self heating effect from power supply (~1°C)

- Semiconductor resistance decreases with temperature (more free electrons): Thermistors
  - highly nonlinear resistance variation with temp.
  - effective range [-100,300] °C
  - Insensitive at high temperatures
  - 0.5-10s response time (depending on sensor mass and environment)
  - encapsulation material issues

- Thermocouples: thermo-electric effect in a junction of different metals, voltage generation vs. temperature
  - Require cold junction reference
  - Almost linear; linearization tables for accuracy
  - Good range, sensitivity, inertness
  - Type J: [-200,700]°C, 0.05mV/°C, max 43mV
  - Type K: [-190,1260]°C, max 55mV
  - Type R: [0,1482]°C, 0.006mV/°C, max 15mV

- Thermocouple signal conditioning
  - x100 amplification, susceptible to electrical noise and E/M interference
    - twisted wires, grounded sheath, grounded junction
    - Reference compensation circuits with precision thermistors
- Bimetallic strips (volume expansion)
- Gas thermometer (sensitive but slow)
  - vapor pressure, liquid expansion, solid-state
- Pyrometers (more details in optical sensor section)

- Displacement-location-position
  - Ex. liquid level, object position/orientation, infer pressure
  - Potentiometers: resistance and wiper
    - wear, friction, resolution, noise; but linear and simple
  - Capacitance:  $C = K\epsilon_0 A/d$ 
    - ex. movement of one plate changes area; measurement with an AC bridge
  - Inductance: Armature moving through a coil

- LVDT: Linear Variable Differential Transformer
  - Key component of many sensors
  - 2um resolution in commercially available systems



moving core

Difference in secondary coil voltages is linear with displacement.Phase shift indicates direction of motion.

- Level sensors
  - Float with a secondary displacement measuring system (e.g., LVDT)
  - Based on capacitance or conductivity properties of the fluid
  - Ultrasonic non-contact sensor (measuring reflection time)
  - Pressure-based sensor

- Motion types
  - rectilinear motion (v,a), ~10g acceleration
  - angular motion (rotation)
  - vibration, ~100g,  $\cos wt \rightarrow w^2 \cos wt$
  - shock (impact), ~500g
- Motion sensors
  - Accelerometers (mass-spring)

- Natural frequency 
$$f_N = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

# Position-Motion Sensors: accelerometers

- $f < f_N/2.5$ :  $f_N$  has little effect on response
- $f > 2.5 f_N$ : response independent of applied frequency; a vibration measurement; the "seismic mass" remains roughly stationary
- Potentiometric accelerometers: ~30g, steady-state acceleration, low frequency vibrations
- LVDT: 80Hz, Variable reluctance (LVDT-like), 100Hz, vibration only, geophones
- Piezoelectric: 2kHz, shock and vibration apps.

#### **Pressure Sensors**

- Pressure basics
  - F/A, units Pa, psi, Atm, bar. (1bar ~ 1atm ~ 100kPa
    ~ 14.7psi)
  - Static pressure (no flow).
  - Dynamic pressure (flow-dependent)
  - Gauge pressure ( $p_{abs}$   $p_{atm}$ )
  - Head pressure (pgh, static)

#### **Pressure Sensors**

- Pressure sensors, >1atm
  - with diaphragm or bellows, and LVDT sensor
  - Bourdon tube
  - electronic conversion



#### **Pressure Sensors**

- Pressure sensors, <1atm (electronic)
  - Pirani gauge. Filament temperature via resistance measurement or thermocouple-based; nonlinear pressure dependence); 10<sup>-3</sup>atm, calibrated for the type of gas.
  - Ionization gauge 10<sup>-3</sup>- 10<sup>-13</sup>atm
    - heated filament electrons ionized gas current between electrodes
    - approximately linear

#### Strain Sensors

- Stress = F/A; tensile, compressional, shear
- Strain =  $\Delta l/l$ ; tensile, compressional, shear
- Modulus of elasticity (Young) E = stress/strain
  - linear for low stress, elastic region
- Strain gauge: resistance change ~ strain
  - order of 0.1% fractional change
  - temperature compensation necessary (temperature effects are more significant)

#### Strain Sensors



- -2 10 for metals
- -(-5) (-200) for semiconductors but nonlinear
- Applications
  - load cells for large weight measurement (~500tons)
  - force sensors for nonlinear feedback in robotics

#### Flow Sensors

#### • Conveyor belt

- load cell with strain gauge: measure weight on a fixed length of belt; belt speed is given/measured
- Liquid (volume or mass flow)
  - restriction (Venturi, orifice plate, nozzle)  $Q \sim k \sqrt{\Delta p}$
  - obstruction: rotameter (liquid/gas), moving vane (angle~flow), turbine (tachometer~flow)
  - magnetic, (conductors/insulated pipe): flow through a magnetic field and measure the transverse potential

#### • EM radiation spectrum

| Band      | Frequency    | Wavelength $c = \lambda f$ |
|-----------|--------------|----------------------------|
| VLF       | MHz          | 300m                       |
| TV/radio  | MHz-GHz      | 0.3m                       |
| Microwave | THz          | 0.3mm                      |
| Infrared  | $10^{15}$ Hz | 0.3um                      |
| Visible   |              | 400-760nm                  |
| UV        | $10^{17}$ Hz | 3nm                        |

- Photo detectors
  - spectral response (wavelengths)
  - time-constant, response time
  - detectivity
- Photo conductive detectors
  - semiconductor conductivity (or resistance) as a function of radiation intensity
  - resistance drops as number of absorbed photons with higher energy than band gap increases

temperature control is important since it affects resistance

| Photo-    | time     | spectral   |
|-----------|----------|------------|
| conductor | constant | band       |
| CdS       | 100ms    | 0.47-0.71u |
|           |          |            |
| CdSe      | 10ms     | 0.6-0.77u  |
|           |          |            |
| PbS       | 400us    | 1-3u       |
|           |          |            |
| PbSe      | 10:18    | 1 5-411    |

- Photo Voltaic detectors
  - "giant diodes",  $V = V_0 \log(I)$
  - time-constants: Si (20us), Se (2ms), Ge (50us), InAs (1us)
  - photodiode detectors (changes in I-V characteristics):
     1us 1ns response time (for communication apps)
  - photoemissive detectors: current ~ light intensity,
     photo-multipliers, very sensitive
#### • Pyrometers

- Temperature ~ emitted EM radiation; black body radiation ~ T<sup>4</sup> (total)
- Broadband pyrometers, total radiation pyrometers
  - micro-thermocouple on blackened Pt disc; heats up with radiation and thermocouple generates a voltage; responds to all wavelengths
- IR pyrometer (Si-Ge)

- Pyrometer applications
  - Metal production, glass production, semiconductors
  - range 0-1000°C
  - accuracy 0.5-5°C
  - noninvasive
  - Correction factors
  - Contamination issues (viewport fogging)

- Optical light sources
  - conventional: incandescent, atomic (distributed, divergent, incoherent, polychromatic)
  - Laser (monochromatic, coherent, non-divergent)

| He-Ne           | red   | 0.5-100mW (cont)         | ranging alignment, comm.          |
|-----------------|-------|--------------------------|-----------------------------------|
| Ar              | green | 0.1-5W (cont)            | heat, small welding, comm.        |
| CO <sub>2</sub> | IR    | 1-100kW (cont-<br>pulse) | cutting, welding, drilling, comm. |
| Ruby            | red   | 1GW (pulse)              | cutting, welding, drilling, comm. |

#### Incremental Optical encoders

- Identical, equally spaced transparent windows
- Two photodiodes, quarter pitch apart (to establish direction).
- Angle of rotation is the summation of pulse counts (rising edge).
- Velocity is window spacing by elapsed time.
- Resolution is:  $\Delta \theta = \frac{2\pi}{N}, \Delta \omega = \frac{2\pi}{NT}$  N = windows, T = sampling time

– e.g., 10,000 windows => 0.018° resolution

#### • Absolute Optical encoders

- Code pattern on the encoder disk
- N tracks to provide 2<sup>N</sup> resolution (N ~ 14), each track associated with a pick-off sensor
- Gray coding: one bit switching between adjacent sectors; minimizes errors due to manufacturing tolerances (e.g., eccentricity)

# Actuators and Final Control Elements

- Implementing changes in process variables
  - Relays, SCR/TRIAC (motor and heater control)
  - Amplifiers (Analog, PWM)
  - Solenoids (electromechanical conversion)
    - coil and plunger; free standing or spring loaded
  - Motors
    - DC: series field (hi-torque, difficult speed control); shunt (lower torque, easy speed control); compound
    - AC (Synchronous-Asynchronous, Low starting torque)
    - Stepping

# Actuators and Final Control Elements

- Pneumatic signals: pressure as information carrier
  - 3-15psi standard , 330m/s propagation (sound)
- Amplifiers (diaphragm-based), Hydraulics
  - Nozzle-Flapper (mechanical-pneumatic conversion)
  - Diaphragm-Spring (pneumatic-mechanical conversion)
  - Current-2-Pressure conversion (solenoid-nozzle-flapper)
- Valves (Quick open, Linear, Equal Percentage)
- Hopper valves (solids), Rollers

### **Actuators**

- Push-pull class B amplifier. (Use multiple stages, if necessary)
  V+
  V Complementary pair of transistors
- Pulse Width Modulated (PWM) amplifiers
  - Varying the duty cycle of a square wave
  - Efficient switching transistors for high power requirements

### **Actuators**

- Silicon-Controlled Rectifier (SCR, thyristor)
  - trigger voltage at the gate will start conducting positive voltages from anode to cathode; it will stop when the forward bias at the gate is off and the anode voltage is negative (half-wave operation)
  - TRIAC: full-wave operation
  - Power Control for high wer polintion (e.g., heating) half-wave operation

# **Bibliography**

- Curtis Johnson, Process Control Instrumentation Technology, 4th ed. Prentice Hall, New Jersey 1993.
- Lennart Ljung, System Identification: Theory for the User. Prentice Hall,