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EEE 481  
Computer Controlled Systems 

• Course outline  
 
 
 
 
 
 

• (rev 9/2/15) 

Wk 1:  Introduction, Matlab and Simulink, PC104 platform, System simulation and Real-Time applications (Notes) 
Wk 2:  Computer Interfacing for Data Acquisition and Control, ADC-DAC, Signal conditioning, quantization (Notes)  
Wk 3:  Review of Z-transform and State Variables (Ch.2) 
Wk 4:  Z-transform and state variables, Linearization (Ch.2)           
Wk 5:  Sampling and Reconstruction, CT-DT conversions, Discretization (Ch.3, Notes)        
Wk 6:  Discretization, Open-loop DT systems (Ch.4, Notes)                                                  
Wk 7:  Closed-Loop systems, Time/Frequency response characteristics (Notes, Ch. 5,6) 
Wk 8-9:  Feedback and Feedforward Control, Stability Analysis, Nyquist/Bode (Notes, Ch. 7)    
Wk 10:  PID controllers and tuning (Notes, Ch.8: Specs, PID)      
Wk 11:  PID tuning and Controller Discretization (Notes)    
Wk 12:  Feedforward Compensation (Notes)      
Wk 13:  State Estimation (Ch.9: Observers)   
Wk 14:  Model Identification (Notes, Ch. 10)       
Wk 15:  Sensors, Actuators (Notes) 



2 

Introduction: The PC-104 
Standard 

• Low-power, general-purpose embedded 
applications 

• Standard (small) size, stackable 
–  Sound, PCMCIA, GPS, additional LAN, ADC-DAC,+…  

• Advantech’s PCM 3350 
– Stable geode processor (Pentium 300Mhz), on-chip PCI 

VGA, Intel82559 ER high performance Ethernet chip 
– 2 RS-232 serial ports  
– 128M RAM and FLASH memory (replacing the hard 

drive) 



3 

Introduction: The PC-104 
Standard 

• MATLAB compatibility: supported Ethernet 
chip for fast code download and testing.  
– Not crucial; one serial port can satisfy 

MATLAB’s requirement for a comm. link; but 
communication is very slow and the port is lost 
to the application. 

– check details in the web (advantech.com) 

• Operating system: DOS or Windows (CE).  
– DOS suffices for downloading MATLAB’s real-

time kernel and application program  
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Introduction: The PC-104 
Standard 

• Data acquisition and Control board: Diamond 
MM 
– Analog-to-Digital Conversion (ADC or A/D): 16 single ended or 

8 differential analog inputs, 12-bit resolution, 2kHz software, 
20kHz interrupt routine, 100kHz in DMA operation 

– Digital-to-Analog Conversion (DAC or D/A): 2 analog outputs, 
12-bit resolution 

– 16 digital I/O lines (8 in, 8 out) 
– MATLAB compatibility: important to obtain quick results; but 

it offers only partial access to the board functions 
– web page: diamondsystems.com 
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Introduction to Computers 

• Microprocessor, motherboard, memory 
– address, data, control buses 
– CPU: Arithmetic Logic Unit, Accumulator, 

Program Counter, Instruction Register, 
Condition Codes Register, Control Unit, Clock 
speed, MIPS, FLOPS 

– TPA (Transient Program Area): operating 
system, Commands, I/O, BIOS, Interrupt vector  

– XMS (Extended Memory System) 
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Introduction to Computers 

• Memory characteristics (older data) 
 

TYPE AVG.
CAPAC.

AVG.
ACCESS

REL.
COST

Cache 0.5M 2ns 10

Main 50M 20ns 1

Hard Disk 50G 10ms 10-2

Floppy Disk 10M 500ms 10-3

Magnetic
Tape

5G 25s 10-3

CDROM 600M 500ms 10-4

DVDROM 8G 500ms 10-5
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Introduction to Computers 

• I/O interfaces  
– isolated (IN-OUT instructions) and memory-

mapped I/O 

• Communication with external devices 
– polling: checking each device for service 

periodically (simple but inefficient)   
– interrupts: each device generates an interrupt 

that is serviced according to its priority level, in 
case of simultaneous arrivals 
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Introduction to Computers 

• Arithmetic Computations (7 x 6, 7/2)  
– Integer:  

• 0111 x 0110 = 01110+011100 = 101010  
• 0111 / 0010 = (011.1) = 011 
• Answer length increases by one bit in additions and one word in 

multiplications. Scaling and truncation is necessary for fixed word lengths 

– Floating point: (binary 5e3 format) 
• 0.11100e011 x 0.11000e011 = 

(0.01110+0.00111)e{011+011} = 0.10101e110 
• 0.111e011 / 0.100e010 = (1.11)e{011-010} = 

0.111e010 
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Introduction to Computers 

• Math coprocessors perform a large variety of 
arithmetic operations (+,-,x,/,sqrt,sin,log,…) 
– fast and high precision 
– hardware implementation of operations 
– computation uses algorithms and look-up tables 
– Newer CPUs have a built-in math coprocessor; 

nowadays, they are only absent in very-low-cost, 
or very-fast applications 
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Introduction: Parallel 
Communication 

• Timing circuits: counters and clocks 
– Real-time applications require independent 

clocks that are not affected by processor 
operations 

• Parallel I/O port, parallel interface adapter 
(PIA) 

CPU PIA 
External 
Interface 
Hardware 

address bus 

data bus 

control lines 

Peripheral 
devices 
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Introduction: Serial 
Communication 

• Serial I/O port: transmission and reception 
one bit at a time  

• Synchronous serial communication: 
separate clock signal 

0 

1 

0 0 

1 1 1 

0 

Data bits 
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Introduction: Serial 
Communication 

• Asynchronous serial communication  
– Start/stop/parity bits, baud rate (bits per sec.) 
–  Universal Asynchronous Receiver Transmitter 

(UART) 
– Example of asynchronous serial 

communication, 1 start bit, 1 stop bit, 8 data 
bits, no parity 

Start 
bit 

0 

1 

0 0 

1 1 1 

Stop 
bit 

0 

Data bits 
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Introduction: RS-232 

• Voltage level, DB-25, DB-9 connectors, ~20 
kbaud (k-bits/sec), 50 ft. Physical-electrical-
functional standards. 

• As few as 3 pins used.  
• Null modem or crossover cable: connection 

between computers instead of computer to 
device.  
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Introduction: Plug-in-slots 

• Slots: electrical connections to CPU and 
other parts 
– Diskette drive, serial port, memory expansion, 

data acquisition and control, sound card. 
– Configuration: interrupt request level (IRQ), I/O 

port address, direct memory access (DMA) 
channels 
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Introduction: Bus 

• Bus:  
– Industrial Standard Architecture (ISA), 

Extended ISA (EISA) 
– The “plug-and-play” concept 
– Peripheral Component Interconnect (PCI)  bus:  

• PCI chip between slots and processor, uses registers 
to store configuration info  

• high throughput tasks  
• No need for jumpers or dip switches and no conflicts 
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Introduction: Bus 

• Personal Computer Memory Card 
International Association (PCMCIA) 
– Memory and modems for portables. 
– More devices (Ethernet, SCSI interface, CD-

burners, data acquisition, etc) 
– Fast access (but recent USB standard offers a 

convenient alternative) 

• Small Computer System Interface (SCSI): 
high speed parallel interface bus (daisy 
chain) 
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Introduction: Computer 
Languages 

• Machine-assembly 
• BASIC (high-level, interpreter-based, low 

storage requirements)   
• C (high level, transportable, efficient) 
• MATLAB (and others; C-based-kernel, 

arrays, very-high-level math macros inv(A), 
A*B) 

• Simulink: MATLAB GUI, system simulation, 
block diagram definitions 
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Introduction: Computer 
Languages 

• MATLAB/SIMULINK: expansion via toolboxes 
(collection of functions written in MATLAB, (or C, 
Fortran, then converted to an executable .dll or 
.mex for older versions) 

• Recent developments: ability to compile MATLAB 
code and create stand-alone executables 

• xPC, xPC-target: real-time stand-alone 
applications from SIMULINK code  
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Introduction: Computer 
Languages 

• xPC: Ability to perform rapid prototyping by 
constructing real-time code with very-high-
level GUI.  
– Good for standard I/O interfacing 
– Easy-to-maintain code (SIMULINK) 
– More complicated applications may require the 

development of new interface drivers 
– More info: on-line or web help from mathworks 
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Introduction: MATLAB 

• MATLAB: Initially, computations with arrays 
e.g., A*b, A\b, eig(A), svd(A). Then 
expanded to address all “signal and system” 
topics.  

• Basic file structure:  
– m-files: scripts or functions, with high level 

interpreter commands 
– mat-files: data in binary format (see LOAD/SAVE) 

– .dll: executable code 
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Introduction: MATLAB 

• Other commands  
– “help:” the most important command…  
– Commands for systems, control, signal 

processing, image processing, neural networks, …  
– arranged in “toolboxes”, i.e. directories with m-

files  
• tree structure is only important for indexing and help but not for 

operation 
• Matlab will only look in the defined “path” for functions and data. A 

useful trick is to copy a shortcut in each data directory having an empty 
option at “Start in”. Then, double click the shortcut to open a MATLAB 
session and include the current directory in the path. 
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Introduction: MATLAB 

• SIMULINK: MATLAB GUI to define simulation 
systems in block-diagram form 
– mixed continuous and discrete time, but not as “easy” 

as it used to be… 
– .mdl files contain an ASCII description of the 

parameters of each block  
– s-functions: key building block of the simulator, relying 

on the concept of the state; fairly easy to create custom 
blocks but becomes complicated if real time 
executables are created  
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Introduction: MATLAB 

A SIMULINK example 
with:  

A main block (Furnace 
emulator),  

RS-232 I/O,  
Analog I/O, and 
Screen output 
More details in  
Furnace Notes.doc 
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Typical Configuration 
of a data acquisition and control system 

digital 
signal 

Transducer 
Signal 

Conditioning 
(Amplify/Filter) 

ADC 

physical 
quantities 

analog 
electrical 

signal 

uProcessor DAC Actuator 

process 
output 

process 
input 
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Computer Interfacing  
for Data Acquisition and Control 

• Data acquisition: discretization in time and 
quantization in state-space 

• Sampling theorem, Nyquist frequency. 
– No-aliasing condition: Tsample = 1/(2 fmax) 
– Practical selection: Tsample = 1/(20fmax) 
– Use of anti-aliasing filters (Review!) 

• Quantization resolution = full scale/2n 
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Digital Signals  

• PLC (Programmable Logic Controllers): well 
suited for Boolean Algebra implementations 
– E.g., Alarm when  

• low level and high pressure 
• high level and high temperature 
• high level and low temperature and high pressure 

–  Analog implementation of a two-level signal 
with hysteresis: op-amp with positive feedback 
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Digital Components 

• TTL, CMOS 
– Digital logic circuits will not drive actuators 

directly 

• Electromechanical or solid-state relays 
– Switch high currents and voltages 
– Considerations: wear, corrosion, arcing, 

robustness, speed, noise immunity 

• Encoders, counters, latches, tri-state buffers 
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Analog Circuitry 

• The 4-20mA standard: current signal 
information ranging between 4 and 20mA.  
– 4mA minimum to check integrity, 20mA 

maximum to indicate malfunctions  
– can drive various instrumentation devices with 

standardized input 
– many actuators follow the same standard and 

work with 4-20mA inputs 
– 3-15psi (20-100kPa) pneumatic loop standard 
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Analog Circuitry 

• Signal buffering with op-amps  
– voltage following to minimize loading in the sensor and 

electrically isolate the sensor from the circuit 

• Offset correction, filtering of unwanted frequencies 
(typically with low-pass filters) 

• Isolation: opto-couplers, magnetic coupling 
 

transducer 
output LED 

photo-transistor 

GND 

Input port 

+5V 
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Analog Circuitry 

• Op-amps:  
 

– Active filters, low-pass, high pass, notch, etc. 
– Voltage followers (high input impedance, low 

output impedance) 
– Summation, difference, current-to-voltage 

conversion, voltage-to-current conversion 
– Nonlinear function inversion (when Zo = diode 

(exponential,           ) => logarithmic amplifier 

Zo 
Zi Vin

Z
ZVout

i

o−=

oaVei =
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Analog Circuitry 

• Analog Switches (JFET, MOSFET).  
– In Multiplexers and Sample-and-Hold circuits 
– S&H example: 

• computer controlled switch (digital out) 
• hi-quality capacitor maintains “constant” voltage 

during conversion time  

 

driver 
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DAC-ADC 

• DAC 
– “Binary ladder” networks (requires large resistances) 
– “R-2R ladder” network 

 

R 

Vref 

R 
R 

2R 

2R 

(110) 
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DAC-ADC 

• ADC 
– Counter or ramp (slow, 2n cycles) 
– Dual slope (noise averaging, slow)   
– Successive Approximation (fast, n cycles) 

 

Successive  
Approximation 

Register 

DAC 
Digital out 

Vin C
 Comparator out 
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Quantization 

• A special type of error: uncertainty reduction 
but with reduced accuracy 

• 12-bit A/D, 0-5V =>5/212 =1.2mV resolution 
• Model of the quantization process 

 
 

• Signal conditioning: Scaling to full range 

quantization <=> 
x xq x 

n 
xq 

n: random noise,  
uniform 

distribution 
[-1/2n+1, 1/2n+1] 
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Quantization 

• Need for scaling: 
– Temperature range 0-2000oC. Thermocouple 

output 0-30mV (assumed linear). 12bit A/D, 0-
5V. Resolution: 1.2mV (from before) ~ 
(2000/30m)*1.2m = 80 oC => measurement = 
value +/- 40oC! 

– Amplify TC measurement by 5/0.03 = 166.67. 
Resolution: (2000/5)*1.2m = 0.48 oC 
(reasonable) 
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Quantization II 

• Quantization issues in Filtering and Control 
– Finite precision introduces errors in the computations as well 

as in the filter implementation.  
– Fixed-point arithmetic: bounded noise  
– 3 classes of errors: 

• 1. A/D conversion: Type 1 errors due to signal quantization. Typical 
error is 1/2 LSB 

• Multiplication: Type 2 errors due to signal quantization and truncation. 
Loss of several LSBs 

• Coefficients: Type 3 errors due to finite wordlength in filter 
implementation. Can cause filter instability. More important in 
FeedForward control. 

 

quantization <=> 
x 

x
q 

x 
n 

x
q 

n: random noise,  
uniform 

distribution 
[-1/2n+1, 1/2n+1] 
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Quantization II 

• Type 1 and 2 quantization errors 
– Modeled as independent random noise with uniform 

distribution. 
– Error analysis: Compute the overall transfer function H(s) from 

the quantization error(s) “q” to the output of interest “e” and 
use an appropriate metric to quantify the effect of q on e  
1.  Maximum error bound (very conservative) 
2.  RMS error bound (usually conservative) 
3.  Variance (good estimate, most appropriate for this case)  
Note: The conservatism of the estimate does not mean that the metric is 

not important, just that the analysis is not tight. 

H(s) q e 
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Quantization II 

• Error bounds: 
 

H(s) q e 

norm(H,2)) (MATLAB:
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Quantization II 

• Example:  
– Consider the plant P(s)=1/s, with the controller  C(s)=(s+1)/s. 

Analyze the effect of a 10-bit input quantization on the output.  
– Discretization interval 0.01s, ZOH 
– H = P/(1+PC) = s/(s2+s+1) 
– Hd = 0.01(z-1)/(z2-1.99z+0.9901) 
– CT:t=[0:.001:50]';h=impulse(H,t);plot(t,h);Hii=sum(abs(h))*.001 

– Hii =1.306, Hi2 = norm(H,inf) = 1, H22 = norm(H,2) ^2 = 0.5  
– DT:k=[0:10000]';h=impulse(Hd,k*.01);plot(k,h);Hii=sum(abs(h)) 

– Hii =1.3181, Hi2 = norm(H,inf) = 1.0044, H22 = norm(H,2) ^2 = 0.0051  

 
 

H(s) q e 
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Quantization II 

• Example (cont): Compute bound estimates 
– qmax=1/211, variance (uniform density) = qmax

2/3 = 7.947e-8, 
RMS ~ sqrt(var) = 2.819e-4 

• max(|e|) < Hii qmax = 6.4359e-004 
• RMS(e) < Hi2 RMS(q) = 2.8313e-004 
• var(e)<H22 var(q) = 4.0337e-010 
• The variance estimate appears to be much better than 

the RMS: sqrt{var} = 2.0084e-005 << 2.8313e-004 

H(s) q e 
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Quantization II 

• Example (cont): Evaluate the estimates by 
simulation 

• qm=1/2^11 ;q=(rand(10000,1)-0.5)*2*qm;k=[0:10000-1]';subplot(121),plot(k,q), title('q vs 
sample') 

• Hd=fbk(c2d(P,.01),c2d(C,.01)),e=lsim(Hd,q);subplot(122),plot(k,e),title('e=H[q] vs sample') 

• [max(abs(e)),sum(abs(h))*max(abs(q))] = 6.2659e-005  6.4352e-004 
• [rms(e),norm(H,inf)*rms(q)] =  1.9416e-005  2.7953e-004 
• [var(e),norm(H,2)^2*var(q)] =  3.7701e-010  3.9322e-010 

H(s) q e 
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Quantization II H(s) q e 

• Comments: 
• The max abs estimate is conservative by an order of magnitude. 
• The var estimate is much better than the RMS.  
• However, from the theory we know that the RMS bound is tight. The 

apparent discrepancy is due to the fact that var is defined for 
stochastic signals and RMS^2 is just its estimate from one realization. 
The variance estimate is good for stochastic inputs only and it is not 
an upper bound for deterministic signals as the next computation 
shows: 

– z=sin(.01*k); y=lsim(H,z); 
– [rms(y),norm(H,inf)*rms(z)]=7.0490e-001  7.1171e-001 
– [var(y),norm(H,2)^2*var(z)]=4.9686e-001  2.5490e-003 
– Notice that norm(H,2)^2*var(z) is NOT a bound on var(y) any more! 
– But the bound norm(H,inf) *rms(z) on rms(y) is now tight. 
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Quantization II 

• Quantization issues in Filtering and Control 
– Due to the sensitivity of roots of polynomials to perturbations, 

the quantization of the filter coefficients can result in a 
different, possibly unstable filter 

– Different filter realizations can be more or less susceptible to 
quantization problems (parallel or cascades of 1st or 2nd order 
are preferred over direct forms) 

– Problems become more pronounced as the sampling rate 
increases (the discrete poles accumulate around 1 and there is 
loss of resolution) 
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• Example 
– Start with the heated-water-tube transfer function 
– P=tf([-.5 1],[.5 1])*tf(1,[40 2]) 
– Discretize: PD=c2d(P,.001) 
– Enter the same transfer function with 4 significant digits: 

PD2=tf([-2.495e-5 2.5e-5],[1 -1.998 .998]) 
– The first is stable with poles 9.9995e-00, 9.9800e-001 
– The second is unstable with poles 1.0000e+000, 9.9800e-

001 

Quantization II 
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– The difference is apparent in terms of step and 
frequency response 

Quantization II 
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– Repeat for sampling time 0.1: 
– Discretize: PD=c2d(P,.1) 
– Enter the same transfer function with 4 significant digits: 

PD2=tf([-.002026 .002478],[1 -1.814 .8146],.1) 
– The first is stable with poles  9.9501e-001  8.1873e-001 
– The second is stable with poles  9.9672e-001  8.1728e-

001 
– Still different, but much closer…  

Quantization II 
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Quantization II 

• Some insight 
– roots of 2nd order polynomial whose coefficients, 

are quantized to 0.1  
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Cables 

• Flat cables: 1-10V, 100mA 
• Twisted pair, shielded or unshielded 
• Coaxial (less interference but not too 

popular) 
• Digital connections, cheaper for low data 

rates 
• Buffering (amplifying) and latching, for 

signals on a bus 
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Data acquisition and control  
with standard add-on cards 

• Multifunctional cards: A/D, D/A, digital I/O, 
counter/timer operations 
– 4-16 multiplexed A/D, 1-2 D/A, (max rate quoted 

for all channels combined) 
– programming commands (in C or high-level)   

•  Industrial signal conditioners 
– thermocouple linearization and cold junction 

compensation, filtering and amplification, strain 
gauge linearization, etc.  



50 

Data acquisition and control  
with standard add-on cards 

• Signal Conditioning Extensions for 
Instrumentation (SCXI): high performance  
system for use with PCI 

• Remote I/O modules. Standard RS-232, RS-
485 interfaces for 15-bit measurement 
resolution 

• IEEE-488 GPIB (general purpose interface bus) 
– rigidly defined, 1Mbyte/s transfer rates, multiple 

(15) devices to a single network 
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Data acquisition and control  
with standard add-on cards 

• IEEE-488 GPIB hardware specs 
– total cable length 20m, individual device cable 2m 
– 24 lines in the cable, clearly defined; 8 data, 8 

handshaking, 8 grounding and shielding 
– star, daisy chain, mixed networks 

• GPIB devices 
– Talkers, listeners, controllers; interconnected via 

back plane.   
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Data acquisition and control  
with standard add-on cards 

• Backplane Bus 
– Board on which connectors are mounted; 

provides data, address, control signals 

• STE Bus  
– 8 bit, 20 address lines (1MB memory), 4kB 

addressable I/O 
– Compact cards, robust two part connector, shock 

and vibration resistant 
– IEEE-1000 standard 
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Data acquisition and control  
with standard add-on cards 

• VME Bus 
– Motorola design for the 32 bit 68000-based system.  
– 24MHz data transfer rate 
– 32 bit address bus 

• VXI Bus (VME extension for instrumentation) 
– Improvement over GPIB in communication speed, 

synchronization and triggering 
– Various possible system configurations including GPIB 
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Microcontrollers 

• Microprocessors with analog and binary I/O, 
timers, counters, to perform real-time control 
functions (8, 16, 32 bit) 
– Characteristics: 4kB ROM, 128B RAM, single byte 

instructions, built-in counters, timers, I/O ports 
– Intel 8051, 8096, Motorola MCH68HC11, etc. 
– DSP (Digital Signal Processors): special 

architecture for high speed numerical tasks. 
Separate data bus from instruction bus.  
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Microcontrollers 

• The Arduino family 
– Inexpensive evaluation boards (low-medium 

capabilities) 
– Available drivers making their programming easy 

(albeit with some restrictions) 
– Large development forums (software and 3rd 

party hardware support) 
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Distributed Digital Control Systems 

• Increased complexity is less of an issue 
• Additional functions over older analog systems 

(redundancy, failure detection, communication, data 
storage, adaptation/scheduling) 

• Overall more reliable, less susceptible to 
computational noise, controllers are not degrading 
with time 

• Low cost 
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Distributed Digital Control Systems 

• Process control applications 
– Plant automation 
– Programmable logic controllers (PLC, sequencing jobs) 
– Regulatory process control: single loop PID or Distributed 

Control System (DCS) for large-scale applications 
– Batch processes: repetitive nature;  “run-to-run” 

optimization schemes 
– Advanced applications (identification and control) 
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Distributed Digital Control Systems 

• Computer networks, different topologies 
– For control over networks, the issues of 

reliability, and  deterministic message 
transmission must be addressed 

– Network communications: common modular set 
of rules for generating and interpreting messages 

– Open System Interconnection (OSI): 7-layer 
architecture; Physical, Data link, Network, 
Transport, Session, Presentation, Application  
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Distributed Digital Control Systems 

• OSI components 
– Repeater, at the physical layer 
– Bridge, at data link layer 
– Router, at network layer 
– Gateway, at higher levels 

• Communication protocols define connectors, 
cables, signals, data formats, error checking, 
algorithms for network interfaces and nodes 



60 

Distributed Digital Control Systems 

• Communication protocols 
– Simple: polling and interrupt driven 
– Token ring and Token Bus 
– Carrier sense multiple access with collision 

detection (CSMA/CD) 
• IEEE 802.3. Check for network activity. If idle, a node 

may transmit, then the network becomes busy. In 
case of collision, transmission is aborted and a 
random wait time is introduced.  
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Distributed Digital Control Systems 

– CSMA/CD 
• Simple algorithm, non-deterministic, priorities not 

supported, collisions a problem at high network loads, 
analog technology for collision detection 

• Ethernet is an implementation of CSMA/CD network. 
10Mb/s, coaxial cable or twisted pair. E.g., National 
Semiconductor 3-chip implementation:  Network 
interface controller (protocol, information 
movement), Serial network interface (clock), Coaxial 
transceiver interface (coaxial versions)  

– Token ring and Token Bus 
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Distributed Digital Control Systems 

• Several DCS platforms from major 
manufacturers 
– Honeywell, Foxboro, Fisher and Porter, 

Westinghouse, EMC control, Reliance Electric, 
Beckman Instruments 

• Recently, PC or workstation based systems, 
supervising local embedded controller boards 



63 

Examples of Computer Control 

• Industrial processes versus laboratory 
experiments 

• Several aspects: 
– Process description and modeling 
– Sensors and actuators 
– Controller design (algorithm and structure) 
– Discretization and implementation 
– Auxiliary functionality 
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Examples of Computer Control 

• Liquid level system 
– Tank - valve - pump in different configurations 
– Differential pressure transducer (translating to 

level). Other options: floaters, resistivity 
measurements.    

– Valve as a final control element (with or without 
a pump). Electric valve, pneumatic valve 
(common), electric actuation via I/P current-to-
pressure converter 
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Analysis of the Liquid Level Control 
Experiment 

• One example: control the level by 
manipulating the inlet stream or the outlet.  
– Fin, Fout: flowrates in and out. h: level 
– Bernoulli: 

 
– P: pressure, r: density, 
– g: grav. accel., v: velocity 

 PC 

DPT 

DAC ADC 

Fin 

Fout 

h .2
2
1 constghvP =++ ρρ
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Analysis of the Liquid Level Control 
Experiment 

– inlet conditions 
– incompressible flow 
– Bernoulli 

 
– simplify 

• A = cross section 
area, inlet-outlet 

• “Ideal” flow 
i
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Analysis of the Liquid Level Control 
Experiment 

• ODE for h, nonlinear: slower than linear 
response for large levels h; faster for small h. 
– Tank drains in finite time 
– Addition of a pump: reduced sensitivity of 

outflow to liquid level in the tank 

• Next, the manipulated variable: We open or 
close the valve, i.e., we effectively modify the 
outlet cross section area. 
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Analysis of the Liquid Level Control 
Experiment 

• Valves  
– Many types with different characteristics (pressure drop, 

open/close speed, size, linearity, sealing).  
– Ball (common, e.g., manual/auto sprinkler valves at the 

store) 
 
 

– Gate (sliding in and out to restrict flow)  
• easier to compute cross section area 

Ball, side and front view 
(spherical housing not shown) 

Disc-shaped Gate, front view 
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Analysis of the Liquid Level Control 
Experiment 

• Let us select a gate valve with a motorized screw as 
an opening/closing mechanism. 

• We manipulate the current to the motor or, in a 
high friction simplification, the motor speed. 
– Suppose that at max speed, it takes 2 sec from full-open 

to full-close 

• Other options: Manipulate the set-point of a valve 
controller, for a %-open value; pneumatic valves 
with a I/P converter. 
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Analysis of the Liquid Level Control 
Experiment 

• Compute cross section area as a function of 
%-open (distance between gate center and 
pipe center) 
– shaded area = 2x[sector - triangle area] 
–    

 
 

– Relation to control input:  
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Analysis of the Liquid Level Control 
Experiment 

• Simulink Implementation 
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Analysis of the Liquid Level Control 
Experiment 

• Simulink Implementation 
– Test the analytical no-inlet discharge time. 
– Test analytical steady-state results for Fin constant. 
– Discretization: Estimate natural time constant and  

controlled (closed loop) time constant; sample an order 
of magnitude faster; check responses visually.  

– Use saturation nonlinear blocks to observe physical 
limitations 
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Analysis of the Liquid Level Control 
Experiment 

• Simulink Implementation 
– Linearization (for analysis and controller design) 

• Derive variations around a steady state, analytically or 
using linmod (self study) 

• Parameters: 4cm pipe diam., 30cm tank diam. 
• Linearization equations (at a nominal steady state 

where h,D=const., D~0.5, δu = normalized in 0-1) 
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 Diffusion Furnace Temperature 
Control 

• Multivariable system, approximating 
distributed sensing and actuation 
– Measure temperatures at different 

points inside the tube (profile) and 
outside of  the tube, near the heating 
element (spike)  

– Apply heating power through SCR 
actuating modules roughly in the 
same zones 

– Accuracy is essential 
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 Diffusion Furnace Temperature 
Control 

• Modeling: 
– Basic heat balance equation 

 
 
 
• m = mass, cp = specific heat, T = absolute Temperature, h = heat 

transfer coefficient (convection), A = surface area, σ = Boltzmann 
constant (radiation), F = view factor, q = externally supplied heat 

– Apply to differential volumes and obtain a PDE model  
(details in EEE480 model notes and EEE482 Furnace notes) 
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 Diffusion Furnace Temperature 
Control 

• Sensors: Thermocouples for high temperatures 
(some operations above 1000deg.C). Pyrometry is 
another option for single wafer reactors.  
– Issues: Cold-junction compensation, amplification, and 

table look-up linearization. RF interference may appear 
from SCR application of electrical power 

• Actuators: SCR modules 
– Issues: resolution - switching transient trade-off 
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 Diffusion Furnace Temperature 
Control 

• Need for elaborate and precise controllers 
– Newer furnaces have more (5) heating zones for more 

resolution and improved uniformity (temperature 
coupling is higher than in the older 3-zone furnaces) 

– Due to radiation nonlinearity, different controllers may 
be necessary to cover a big temperature range 

– Nonlinearity and coupling are more pronounced in single-
wafer rapid thermal processors (RTP), using arrays of 
heating lamps  
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 Diffusion Furnace Temperature 
Control 

• Controller communications 
 Thermocouples 

Analog 
conditioning, 
amplification 

Embedded controller 
ADC, linearization, (PID), DAC 

Network Communication 

Heating elements 

SCR  
Firing board 

Network: 
Monitoring stations, Data storage 

Recipe management 

ethernet 
Advanced controller 

computations real time comm. 
e.g., RS232, 

backplane bus 
PC104 bus… 
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Control of Paper Machines 

• Process description 
 
 
 
 
 
 

• K. Tsakalis, S. Dash, A. Green, and W. MacArthur, “Loop-Shaping Controller Design From Input–
Output Data: Application to a Paper Machine Simulator,” IEEE TRANSACTIONS ON CONTROL 
SYSTEMS TECHNOLOGY, VOL. 10, NO. 1, 127-136, JANUARY 2002 
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Control of Paper Machines 

• Control Inputs (manipulated variables) 
– stock flow (solids), dryer temperatures (as set points to local PID 

loops), machine speed (as set point to drum motors) 

• Process Outputs (controlled variables) 
– paper dry weight (~solids), Moisture content (at different points), 

machine speed (actual) 

• Disturbances  
– Operators can change set-points in other loops to maintain the 

overall product quality. Feed consistency is a major disturbance, 
especially after paper breaks (re-circulation). 
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Control of Paper Machines 

• Challenges in Paper Machine control 
– Consistency control (in the direction of production)  
– Cross-directional control (across the paper; distributed 

control, not discussed here) 
– Interacting variables, wide range of process responses. 

Standard decoupled single-loop control not very effective 
– E.g., Stock/Weight has long dead-time, short settling time, 

Steam/Moisture has short dead-time and long time constant, Machine 
Speed has minimal dead-time and fast dynamics. These features can 
have an adverse effect on both the identification and the robust control 
of a paper machine. 
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Control of Paper Machines 

• Some ballpark numbers: 
– Total length of paper line ~500–1000m, speed 10–30 m/s 

(20–60 mi/h), dryer drums 2–3 m diam.  
– Sensors scan moisture and dry weight across the width of 

the paper. Scanning interval can be as large as 35 s.  
– Steam/moisture dynamics  

• ~temperature response of the drums (local PID control, closed-
loop time constant in the order of a few minutes) 

• Short time-delays (scanners, drum-sensor distance), but larger 
delays for reel moisture (measured at the end of the line) 

• “Noise” from the interaction of the paper sheet with the 
environment 
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Control of Paper Machines 

– Stock flow/dry weight dynamics 
• Larger delay since the actuator is located at the beginning of the 

line 
• Quick settling time, essentially determined by the stock mixing 

process 
• Any changes in the stock flow also have a significant effect on 

moisture, since it changes the net water content of the paper sheet  
• Changes in the drum temperatures or moisture leave the dry 

weight unaffected 

– Machine speed 
• Can be controlled much faster than the other variables. Unaffected 

by steam or stock flow variations, but it has a significant effect on 
moisture and dry weight. 
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Heat Exchanger Control Example 

• Multivariable system (see textbook), both feedback 
and feedforward control  
– Measure inlet temperatures and water outlet 

temperature (controlled variable)  
– Manipulate steam inflow, water inflow through 

pneumatic valves 
– Water flow is a controlled variable, either to be 

maximized or to track a setpoint 
– Other valves and instruments to enable monitoring and 

ensure integrity 
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Plastic Injection Molding Process 

• Multivariable system, approximating 
distributed sensing and actuation (see 
textbook)  
– Measure temperatures at different points 
– Apply heating power through SCR actuating 

modules at the same points 
– Accuracy is important 
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Other Control Examples 

• Aerospace applications 
– high performance fighter aircraft, helicopters, jet engines 

• Electromechanical systems 
– robotic arms, pendulum, cart and pendulum 

• Automotive 
– intelligent vehicle highway systems, platooning, traffic 

control 
– engine management, anti-lock brakes, active suspension 

• Manufacturing processes, scheduling of operations 
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Feedback 
 and Feedforward Control 

• Controller Design Procedure: 
– Determine inputs and outputs 
– Model or identify the system  
– Define the control objectives and specifications 
– Design the controller (algorithm and parameters) 
– Discretize (if working in continuous time), quantize and 

implement (code + hardware) 
– Anti-windups and other nonlinear modifications: 

integrated (recent methods) or “post-mortem”    
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Feedback 
 and Feedforward Control 

• On the controller design: computation of the 
transfer function(s) of the “controller” 

• General controller structure: 
 
 Process 

P 
Cascade Contr. 

C 

Feedforward 
Hu 

Feedback Contr. 
F 

external measurable 
signal 

y reference 
signal 

sensor 
noise 

u r 

external 
disturbances 
du          dy 
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Feedback 
 and Feedforward Control 

• Feedback control objective: Reduce the effect 
of disturbances on the output 
 

 
 
 

– the disturbance contributions decrease when S is 
smaller, i.e., when CF is larger 

– the noise contribution decreases when CF is smaller 
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Feedback 
 and Feedforward Control 

• Feedback controller design:  
– stable loop 

• PCF must produce a stable loop (crossover frequency 
characteristics) 

– large gain (magnitude) in the region where the 
sensor is reliable 

• in the same vein, respect uncertainty-imposed 
constraints (avoid excessive peaks/resonances in S) 

• can only attenuate disturbances where the sensor 
information is reliable 
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Feedback 
 and Feedforward Control 

• A typical feedback controller design (math):  
– frequency domain 
– observe fundamental limitations 

• RHP poles < bandwidth < RHP zeros 
• modeling uncertainty, sensor noise => max bandwidth 

–  At the gain crossover frequency 
 

• crossover separates the frequency range of high loop 
gain (disturbance attenuation) and low loop gain 
(sensor noise attenuation). Roughly,  
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Feedback 
 and Feedforward Control 

• Feedback controller design: 
– Software automating most of the computations 

• Tuning of PID, robust multivariable, LPV…  
• Usually, concepts are understood in terms of transfer 

functions and in the frequency domain but the 
computations are performed in the state-space relying 
on time-domain optimal control theory 

• Here: simple PID tuning (Ziegler-Nichols, or pidqtune)  
– Still, the selection of reasonable objectives is 

essential 
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Feedback 
 and Feedforward Control 

• Feedforward control objective: cancel the 
effect of a measurable disturbance at the 
output 
– General setting: 

 
 

– If P1 were invertible, H = -P1
-1P2  

• Usually this is not the case 
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Feedback 
 and Feedforward Control 

• Typical feedforward controller design: 
– separate invertible (outer) and non-invertible 

(inner) parts: 
• Inner-outer factorization for multivariable systems, by 

inspection in SISO. Inner: all-pass (unity magnitude) 
– Solve the associated minimization problem 

• “By inspection” in SISO. Easy in 2-norm minimizing 
error variance for gaussian inputs. More complicated 
in inf-norm minimizing error energy for energy inputs. 

– Invert or approximate the inverse of the outer part 
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Feedback 
 and Feedforward Control 

• Typical feedforward controller design (math) 
– inner-outer factorization 
– minimization problem 
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Feedback 
 and Feedforward Control 

• Example of a (simplified) complete design: 
– Heating a tube of water, 10liters, 0.1m diameter. 
–  Lumped model 

 
 
 

 
• mcp ~ 40, h=5, A = πDL = 0.4 

– Also, suppose that T0 is measurable and there is a 1sec 
delay in applying the control input (u: q(t) = u(t-1)), 
modeled by a 1st ord. Pade approximation 
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Feedback 
 and Feedforward Control 

• Model 
 

• Feedback-feedforward controller 
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Feedback 
 and Feedforward Control 

• Feedback controller tuning: 
– Choose BW < 2, e.g., 0.2rad/s, (other design 

objectives and constraints would be included in 
this choice) => target crossover 0.2/1.5 = 0.133 

– Plant transfer function and frequency response 
• P=tf([-.5 1],[.5 1])*tf(1,[40 2]) 
• bode(P) 

– phase at crossover: -77o 
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Feedback 
 and Feedforward Control 

• Feedback controller tuning: 
– PI controller: C = K(s+a)/s.  
– Adds phase at crossover:  
– For 50o phase margin, 

 
– Find corresponding gain K: 

•  C=tf([1 .1765],[1 0]); bode(P*C) 
• evaluate magnitude at 0.133 
• => K=3.43 
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Feedback 
 and Feedforward Control 

• Feedback controller tuning: 
– Final controller:  C=tf([3.43 0.61],[1 0]) 
– Check step response and bandwidth 
– step(feedback(P*C,1)) -> 23% overshoot  
– bode(feedback(P*C,1)) -> 0.2 rad/s bandwidth 
– sampling time < 1/0.2/10, (wT/2 < 0.1) say 0.1s  
– control signal limits 0-1000(W)  
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Feedback 
 and Feedforward Control 

• Feedback controller testing: 
– Test in Simulink 

• 50 deg. step. 10 deg., 0.01 Hz disturbance 
– PI controlled response vs. uncontrolled response 

• faster response 
• disturbance attenuation 
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Feedback 
 and Feedforward Control 

• Feedforward control 
– Develop expressions 

 
Subtract the feedforward signal to obtain the standard minimization problem 

– Frequency weighting and control penalty 
 
 

– W=tf([.5 1],[1 1e-4]); rho=1e-3 % This W improves low-
frequency performance; the control penalty rho << 1, avoids 
ill-posed problems; larger values yield smoother controls  
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Feedback 
 and Feedforward Control 

• Feedforward control computations 
– S=feedback(1,P*C); SP=feedback(P,C); SQ=Q*S; 
– % Use the “feedback” function instead of just algebra 
– G=[W*SP;r]; WT=([W*SQ;0]); 
– [SPi,SPip,SPo]=iofr(ss(G)); Stil=inv([SPi,SPip]);  
– R=minreal(Stil*WT); 
– % Inner-outer factorization, minimal realization to keep system order 

low 
– X2=stabproj(R-R.d)+R.d;  H2o=minreal(inv(SPo)*[1 0]*X2); 
– % Solve the associated net H-2 minimization problem but keep the 

throughput R.d in the stable part instead of splitting it (default in 
“stabproj”) 
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Feedback 
 and Feedforward Control 

• computations continued 
– cut=sum((abs(eig(H2o))<1e-2)); 
– [H2s,H2f]=slowfast(H2o-H2o.d,cut);H2f=H2f+H2o.d; 
– [a,b,c,d]=h_sysred(H2f,[],[]); H2=ss(a,b,c,d); 
– % Perform model reduction (the price of generality). “slowfast” to 

remove irrelevant slow modes. “h_sysred” is a custom function, based 
on balanced truncation. Works with the old state-space format.  

– % Details in “Stability, Controllability, Observability notes,” 
http://www.fulton.asu.edu/~tsakalis/notes/sco.pdf  
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Feedback 
 and Feedforward Control 

• H-inf computations 
– minimizes the worst case; but the solution is more complicated -the so called 2-

block problem with gamma-iteration. “nehari” solves the H-inf problem; it is a 
custom program with the (older) state-space format.  

– gmax=norm(WT,inf); gmin=norm(R(2),inf); 
– while gmax-gmin>0.001 
–     gam=(gmax+gmin)/2; r0=(sfl(minreal(R(2))/gam))*gam; 
–     r1=minreal(R(1)*inv(r0));[a,b,c,d]=nehari(r1.a,r1.b,r1.c,r1.d,0);qm=ss(a,b,c,d); 
–     q=minreal(inv(SPo)*qm*r0);  gtest=norm((r(1)-qm)*inv(r0),inf); 
–     if gtest < 1; gmax=gam; else gmin=gam;end 
– end 
– cut=length(find(abs(eig(q))<1e-2));[qs,qf]=slowfast(q-q.d,cut);qf=qf+q.d; 
– [a,b,c,d]=h_sysred(qf,[],[]); Hi=ss(a,b,c,d); 

P C 

Hu 

F 

y u r 

du          dy   v 

n 



106 

Feedback 
 and Feedforward Control 

• Controller Evaluation 
– Top Fig.: 2nd and full order feedforward filters are 

nearly the same 
– Bottom Fig.: Error transfer function for the 2nd and 

full order filters and the obvious choice (without the 
delay), H=2. 

– sigma(SP*2-SQ,SP*H2-SQ,SP*Hi-SQ) 
– The H-2/H-inf methods produce optimal results 

systematically 
– More pronounced differences for more difficult 

problems 
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Feedback 
 and Feedforward Control 

• Feedforward control implementation 
–  Discretize the filter 

• [nu,de]=tfdata(bilin(H2,1,'bwdrec',.1),’v’) 
• [nu,de]=tfdata(c2d(H2,.1,’tustin’),’v’) 
• % use “bilin” with ‘bwdrec’ option or “c2d” with ‘tustin’ 

– Introduce the filter in the Simulink model 
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Feedback 
 and Feedforward Control 

• Feedback and Feedforward 
control testing 

• No feedforward (blue),  
• H2 solution (red),  
• Simple choice H=2 (cyan) 
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Feedback 
 and Feedforward Control 

• Feedback  
– Stabilizes or improves stability margin 
– Reduces sensitivity to unknown perturbations and model 

imprecision 
– Requires good sensors of process output 

• Feedforward 
– Leaves sensitivity and stability unaffected 
– Provides faster corrections (than feedback)  
– Requires good models and good sensors of disturbance  
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Feedback 
 and Feedforward Control 

• Other Design Methods 
– Feedback 

• Linear Quadratic Regulator (LQR) methods  
• General H2 and Hinf solutions to weighted sensitivity 

minimization (more complicated problem statement)  
• Model Predictive Control (MPC, on-line solution of an 

LQR optimization problem) 
• Other heuristic, optimization-based methods (e.g., PID) 

– Feedforward 
• Heuristic, algebraic 

– Discrete-time (sampled data) solutions 
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Feedback 
 and Feedforward Control 

• References 
– Anderson-Moore (LQR), 
–  Zhou, Macejiowski (Hx, model reduction, feedforward),  
– Francis (Hx fundamentals),  
– McFarlane-Glover (Coprime factor methods) 
– Glad-Ljung (Linear/nonlinear/MPC…  excellent survey) 
– Astrom (PID control) 
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PID Control 

• PID Tuning 
– PID is the industry workhorse 

 
 

– Proportional, Integral, and Derivative action to 
achieve all the basic feedback objectives: adjust 
bandwidth, introduce phase lead for stabilization, 
increase gain at low frequencies for disturbance 
attenuation 
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PID Control 

• PID Tuning 
– Pseudo-differentiator: more realistic and avoids 

numerical problems in the design 
 
 

– Transfer function:  
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PID Control 

• PID Tuning 
– Choosing T: minimum value is the sampling time 

for discrete implementation. It does not affect the 
design very much as long as 1/T > 10 BW 

– Tuning the PID: choosing the gain and the two 
zeros in the numerator (the num. is a 2nd degree, 
arbitrary polynomial, the den. is fixed) 

• Typically, the two zeros are chosen the same 
• PI: a special lag compensator 
• PD: a lead compensator 
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PID Control 

• PID Tuning 
– Classical theory 

• phase margin at the intended crossover  
– Ziegler-Nichols 

• Practical methods based on simple models 
– Optimization and Loop-shaping 

• MATLAB custom function “pidqtune” minimizes the 
distance from a desirable target; target selected using 
LQR theory so that the closed loop is at least feasible 

• files in http://www.fulton.asu.edu/~tsakalis/notes 
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PID Control 

• Ziegler-Nichols rules 
• From step response data:  

– R = effective slope (e.g., 5%-15%) 
R~bandwidth  

– L = delay  

• Experimentally, based on 
ultimate sensitivity:  
– Ku = ultimate gain 
– Pu = ultimate period.  
Note: Z-N tunings are such that the 

ideal PID (with τ = 0) has a double 
zero, i.e., Kp2 = 4KiKd. 
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1 P PI PID

Kp 1/RL 0.9/RL 1.2/RL

Ki - 0.27/RL2 0.6/RL2

Kd - - 0.5/R

1 P PI PID

Kp 0.5Ku 0.45Ku 0.6Ku

Ki - 0.54Ku/Pu 1.2Ku/Pu

Kd - - 0.075KuPu
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PID Control 

• PID Discrete Implementation 
 
 
several different but equivalent implementation equations,  
e.g.,  
– Integrator windup 

• Nonlinear behavior when the control input saturates (can 
lead to instability) 

• Remedy: Anti-windup modification (limited integrators) 
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Controller Discretization 

• Discretization 
 
 
 

 
– MATLAB: “bilin” with ‘bwdrec’ (backward 

rectangular), ‘fwdrec’, ‘tustin’, etc.  
– “c2d” function for system objects, with ‘zoh’ 

(zero order hold) option, etc.  
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Controller Discretization 

• Discretization derivations 
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Controller Discretization 

• Discretization derivations 
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Controller Discretization 

• Comparison of different discretizations 
– essentially the same results up to an order of magnitude 

below sampling rate (see bode plots below, Ts = 0.1, 1)  
– Slower sampling rates require either careful selection of 

discretization method or discrete design altogether 
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Controller Discretization 

• Discretization comments 
– Continuous time design: done once, discretized easily for 

different sampling times (Ts) -by any method. 
– When approaching the sampling frequency, the discretized 

systems start deviating “unpredictably” from the 
continuous time frequency response and from each other  

– In such a case, there is no guarantee that a controller/filter 
will work as expected (e.g., discretizing a slow system 
with a slow sampling rate but asking for a very fast 
response) 
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Controller Discretization 

– Remedy: Obtain the ZOH equivalent response of the 
system and design a discrete controller/filter using the 
equivalent DT techniques (similar to CT but different 
computations) 

– To illustrate the process, let us repeat the previous 
exercise (water tube) but with a 10sec sampling time 

• The system time constant is 20sec, so this discretization is 
somewhat adequate to describe the open loop. But the required 
closed-loop bandwidth is 0.2, (~5sec time constant) and therefore 
the sampling is too coarse to approximate the continuous time 
response. 
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Controller Discretization 

– Using the previous (CT) design and discretizing the 
controller at 10sec, the closed-loop is unstable for ZOH 
and forward Euler discretization and stable for backward 
Euler; even for this,  the response differs considerably 
from the continuous time design 
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Controller Discretization 

– Redesign the discrete PI(D) controller K(z+a)/(z-1) 
– Pd = c2d(P,10) = (0.1812 z + 0.01555)/(z^2 - 0.6065 z ) 
– Let C = tf(1,[1 -1],10), and get bode(Pd*C) 
– At crossover, phase = -245o 
– Need 115o phase lead from z+a 

 
 
 

– Adjust C = tf([1 -.6913],[1 -1],10) 
– and re-compute bode to find the gain K 
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Controller Discretization 

– We need K = 10^(16.2/20) = 6.456 to have 0.13 as the 
crossover frequency (with 50o phase margin). So, 

– C = tf(6.456*[1 -.6913],[1 -1],10) 

– Good feedback performance! 
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Controller Discretization (alt.) 

• An alternative to the complete DT redesign is to adjust the CT 
PID for the phase lag of the ZOH at crossover (~ wT/2) and 
then discretize using the Tustin transformation to preserve 
the CT frequency response; the method works well as long as 
the crossover is well-below the Nyquist frequency. 

• At crossover, the ZOH lag is approx. 0.665rad, or 38deg; 
design C for PM = 50+38 deg =>  C = (5.504 s + 0.1956)/s 

• Discretize at 10 sec (Tustin) ; D = c2d(c1,10,'tustin')  => 
   D = (6.482 z - 4.526)/(z-1) 
  (very close to the fully DT design) 
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Controller Discretization 

• Also need to redesign the FFC 
– The procedure is similar:  
– Discretize (ZOH equivalent) the plant model and form the 

various systems 
– Apply Tustin bilinear transform (norm preserving) to get a 

continuous-time equivalent problem  
– Solve for the FFC as before  
– Recover the discrete time solution by the inverse Tustin 

transform.  
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Controller Discretization 

• DT-FFC results 
– The redesigned DT FFC response (blue) shows significant 

improvement over the 10sec discretization of the CT 
solution (blue) 

– But even though the error singular value plot is very small 
(red), the disturbance effect is not negligible…   
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Controller Discretization 

• DT-FFC results 
– The explanation is that the DT solution is accurate (no 

“unstable” zeros) but only for piecewise constant inputs in 
10sec intervals. Our disturbance is a continuous sinusoid.  
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– Unfortunately real disturbances are not 
ZOH-sampled and lower sampling rates 
are detrimental to controller performance 

– Indeed, when adding a ZOH after the 
disturbance source, the DT redesigned 
FFC works very well while the CT 
discretized does not. 
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Model Identification 

• Parametric Model Identification from I/O 
data.  
– Non-parametric vs. Parametric models 
– Model parameterization: y = P[u;θ]  
– Estimation error (to be minimized) 
– Batch/Recursive update equations 

• For more details: Notes on adaptive algorithms, 
http://www.eas.asu.edu/~tsakalis/notes/ad_alg.pdf 

• other bibliography: Ljung, Soderstrom-Stoica, Ioannou-Sun, 
Goodwin-Sin 
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Model Identification 

• Data conditioning (pre-processing): avoid 
estimation of uninteresting effects 
– High frequency filtering 
– Offset and Drift removal (low-frequency filtering) 

• Justified by linearization principles 
– Scaling/conditioning 

• Numerical Sensitivity, uncertainty interpretations 
• Speed of convergence in recursive algorithms 

• SNR and record-length issues 
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Model Identification 

• Model parametrization 
 
 

– Models may include other external inputs such as 
noise, disturbances, effects of initial conditions 
(short data records/batch ID) 

– Parsimonious models: independent parameters, 
minimal parameter count. Identifiability 

– Persistent and Sufficient Excitation 
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Model Identification 

• Parameter Estimation Objective 
– Estimation error formulation, equation error  
– e = y - φTθ; φ = regressor.  

• Linear-in-the-parameters (efficient algorithms exist) 
• Left factorization (observer), Coprime factor uncertainty 

– e = y - P[u;θ] 
• Usually NonLinear-in-the-parameters  
• Additive uncertainty 

– …  
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Model Identification 

• Parameter Estimation Methods 
– Least-squares, exponential weighting/fading memory 

• Fast recursive algorithms, Ellipsoidal parameter uncertainty 
– RMS (asymptotic) 

• Simple gradient algorithms, ultra-fast execution, slow 
convergence  

– Min-max (L-inf) 
• Linear programming algorithms, non recursive (except for 

sub-optimal approximations), Polytopic parameter 
uncertainty 
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Model Identification 

• Estimation algorithms 
– Linear model estimation error ek = yk - φk

Tθk 
 
 
 
 

–  λ: exponential weighting (forgetting factor). Typical values 
0.990-0.999; depends on the number of parameters, 
excitation properties, parameter variations with time, etc.  
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Model Identification 

• Estimation algorithms, Kalman Filter  
– Given the model 

 
 

where, [v,n] is white noise with intensity diag(Q,R) 
– An optimal (min variance) estimate of the state x is    
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Model Identification 

• Kalman Filter details  
– Assumptions: R>0, (A,C) observable, (A,Q) controllable  
– P-update: at steady-state becomes the discrete time filter 

algebraic Riccati equation. Its positive definite solution 
guarantees that (A-LC) is stable. 

– Returning to our estimation problem, write the linear model 
as a dynamical system 

– and apply KF  
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Model Identification 

• Take R=1 (for a scalar output) and Q --> 0 to recover the 
standard LS updates 
– Some expressions may “look” different but they become identical after 

some algebraic manipulations 

• Observability is equivalent to persistent excitation of φ 
• The difference in implementation becomes important when 

adding constraints to parameters 
• The KF handles parameter variations naturally through the 

noise term v and its covariance Q; if desired an exponentially 
weighted formulation can be derived to obtain the previous 
expressions; although it is not equivalent, the effect is similar 
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Model Identification 

• An alternative algorithm for System Identification: 
Concatenate parameters and states into a big model 
(still linear but time-varying) and apply KF 
– this requires the system description in an observable form 

(left factorization); its generality is justified as follows: 
 
 
 
 

– F,C are design parameters: F should be stable and (F,C) 
should be observable 

kkk

kkk

kkk

kkk

DuCxy
uLDBLyFx
BuLCxxLCA

BuAxx

+=
−++=

++−=
+=+

)(
)(

1

kkk

kkkk

uCxy
uyFxx

3

211

θ
θθ

+=
++=+⇒



141 

Model Identification 

• Collect states and apply KF to estimate both states and 
parameters 
 
 
 

 
– Notice that the model is nonlinear in the states and parameters but it 

becomes linear if the output is measured (and becomes an external time-
varying parameter).  

– Drawback: output additive noise enters nonlinearly in this model 
– Choose Q11 >>Q22 (states vary much faster than parameters) 
– Convergence condition is again the persistence of excitation 
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Model Identification 

• Other Issues 
– Persistent excitation  
– Possible parameter drifts in the absence of 

sufficient excitation (noise can mask the system) 
• Various modifications: Parameter projection, dead-zone, 

regularization noise, excitation monitoring 
– Modeling and estimation of dynamic uncertainty 

(region of model validity; analysis of residuals) 
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Model Identification 

• Estimator modifications 
– Parameter projection 

• Knowledge of a convex set containing the parameters; 
find the best estimate in the set 

– Dead-zone 
• Do not update when the error is below the noise level 

– Regularization noise 
• Add artificial noise to the I/O pair used for estmation. 

Penalizes large estimates (~ min norm solution), ensures 
covariance boundedness, at the expense of a small bias 

– Excitation monitoring (high level logic) 
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Model Identification 

• Example 
– Temperature control of a heating element with on-

line identification of its transfer function 
(Experiment 5) 

– Plant (top layer) 
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Model Identification 

• Example 
– Plant model 
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Model Identification 

• Example 
– Controller (top layer) 
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Model Identification 

• Example 
– Controller block: PID, LSE 
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Model Identification 

• Example 
– Fading Memory Least Squares Estimator 
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Model Identification 

• Example 
– Experiment with different regularization noise levels, 

different estimators  
• LS parameter (textbook), LS/KF parameter (notes), KF 

parameter+state (notes)  
– Get familiar with the embedded function block and analyze 

the impact on execution speed 
– Try different model orders, add disturbances and monitor 

the excitation for different reference inputs…  
– Use prefilters on I/O data to remove nonlinear DC bias from 

linearization 
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Model Identification 

• Example 
– Supplied functions:  

• Various estimator blocks (in idblocks) 
• Code to extract the state-space or transfer function 

model from the parameter vector in comments inside 
each block; remember to adjust the code when changing 
the model order or model structure 

• exp6KF.mdl contains a non-real-time version of the 
simulator to illustrate the operation of the parameter 
estimators 
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Instrument Ratings 

• Usually static characteristics from 
manufacturers 
– Sensitivity: output magnitude to unit input 
– Dynamic range: upper-lower limits. Often 

expressed as a ratio in dB, usually 
range/resolution 

– Resolution: smallest change that can be detected 
– Linearity: maximum deviation from straight line 
– Zero/full scale drift: drift when input is 

maintained steady for a long period 
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Accuracy-Precision 

• Errors can be deterministic (systematic) or 
random 
– Measurement accuracy = closeness of the 

measured value to the true value 
– Instrument accuracy = worst case accuracy within 

the dynamic range 
– Precision = reproducibility or repeatability 

• precision = measurement range/error variance  
• precision ~ measurement variance for constant input 
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Significance in measurement and 
computations 

• Is a measurement 0.1V the same as 100mV? 
Or, is a resistance value 4.7kΩ = 4700Ω? 
What is the current flowing through a 3.3kΩ 
resistor when the voltage is 1.0V? 

• Unless otherwise specified, the value is 
accurate to within 1 (or 1/2) least significant 
digit. So,  
– 0.1V = 0.1V +/- 0.1V 
– 100mV = 100mV +/- 1mV = 0.100V +/- 0.001V 
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Significance in measurement and 
computations 

• In computations, the answer should have the 
same significant digits as the least of the 
numbers used in the calculation: 
– Current = Voltage / Resistance = (1.0 /3.3k)A = 

(0.3030…m)A = 0.30mA  
– Significant digits: digits past first nonzero digit 
 1.0V/3300Ω = (0.0003030…)A = 0.00030A 
– Note: calculators compute with a fixed number of digits. Scientific 

notation is consistent with the significant digit concept.  

from  
computation 
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Sensors and Actuators 

• Sensors:  
– “Process Variable” to “Data” conversion 
– Change in certain material properties with changes 

in a process variable  
– Variety of sensor outputs: Electrical 

(potentiometers, thermocouples, thermistors, strain 
gauge), mechanical (bi-metallic thermometers), 
numeric (counters, optical sensors)  
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Examples of Sensors and 
Actuators 

• Actuators:  
– “Data” to “Process manipulated variable” 

conversion 
– Variety of actuator inputs: Electrical (analog 

control circuits), numeric (computer control 
systems), pneumatic (some industrial controls) 

– Actuators/Final Control Elements: Heater 
(electric coil, gas burner, steam flow), Valve 
(pneumatic, solenoid, motor-driven), Light, 
Relay, Switch 
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Sensors  

• Sensor Signal Conditioning 
– Convert signals to a form suitable for interfacing 

with the other elements of the process control loop 
– Digital form: advantages in computations, 

maintenance, reliability, cost 
– Typical operations: Amplification, Linearization, 

Filtering and Impedance Matching 
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Sensors: Signal Conditioning  

– Type of signal (variation/range) is usually fixed, 
depending on physical properties, (e.g., changes in 
resistance, voltage, etc).  

– Amplification: Adjust the usually low signal level. 
Input impedance (transfer function) is important to 
assess speed of sensor response 

– Linearization: Usually required; mild to severe 
nonlinearities; look-up tables and fitting functions; 
accuracy vs. precision 
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Sensors: Signal Conditioning  

– Signal Conversion example: change in resistance to 
change in voltage or current 

– Bridges to handle small fractional changes in 
resistance 

– Analog Filtering to reduce aliasing effects.  
– Impedance matching to improve dynamics and 

sensor signal strength (a power transfer problem) 
– Active or passive filters; input impedance 

considerations 
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Sensors: Signal Conditioning  

– Wheatstone bridge, current balance bridge: 
detection of a null condition (irrespective of 
voltage drifts) 
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• Thermal Energy ~ atom vibrations, atom speed 
– Average energy per molecule  
– Different Scales (K,C and R,F)  
– Thermal Energy of one molecule  

• 3/2 kT,  k = 1.38  10-23 J/K (Boltzmann) 
– Average thermal speed  

• O2, 90F, v = 488m/s 

• Key sensor property: resistance vs Temperature 

Thermal Sensors 

m
kT3
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• Metal resistance increases with temperature 
(more electron collisions). 
– Resistance Temperature Detector (RTD) 
– Pt: almost linear in [-100,600], repeatable, 0.004/oC 

sensitivity.  
– Ni: nonlinear, less repeatable, 0.005/oC sensitivity 
– measurement with a bridge 
– response: time for wire to acquire temperature 
– self heating effect from power supply (~1oC) 

Thermal Sensors 
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• Semiconductor resistance decreases with 
temperature (more free electrons): Thermistors 
– highly nonlinear resistance variation with temp. 
– effective range [-100,300] oC 
– Insensitive at high temperatures 
– 0.5-10s response time (depending on sensor mass 

and environment) 
– encapsulation material issues 

Thermal Sensors 



164 

• Thermocouples: thermo-electric effect in a 
junction of different metals, voltage generation 
vs. temperature 
– Require cold junction reference 
– Almost linear; linearization tables for accuracy 
– Good range, sensitivity, inertness 
– Type J: [-200,700]oC, 0.05mV/oC, max 43mV 
– Type K: [-190,1260]oC, max 55mV 
– Type R: [0,1482]oC, 0.006mV/oC, max 15mV 

Thermal Sensors 
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• Thermocouple signal conditioning 
– x100 amplification, susceptible to electrical noise 

and E/M interference 
• twisted wires, grounded sheath, grounded junction 
• Reference compensation circuits with precision thermistors 

• Bimetallic strips (volume expansion) 
• Gas thermometer (sensitive but slow) 

– vapor pressure, liquid expansion, solid-state 
• Pyrometers (more details in optical sensor section) 

Thermal Sensors 
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• Displacement-location-position 
– Ex. liquid level, object position/orientation, infer 

pressure 
– Potentiometers: resistance and wiper 

• wear, friction, resolution, noise; but linear and simple 
– Capacitance: C = Kε0A/d  

• ex. movement of one plate changes area; measurement 
with an AC bridge 

– Inductance: Armature moving through a coil 

Position-Motion Sensors 
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• LVDT: Linear Variable Differential Transformer 
– Key component of many sensors 
– 2um resolution in commercially available systems 

 

Position-Motion Sensors 

moving core 

primary 
coil 

~ 
secondary 

coil 
secondary 

coil 

Vout 

- Difference in secondary coil 
voltages is linear with displacement. 
- Phase shift indicates direction of 
motion. 
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• Level sensors 
– Float with a secondary displacement measuring 

system (e.g., LVDT) 
– Based on capacitance or conductivity properties of 

the fluid 
– Ultrasonic non-contact sensor (measuring reflection 

time) 
– Pressure-based sensor 

Position-Motion Sensors 
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• Motion types 
– rectilinear motion (v,a), ~10g acceleration 
– angular motion (rotation) 
– vibration, ~100g, cos wt -> w2cos wt 
– shock (impact), ~500g 

• Motion sensors 
– Accelerometers (mass-spring)  
– Natural frequency 

 
 

Position-Motion Sensors 

m
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• f < fN/2.5: fN has little effect on response  
• f > 2.5 fN: response independent of applied frequency; a 

vibration measurement; the “seismic mass” remains 
roughly stationary 

– Potentiometric accelerometers: ~30g, steady-state 
acceleration, low frequency vibrations 

– LVDT: 80Hz, Variable reluctance (LVDT-like), 
100Hz, vibration only, geophones 

– Piezoelectric: 2kHz, shock and vibration apps. 

Position-Motion Sensors: 
accelerometers 
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• Pressure basics 
– F/A, units Pa, psi, Atm, bar. (1bar ~ 1atm ~ 100kPa 

~ 14.7psi) 
– Static pressure (no flow). 
– Dynamic pressure (flow-dependent) 
– Gauge pressure (pabs - patm) 
– Head pressure (ρgh, static) 

Pressure Sensors 
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• Pressure sensors, >1atm 
– with diaphragm or bellows, and LVDT sensor 
– Bourdon tube 
– electronic conversion  

Pressure Sensors 

LVDT induction motor 

diaphragm 
pivot 

measurement 
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• Pressure sensors, <1atm (electronic) 
– Pirani gauge. Filament temperature via resistance 

measurement or thermocouple-based; nonlinear 
pressure dependence); 10-3atm, calibrated for the 
type of gas. 

– Ionization gauge 10-3- 10-13atm 
• heated filament - electrons - ionized gas - current between 

electrodes 
• approximately linear  

Pressure Sensors 
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• Stress = F/A; tensile, compressional, shear 
• Strain = ∆l/l; tensile, compressional, shear 
• Modulus of elasticity (Young)  E = stress/strain 

– linear for low stress, elastic region 
• Strain gauge: resistance change ~ strain  

– order of 0.1% fractional change 
– temperature compensation necessary (temperature 

effects are more significant)  

Strain Sensors 
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• Wire/foil gauges 
• Semiconductor gauges 

• Gauge Factor =  
– 2 - 10 for metals 
– (-5) - (-200) for semiconductors but nonlinear 

• Applications 
– load cells for large weight measurement (~500tons) 
– force sensors for nonlinear feedback in robotics 

Strain Sensors 

insensitive direction 

sensitive direction 

strain
R

R∆



176 

• Conveyor belt 
– load cell with strain gauge: measure weight on a fixed 

length of belt; belt speed is given/measured 
• Liquid (volume or mass flow) 

– restriction (Venturi, orifice plate, nozzle)  
– obstruction: rotameter (liquid/gas), moving vane 

(angle~flow), turbine (tachometer~flow) 
– magnetic, (conductors/insulated pipe): flow through a 

magnetic field and measure the transverse potential 

Flow Sensors 

pkQ ∆~
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• EM radiation spectrum 
 

Optical Sensors 

Band Frequency Wavelength
c = λf

VLF MHz 300m

TV/radio MHz-GHz 0.3m

Microwave THz 0.3mm

Infrared 1015Hz 0.3um

Visible 400-760nm

UV 1017Hz 3nm
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• Photo detectors 
– spectral response (wavelengths) 
– time-constant, response time 
– detectivity 

• Photo conductive detectors 
– semiconductor conductivity (or resistance) as a 

function of radiation intensity 
– resistance drops as number of absorbed photons with 

higher energy than band gap increases  

Optical Sensors 
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– temperature control is important since it affects 
resistance  
 

Optical Sensors 

Photo-
conductor

time
constant

spectral
band

CdS 100ms 0.47-0.71u

CdSe 10ms 0.6-0.77u

PbS 400us 1-3u

PbSe 10us 1.5-4u
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• Photo Voltaic detectors 
– “giant diodes”, V = Vo log(I) 
– time-constants: Si (20us), Se (2ms), Ge (50us), InAs 

(1us) 
– photodiode detectors (changes in I-V characteristics): 

1us - 1ns response time (for communication apps) 
– photoemissive detectors: current ~ light intensity, 

photo-multipliers, very sensitive 

Optical Sensors 
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• Pyrometers 
– Temperature ~ emitted EM radiation; black body 

radiation ~ T4 (total) 
– Broadband pyrometers, total radiation pyrometers 

• micro-thermocouple on blackened Pt disc; heats up with 
radiation and thermocouple generates a voltage; responds 
to all wavelengths 

– IR pyrometer (Si-Ge) 
 

Optical Sensors 
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• Pyrometer applications 
– Metal production, glass production, semiconductors 
– range 0-1000oC 
– accuracy 0.5-5oC 
– noninvasive 
– Correction factors 
– Contamination issues (viewport fogging) 

 

Optical Sensors 
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• Optical light sources 
– conventional: incandescent, atomic (distributed, 

divergent, incoherent, polychromatic) 
– Laser (monochromatic, coherent, non-divergent) 

 
 

Optical Sensors 

He-Ne red 0.5-100mW (cont) ranging alignment, comm.

Ar green 0.1-5W (cont) heat, small welding, comm.

CO2 IR 1-100kW (cont-
pulse)

cutting, welding, drilling, comm.

Ruby red 1GW (pulse) cutting, welding, drilling, comm.
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• Incremental Optical encoders 
– Identical, equally spaced transparent windows  
– Two photodiodes, quarter pitch apart (to establish direction).  
– Angle of rotation is the summation of pulse counts (rising 

edge).  
– Velocity is window spacing by elapsed time.  
– Resolution is:          N = windows, T = 

sampling time 
– e.g., 10,000 windows => 0.018o resolution 

Optical Sensors 

NTN
πωπθ 2,2

=∆=∆
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• Absolute Optical encoders 
– Code pattern on the encoder disk 
– N tracks to provide 2N resolution (N ~ 14), each track 

associated with a pick-off sensor 
– Gray coding: one bit switching between adjacent sectors; 

minimizes errors due to manufacturing tolerances (e.g., 
eccentricity) 

Optical Sensors 
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Actuators  
and Final Control Elements 

• Implementing changes in process variables 
– Relays, SCR/TRIAC (motor and heater control) 
– Amplifiers (Analog, PWM) 
– Solenoids (electromechanical conversion)  

• coil and plunger; free standing or spring loaded 

– Motors  
• DC: series field (hi-torque, difficult speed control); 

shunt (lower torque, easy speed control); compound 
• AC (Synchronous-Asynchronous, Low starting torque) 
• Stepping 
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Actuators  
and Final Control Elements 

– Pneumatic signals: pressure as information carrier 
• 3-15psi standard , 330m/s propagation (sound) 

– Amplifiers (diaphragm-based), Hydraulics 
• Nozzle-Flapper (mechanical-pneumatic conversion) 
• Diaphragm-Spring (pneumatic-mechanical conversion) 
• Current-2-Pressure conversion (solenoid-nozzle-flapper) 

– Valves (Quick open, Linear, Equal Percentage) 
– Hopper valves (solids), Rollers 
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Actuators  

• Push-pull class B amplifier. (Use multiple 
stages, if necessary) 
 
 

• Pulse Width Modulated (PWM) amplifiers 
– Varying the duty cycle of a square wave 
– Efficient switching transistors for high power 

requirements 

DAC 

V+ 

V- 

Complementary  
pair of transistors 
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Actuators 

• Silicon-Controlled Rectifier (SCR, thyristor) 
– trigger voltage at the gate will start conducting 

positive voltages from anode to cathode; it will 
stop when the forward bias at the gate is off and 
the anode voltage is negative (half-wave 
operation) 

– TRIAC: full-wave operation 
– Power Control for high power applications (e.g., 

heating) 
SCR 

half-wave 
operation 

Vload 
 

Vgate 
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