
Chapter 2

System Identi¯cation from I/O Data

2.1 Introduction

The purpose of this note is to provide some background and working knowledge on the subject of system
identi¯cation from input-output (I/O) data. This basic and practically interesting problem can be de¯ned
as follows:

Given I/O data (u(t); y(t)), generated by a system G, y = G[u], ¯nd a system Ĝ that approximates G
and provide an estimate of the size of the approximation error.

The issues associated with I/O system identi¯cation can be classi¯ed in four main categories:

² System Approximation

² System Parametrization

² Parameter Estimation
² Implementation
System approximation deals with the sense in which the assumed class of system models (e.g. LTI sys-

tems of ¯nite dimension) approximates the actual system. This is an important issue in order to clarify
and make precise the theoretical framework on which we build our study. At this point we should empha-
size that, without additional assumptions, any number of I/O data can never validate an approximation of
a system but only invalidate one. (Still, we can produce estimates of an upper bound on the approxima-
tion/identi¯cation error.) To overcome this di±culty, one can make assumptions based on physical principles
and some knowledge about the system, or establish results in a probabilistic framework; here, for simplicity,
a complete development is not pursued.

System parametrization deals with the manner adjustable parameters enter the description of the class
of system models under consideration. For example, such parameters can be the poles and zeros of a transfer
function, or the coe±cients of the numerator and denominator polynomials, etc. Among other properties,
the parametrization approach can have a dramatic e®ect on the amount of required computations, in order
to obtain the identi¯ed system. (Parametric models are required for the so-called \parametric system
identi¯cation;" however, non-parametric methods can be employed as well.)

The issue of parameter estimation arises after having decided on the structure of a parametric model and
the number of adjustable parameters. At this point, we are interested in constructing a suitable algorithm
that, given u; y, de¯nes the computations we must perform in order to obtain the parameter estimates. These
estimates are, in turn, substituted in our parametric model to de¯ne the identi¯ed system (Ĝ).

Finally, under \implementation" we consider various practical issues such as selection of test inputs,
¯ne-tuning of the estimation algorithm (problem-dependent), computational trade-o®s etc.

EEE480/482 K. Tsakalis 25



2.2 System Parametrization

A useful way to parametrize LTI systems is the so-called \equation error" approach. We illustrate this
approach with a simple example. Let G(s; µ) denote the family of second-order proper transfer functions
parametrized by the vector µ as follows:

G(s; µ) =
N(s; µ)

D(s; µ)
=
µ1s

2 + µ2s+ µ3
s2 + µ4s+ µ5

Clearly any second-order proper transfer function belongs to this family. Now suppose that u; y denote the
I/O pair of an LTI system whose transfer function is G(s; µ¤) for some ¯xed but unknown µ¤. Then,

D(s; µ¤)ŷ(s) = N(s; µ¤)û(s)

Let DF (s) be a monic Hurwitz polynomial (all roots in the open left-half plane) of the same degree as
D(s; µ¤), i.e., DF (s) = s2 + f1s+ f2. Dividing both sides with DF (s) we get

D(s; µ¤)
DF (s)

ŷ(s) =
N(s; µ¤)
DF (s)

û(s)

which can be expressed as

ŷ(s) =
N(s; µ¤)
DF (s)

û(s) +
DF (s)¡D(s; µ¤)

DF (s)
ŷ(s)

Isolating the unknown µ¤ in the right hand side, we obtain

ŷ(s) =

∙
s2û(s)

DF (s)
;
sû(s)

DF (s)
;
û(s)

DF (s)
;
sŷ(s)

DF (s)
;
ŷ(s)

DF (s)

¸266664
µ1¤
µ2¤
µ3¤
f1 ¡ µ4¤
f2 ¡ µ5¤

377775 (2.1)

The important observation here is that the unknown parameters satisfy a so-called \linear model" that is of
the form

Á>x = b

Here b corresponds to the output ŷ(s) and Á is a vector of signals that can be obtained after ¯ltering the
I/O pair with suitable ¯lters; x itself is not the vector of unknown parameters but µ¤ can be obtained from x
after some straightforward computations. Thus, all we need to do in our parameter estimation section is to
devise an algorithm that solves the above equation for µ. Before we proceed, some comments are necessary
to help in the interpretation and generalization of our linear model.

² The form of equation (2.1) remains essentially the same regardless of the order of the system model.

² Equation (2.1) remains valid if all signals are converted to time-domain. In this case, the multiplica-
tion by a transfer function translates into a convolution with an impulse response. This is a useful
observation since it indicates that the identi¯cation computations can be performed directly in the
time-domain where, afterall, the measurements are obtained.

² For practical problems where the order of the actual system is unknown or very high, G(s; µ¤) should
be viewed as a desirable low order approximation of the actual system. In this case, we should add a
correction term in (2.1) to get

ŷ(s) =
N(s; µ¤)
DF (s)

û(s) +
DF (s)¡D(s; µ¤)

DF (s)
ŷ(s) + ê(s) (2.2)

EEE480/482 K. Tsakalis 26



Here, e (or its Laplace transform ê) represents the error between the actual system and its approximation.1

If the actual system admits a \good" LTI approximation, for su±ciently high-order G(s; µ¤) then the
error term e should be small relative to u and y. Thus, a meaningful approach to estimate µ¤ is to
minimize the size of e in some sense, e.g., minimize its energy. Alternatively, in terms of our linear
model, we would like to minimize the energy of the di®erence Á>x¡ b.

² Choosing the order of the system too high is not recommended since it causes several problems of both
numerical and theoretical nature. In particular, for high order approximants some of the parameters
may attempt to \identify" the noise in the data, leading to meaningless results.

² The system identi¯cation problem can be formulated in a similar way even if a di®erent approach
is used to parametrize the family G(s; µ¤) or if the error to be minimized is di®erent, e.g., the more
natural error ŷ(s)¡G(s; µ¤)û(s). Unfortunately, most of these variants result in nonlinear optimization
problems that are di±cult to solve.

² A key feature of the equation error approach is in the way the actual system is approximated. This
requires an additional feedback uncertainty term and cannot be captured by the usual multiplicative or
additive uncertainty models but. Such an approximation may not be as good for long term prediction
of the system behavior. Nevertheless, under some mild assumptions, it can be shown that if the
identi¯cation error is small enough then a controller that stabilizes the identi¯ed system also stabilizes
the actual one. In other words, this approach yields system approximations that are suitable for
controller design.

² The polynomial DF (s) is a degree of freedom left to the designer. Although its selection is not
important in the \ideal" case where the model mismatch is zero (e = 0), it has signi¯cant e®ects when
e 6= 0. As a loose \rule of thumb," the bandwidth of transfer function 1=DF (s) should contain the
frequency range of interest. In addition, when the I/O data are sampled, the bandwidth of 1=DF (s)
should be su±ciently smaller (by about a decade) than the Nyquist frequency, in order to minimize
the perturbation introduced by the sampling process.

2.3 Parameter Estimation

In the previous section we obtained a linear model relating the unknown system parameters with signals
that are either measured directly, or they can be computed by ¯ltering measured signals. That is, converting
(2.2) in time domain, we need to address the problem:

Estimate the unknown constant vector x, given measurements Á(t); b(t) that satisfy

b(t) = Á(t)>x+ e(t)

where e is an unmeasured \noise" signal.
Here, for simplicity, we only consider the sampled-data version of this problem where the values of

Á(t); b(t) are available at discrete time instants tk; k = 1; 2; : : : ;M . This is motivated by the eventual
implementation of our algorithm in a digital computer environment. Furthermore, in order to avoid a
detailed analysis of discretization issues, we assume that the sampling frequency is su±ciently high so that
the sampled signals provide an adequate description of their continuous-time counterparts.

Thus, our problem translates to estimating the unknown x from b(t) = Á(t)>x+ e(t) given M measure-
ments Á(tk); b(tk). Alternatively, to simplify the notation, we may concatenate the linear equations in a
matrix form to obtain

©x = B ¡ E
where © is an M £ m matrix (m being the number of elements in x) whose rows are the vectors Á(tk)

>

and B;E are M £ 1 vectors with elements b(tk) and e(tk) respectively. Of course, since E is unknown,
this equation cannot be solved in a strict sense. However, seeking the \best" model (de¯ned by x) that

1The e®ect of initial conditions can also be included in e. Also, notice that e depends on the choice of parameters µ.

EEE480/482 K. Tsakalis 27



describes our data, it makes sense to select x so as to minimize the size of the vector E. This process can be
interpreted as ¯nding the model that minimizes the mismatch error between measured and predicted values
of the signals. Here, we use a Eclidean distance to quantify the size of E, namely kEk2 =

p
E>E.

After the last transformation, our parameter estimation problem has been converted into the standard
least squares minimization problem

min
x2Rm

k©x¡Bk

for which extensive literature is available dealing with theoretical and computational issues. Assuming that
the matrix ©>© is invertible, the least-squares solution can be written in a simple form:

xLS = (©
>©)¡1W>B (2.1)

min
x2Rm

k©x¡Bk = k©xLS ¡Bk

With the least-squares solution formula (2.1) in our disposal, we may now establish a system identi¯cation
procedure for SISO systems.

² Select a test input sequence (u)
² Collect experimental data (u; y).
² Form the matrix © and vector B by processing the I/O data.

² Compute the LS solution
² Compute the transfer function of the identi¯ed system
² Compute the residual error and obtain an estimate of the uncertainty bound.

Of course, our algorithm has limitations and we must make sure that the experiment design and data process-
ing are performed in an appropriate manner, consistent with the limitations of the algorithm. Furthermore,
we should be careful in interpreting the results to correctly assess their validity and potential usefulness (or
lack thereof). For this purpose, some implementation issues are discussed in the following section.

2.4 Implementation and Miscellaneous Issues

In this section we brie°y discuss several important issues that are necessary for the \correct" implementation
of the presented system identi¯cation algorithm and the appropriate interpretation of the results.

2.4.1 Input Selection

The test input used in the identi¯cation procedure should be such that it reveals all the important attributes
of the system. In order to obtain su±cient information about the system, the input spectrum should contain
enough frequencies that excite all system modes that are of interest. Even simple inputs may satisfy this
qualitative criterion but may result in parameter estimates that emphasize unimportant charactersitics of
the response. For example, a step input contains energy at all frequencies but puts excessive emphasis on the
steady state response. For controller design purposes, we are interested in obtaining a good match around
the eventual crossover frequency of the closed loop system. Notice that test inputs that produce su±cient
excitation are also required in order to ensure the invertibility of the matrixW>W , entering our least squares
formula.

RBS Inputs: An easy way to generate inputs that provide su±cient excitation is using the so called
Random Binary Sequence (RBS). One variation of this is generated in MATLAB by the function prbs 1 as
a sequence of pulses with amplitude switching randomly between -1 and 1. This procedure results in an
input that switches between -1 and 1 and the interval between the switches is random. Its energy spectrum
is ideally \°at" but it can be weighted towards middle or lower frequencies by introducing a variable that

EEE480/482 K. Tsakalis 28



speci¯es a minimum time between switches. PRBS is a popular test input because of its simplicity and the
ability to prescribe the amplitude of excitation. The choice of the amplitude involves a trade-o® between
large values that provide better signal-to-noise ratio and small values that minimize the e®ects of system
nonlinearities.

Further, it is often desired to design the test input so that the initial and ¯nal state of the system is \at
rest."2 This can be achieved by augmenting the test sequence with leading and trailing zeros. The number
of the trailing zeros can be determined easily by some initial experiment since their role is simply to allow
the response to come to a \near-rest" state before terminating the data collection. The selection of leading
zeros, on the other hand, could be more involved. Here, we assume that the system has been kept at rest
for a su±ciently long period of time so that any transient response contributions are negligible. Hence, this
initial period can be used to estimate o®sets that arise from linearization and noise properties. The length of
the leading zeros should, therefore, be determined so that an e®ective averaging of the noise can be achieved.
Of course, the same result could also be obtained from a separate experiment.

2.4.2 Data Weighting

For controller design purposes, it is often desirable to put additional emphasis on the quality of approximation
in a particular frequency range. This can be achieved by using a bandpass ¯lter to \pre¯lter" the input
and output measurements. Notice that this pre¯ltering need not occur during the data collection process.
The use of the lsim MATLAB function before solving the least squares problem can accomplish the same
result. This also allows experimentation with di®erent ¯lters without having to repeat a lengthy and possibly
expensive data collection process.

2.4.3 Identi¯cation in Closed-Loop

For many applications it may be impossible (or undesirable) to perform an identi¯cation experiment in open
loop, i.e., supply the RBS (or any other) test input as an input to the system. Typical examples are systems
that are open-loop unstable or have very slow response. In such cases, we may use a simple controller to close
the loop and stabilize the system or produce faster response. Then, the desired test input can be supplied
as a reference signal to the controller, or added to the control input. The data collection remains the same
as before, i.e., we record the system output and the system input which is now the controller output. This
approach alters the e®ective excitation, as observed by the system. It also introduces a bias the least squares
problem, in the form of a frequency-dependent weight. For controller design purposes, the e®ects of this
bias are not necessarily detrimental to the quality of the identi¯cation since it tends to emphasize the model
accuracy in the middle-frequency range (around the crossover).

2.4.4 Quality of the Approximation

As with any other approximation/estimation process, system identi¯cation is not complete until we obtain
both an identi¯ed (or nominal) system and the corresponding error bounds. One way to de¯ne the uncertainty
bound was described in the previous chapter, in terms of the °2-gain of the uncertainty. Better yet, a
less conservative, frequency-dependent bound can be given in terms of a weight (transfer function) whose
product with the uncertainty has °2-gain less than one. Unfortunately, neither one is applicable in our
case. The reason is that the identi¯cation approach described here (equation error) assumes a di®erent
uncertainty structure, shown in Fig. 2.1. Nevertheless, we may still process the information contained in
the residual error to determine the power spectrum in the identi¯cation error. This can be translated into
sensitivity and complementary sensitivity bounds and used for controller design in a similar manner as in
the multiplicativw uncertainty case. The computational procedure resembles the derivation of an equivalent
multiplicative uncertainty bound but its justi¯cation is di®erent. Here, we simply present the formulae used

2See also the relation between FFT and the Fourier transform.

EEE480/482 K. Tsakalis 29



Np Dp-1

∆N ∆D

up yp

e

Figure 2.1: Structure of the identi¯cation uncertainty with an equation error approach. Np = N=DF ,
Dp = D=DF .

for this computation.

jT (jw)j <
jN(jw; µ)=DF (jw)j

j¢N j ; 8w (2.1)

jS(jw)j <
jD(jw; µ)=DF (jw)j

j¢Dj ; 8w (2.2)

where N;D are the numerator and denominator of the identi¯ed transfer function; ¢N ;¢D are de¯ned as
ê(jw)=û(jw), ê(jw)=ŷ(jw), respectively, and e(t) = Á(t)>xLS¡b(t) is the residual error from the estimation.
The frequency domain counterparts of the various signals can be computed via FFTs. Observe that these
bounds depend only on the identi¯ed system and the error residual but are independent of the particular
controller used to close the loop.

The ¯rst inequality must be satis¯ed at middle-to-high frequencies while the second describes a middle-
to-low frequency constraint. Their intersection is a constraint for robust stability only; additional objectives
can then be added so that the loop sensitivities meet the required performance speci¯cations. Notice that,
since S + T = 1, these bounds should have an overlapping region where they are both greater than one and
in which the eventual crossover frequency will be contained; otherwise the control problem has no solution.
If such a region does not exist or if it is too small (less than about one decade), then it is recommended that
the identi¯cation is repeated, either by adjusting the various ¯lters or by repeating the experiment with a
di®erent excitation input. Of course, since these bounds are only estimates (and in fact quite noisy), their
violation does not necessarily imply that the control law will destabilize the closed-loop system. They do,
however, indicate that any \gross" violations are highly likely to result in an unstable system. In a simplistic,
¯rst-pass design, the T and S bounds can be interpreted as constraints on the closed-loop maximum and
minimum bandwidth.

Finally, it should be kept in mind that this identi¯cation procedure may not result in a good \long term"
approximation of the actual system. That is, if the response of the identi¯ed system is simulated with the
same test input, its output may not yield a good match with the actual output for large time intervals.
They should, however, stay close in short time intervals. Such simulations provide one way to validate the
results of the identi¯cation. Other types of validation include experimentation with di®erent test inputs
and computation of the residual error that should remain close to its previous level, without updating the
parameter estimates.

2.4.5 Recursive Least Squares

An important feature of the least squares approach is that the computation of the least squares solution
can be performed recursively.3 In a recursive form, the storage requirements are fairly low since the update
requires only the current I/O measurements. Its principal application is for on-line estimation but it can
also be thought as a cheap way to circumvent computer memory problems (at the expense of speed).

There are many variants of the recursive least squares algorithm that are designed in an attempt to
enhance its properties with respect to time-varying parameters and/or exponential forgetting of old data
that may be corrupted by transient noise. Most of them ¯t under the general recursion decribed below.

3In such a case the convergence of the estimates to the LS solution is only asymptotic.

EEE480/482 K. Tsakalis 30



For the linear model Á>k x = bk, k = 1; 2; : : :, the estimate of x, say x̂k is updated as follows:

x̂k+1 = x̂k ¡ ¸PkÁk(Á
>
k x̂k ¡ bk)

1 + ¸Á>k PkÁk
(2.3)

Pk+1 =
1

®
Pk ¡ ¸2PkÁkÁ

>
k Pk

1 + ¸Á>k PkÁk
(2.4)

P¡1k+1 = ®P
¡1
k + ¸ÁkÁ

>
k + (1¡ ®)Q (2.5)

with the initialization P1 = ½I; ½À 1 (e.g. ½ = 105), x1 = \your best guess" (e.g. the zero vector). The rest
of the parameters are selected according to the following guidelines:

² When (2.3) is used with (2.4), ¸ = 1=® ¸ 1; values strictly greater than one introduce a forgetting
factor with time constant (number of signi¯cant data points) 1=(1 ¡ ®); ¸ = ® = 1 is the standard
recursive LS algorithm.

² When (2.3) is used with (2.5), 0 < ® ∙ 1 has the same forgetting factor interpretation, ¸ > 0 is
the algorithm gain, and Q = ²I, ² > 0 is a safeguard against pathological cases (a typical choice is
² = 10¡4). Notice that this variant requires the inversion of an m£m matrix at every point.

² (2.3) also works by itself by setting Pk = I, 8k. This is a standard gradient algorithm that is very
simple to implement, fast to compute, but slow to converge.

² If the excitation is too low, the update law (2.4) cannot prevent Pk from exhibiting unacceptable
growth. In our case, this problem can be avoided by a proper design of the test input (amplitude and
bandwidth).

2.4.6 Solution of Nonlinear Equations and Nonlinear Optimization

The so-called \Newton" algorithm provides a useful tool in the solution of simultaneous nonlinear equations
in many variables. This problem arises in many situations including nonlinear optimization where a necessary
condition for extreme points is that the ¯rst derivative is zero. The following two Newton-type algorithms
are derived based on similar procedures that determine the adjustment of the unknowns by solving (or
minimizing) the ¯rst term(s) of the Taylor series expansion.

Newton's Algorithm to ¯nd a simple root of the system of nonlinear equations F (x) = 0: (Here,
x 2 Rm and rF denotes the gradient of F .)

xk+1 = xk ¡ akSkF (xk)

Sk = (rF (xk))>[²kI +rF (xk)(rF (xk))>]¡1

ak > 0, is a step-control parameter, usually less than one; ²k = ± ¡ ¸k if ¸k < ± and zero otherwise, where
¸k = min eig[rF (xk)(rF (xk))>] and ± > 0 is a small design parameter, say 10¡4.

Newton's Algorithm to ¯nd a local minimum of a scalar function f(x): (Here, x 2 Rm and rf ,
r2f denote the gradient and Hessian of f , respectively; r2f is assumed to be positive de¯nite at least in a
neighborhood of the minimizer.)

xk+1 = xk ¡ akSk[rf(xk)]>

Sk = [²kI +r2f(xk)]¡1

where ¸k = min eig[r2f(xk)] and ak, ²k and ± are as before.
Note that in their present simple form, the algorithms may diverge if started \too far" from the solution.

Partial remedies do exist but, if required, you should use a standard numerical package instead of re-writing
existing software.

EEE480/482 K. Tsakalis 31



2.5 Examples

In the previous sections we brie°y presented the basic principles of system identi¯cation with several \user-
oriented" remarks, intended to supply some working knowledge on the subject. Needless to say, in such a
compact presentation of an extensive theory, every comment counts but most of them are soon forgotten
without the help of many examples. In the following, we aim to provide a demonstration of the theory with
a few simple examples. In order to gain better understanding, t he reader is strongly encouraged to use
these examples as a guideline and study the behavior of the corresponding algorithms in several other cases
as well.

2.5.1 System Identi¯cation

To demonstrate an application of system identi¯cation from I/O data let us suppose that we have access
to system G in the sense that we can supply inputs and measure the corresponding outputs. As with most
practical situations the system is only partially known; for example let us suppose that G describes a furnace
temperature that we would like to control. Starting with ¯rst principles we may observe that the process
could be approximately described by a second order system. One of the time constants serves to describe the
slow (convection) dynamics of the bulk temperature (about 30 min) while the other describes the much faster
dynamics of the heating elements (about 15 sec). Of course, the actual system is much more complicated
but additional e®ects (distributed parameters, nonlinearities) are ignored for simplicity. (Nevertheless, a
higher-than-second-order system was used to produce the simulations). We are also aware of an output
disturbance being present of magnitude about 1/2 (degrees). Furthermore, our test input (designed as a
perturbation around the system steady state) should be such that the system output variation is about 10
degrees around its nominal value (so that the behavior is approximately linear). Such a constraint limits
the achievable signal-to-noise ratio (SNR) in the identi¯cation process. Our eventual control objective is to
control the temperature with a closed-loop time constant of about 1 min.

Based on this initial knowledge, we decide to design our identi¯cation experiment so that we obtain a
good estimate of the system transfer function at frequencies around 1 rad/min. We also select to sample
the data every 0.05 min. This sampling interval is su±ciently small so that discretization e®ects will not
cause any major problems; however, it is not small enough so that they can be completely ignored. Having
decided on the preliminaries, we may now apply our I/O identi¯cation procedure. We illustrate two of our
options, open-loop and closed-loop identi¯cation. Also, for simplicity, we do not use any data pre¯ltering.

Test Input We generate our test input r in MATLAB as

r=prbs_1(10,20,10,200);

which, after performing a quick FFT, has su±cient power in the frequency range of interest.

Data Collection We apply the input r to the system, setting u = r, (u is the power to the heating elements)
and measure the system output (see Fig. 2.2).

For the closed-loop identi¯cation, we design a simple controller (pure gain of 0.5) that \speeds-up" the
system response considerably. Here we set u = 4r ¡ y and measure the system input and output (see
Fig. 2.3).

Remark: Due to the high system gain at low frequencies, it is di±cult to select the input in the open-
loop-id. case so that the output variation stays within the desired limits (some trial and error may be
required). Also, notice that di®erent sequences of test inputs with the same PRBS parameters will in
general produce di®erent output variations depending on the speci¯c switching times.

On the other hand, this step is considerably simpli¯ed in the closed-loop id. case where the range of
output variation is very predictable. Here, maintaining the same PRBS sequence as in the open-loop
case, we adjust its amplitude by a factor of four, so that the SNR remains at about the same level.

Parameter Estimation In both cases, we execute the ioid MATLAB script ¯le with inputs:

EEE480/482 K. Tsakalis 32



-3

-2

-1

0

1

2

3

4

5

6

7

0 20 40 60
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60

Figure 2.2: Open Loop Identi¯cation: I/O measurements.

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 20 40 60
-5

-4

-3

-2

-1

0

1

2

3

4

5

0 20 40 60

Figure 2.3: Closed Loop Identi¯cation: I/O measurements.

time step 0.05

identification (1) or validation (0) 1

Model type (0=strictly proper,-1=biproper) 0

filter order 2

filter cutoff 3

prefilter zeros 1

prefilter poles 1

I/O id. results (open-loop-id.) The identi¯ed transfer function has poles at -1.7, -0.08, a zero at -34
(mostly noise) and DC-gain 22.7. Its frequency response, the FFT-estimated response and the S and
T bounds are shown in Fig. 2.4{2.6.

I/O id. results (closed-loop-id.) The identi¯ed transfer function has poles at -2.26, -0.075, a zero at +21
(mostly noise) and DC-gain 23.5 Its frequency response, the FFT-estimated response and the S and T
bounds are shown in Fig. 2.7{2.9.

Remarks: Both cases produced similar results4 with the closed-loop id. favoring, by nature, slightly higher
frequencies and the open-loop id. favoring slightly lower frequencies (see S and T -Bounds). In both
cases, the uncertainty bounds indicate that it should be possible to design a controller that meets the
mentioned bandwidth speci¯cation.

4Such a close agreement should not be expected in general.

EEE480/482 K. Tsakalis 33



10-4

10-3

10-2

10-1

100

101

102

10-2 10-1 100 101 102 103

magnitude of freq. resp.

Figure 2.4: Open Loop Identi¯cation: Frequency response magnitude.

10-2

10-1

100

101

102

10-2 10-1 100 101 102

estimate of inverse multiplicative unc.(T-bound)

Figure 2.5: Open Loop Identi¯cation: Complementary Sensitivity bound.

The non-parametric FFT estimate of the frequency response should be used only as a guideline since
it can be very noisy and biased. (There are ways to remedy this problem but they are not considered
here.)

Comparison with the actual system So far, we treated our example just like an actual problem. But
at this point we have the luxury of knowing the actual system and we can gain some further insight
on the identi¯cation results.

Fig. 2.10 shows the magnitudes of the frequency response of the actual and identi¯ed transfer functions
(precision would require the same comparison for the phases). Observe the good match of the responses
in the mid-frequencies but the poor match at low and high frequencies.

Even more transparent is the comparison of step responses, shown in Fig. 2.11. As previously men-
tioned, the identi¯ed model could be a very poor predictor of the long-term system response. However,
as shown in the detail-plot, they o®er an excellent prediction of the initial stage of the step response
(for about 5 min.). This ¯gure also illustrates their value for controller design with an intuitive argu-
ment: Since the eventual closed-loop system will have a time-constant of about 1 min, only the ¯rst few
minutes of the step response provide useful information for the prediction of the closed-loop behavior;
the large mismatch obtained at, say 15-30 min., is almost irrelevant, since the controller would have
taken corrective action long before that time.

EEE480/482 K. Tsakalis 34



10-1

100

101

102

10-2 10-1 100 101 102

estimate of inverse feedback unc. (S-bound)

Figure 2.6: Open Loop Identi¯cation: Sensitivity bound.

10-4

10-3

10-2

10-1

100

101

102

10-2 10-1 100 101 102 103

magnitude of freq. resp.

Figure 2.7: Closed Loop Identi¯cation: Frequency response magnitude.

2.5.2 Newton Algorithm Examples

Solution of a scalar equation In this example we want to ¯nd a solution of f(³) = exp(¡¼³=
p
1¡ ³2)¡

0:5 = 0, ³ 2 (0; 1). For this case, the Newton recursion becomes

³k+1 = ³k ¡ ak exp(¡¼³=
p
1¡ ³2)¡ 0:5

rf(³k)
where the derivative of f is given by the following expression

rf(³) = df

d³
(³) = ¡¼ exp(¡¼³=

p
1¡ ³2)p

1¡ ³2
∙
1 +

³2

1¡ ³2
¸

Here we used the simpli¯cation ²k ´ 0 since rf(³) vanishes only at 1 and this will not be a source of
problems (the reason why requires further analysis).

We test the algorithm starting with initial condition ³0 = 0:1 and we ¯nd that it converges to 0.2155,
within four signi¯cant digits, in 3 iterations. Next, we replace the constant 0.5 in the function by 0.1
and repeat the process. The algorithm now requires 5 iteration to converge to the solution 0.5912 within
four signi¯cant digits. However, if we try the same examples starting with initial condition ³0 = 0:9 the
algorithm diverges. The reason is that in the ¯rst step the required correction is grossly overestimated
resulting in a large negative value for ³ that causes the square root to become imaginary. To correct
this problem we could use the step-control parameter ak to prevent the updates from drifting outside
the interval (0,1) where the expression makes sense afterall. A partial code for such a modi¯cation of
the algorithm is given below:

EEE480/482 K. Tsakalis 35



10-2

10-1

100

101

102

10-2 10-1 100 101 102

estimate of inverse multiplicative unc.(T-bound)

Figure 2.8: Closed Loop Identi¯cation: Complementary Sensitivity bound.

100

101

102

10-2 10-1 100 101 102

estimate of inverse feedback unc. (S-bound)

Figure 2.9: Closed Loop Identi¯cation: Sensitivity bound.

% step 1: compute the basic step size SkFk

ak=1;

while zk-ak*SkFk <= 0 | zk-ak*SkFk >= 1

ak=ak/2;

end

xk=xk-ak*SkFk;

% return to step 1

Unfortunately, however, problems cannot always be ¯xed in such a simple way.

Solution of multiple equations Let us now suppose that we want to ¯nd x 2 R2 to satisfy the following
two equations, simultaneously:

sin(x1 + x2) = 0 ; cos(x21 + x
2
2) = 0

Again, we compute the gradient of f (which is now a 2-by-2 matrix) and apply Newton's algorithm.
The MATLAB script ¯le that performs the necessary computations is listed in Section 6.4. Its execution
indicates that with the initial condition x0 = [1;¡0:5]0 the algorithm converges to a solution [0.8862,
-0.8862] within four signi¯cant digits in three steps. However, di®erent initial conditions can cause the
algorithm to diverge (e.g. x0 = [1; 1]).

Notice that for more complicated/high-dimension problems, the analytical computation of gradients
could be very time-consuming, if at all possible. For such problems, a careful numerical computation
of the gradient will preserve the algorithm properties, at the expense of speed of execution.

EEE480/482 K. Tsakalis 36



10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

10-2 10-1 100 101 102 103

Freq. Resp. Magnitude of actual (-), cl.lp.id. (-.), op.lp.id.(- -)

Figure 2.10: Frequency response comparison with the actual system.

0

5

10

15

20

25

30

35

0 20 40 60

 Step response comparison

ac
tu

al
 (-

) a
nd

 id
en

tif
ie

d 
(-

 -)
 

0

2

4

6

8

10

12

14

0 5 10

 (detail)

Figure 2.11: Step response comparison with the actual system.

2.6 MATLAB Scripts

2.6.1 I/O identi¯cation

% script file ioid: Performs I/O system id for a SISO system.

% Requires the plant input "u" and output "y" to be in the

% workspace.

% It is recommended that u&y have power-of-2 lengths for

% faster computations. To avoid excessive bias,

% the test input should be selected so that the

% system is approximately "at rest" in the beginning

% and the end of the id-process. Also, it is assumed

% that u&y have been pre-processed to remove constant

% bias terms (i.e., at rest means (u,y)=(0,0))

% Results: numo,deno: identified system numerator and denominator

% frw, magno, phaso: frequency response (parametric)

% fftfr, frpla: system frequency response (fft)

% fftfr, fftmunc: mult.uncert. bound

% fftfr, fftmync: feedbk unc. bound

% -------- Initialization

hold off, format short e

stp=input('time step ');

EEE480/482 K. Tsakalis 37



nn=length(y);frw=logspace(-2,2.5,100)';frg=logspace(-1.5,1.3,60)';

valid=input('identification (1) or validation (0) ');

nc=input('Model type (0=strictly proper,-1=biproper) ');

filord=input('filter order ');filpol=input('filter cutoff ');

prenum=input('prefilter zeros ');preden=input('prefilter poles ');

t=[0:nn-1]'*stp;clg;subplot(121);plot(t,y);plot(t,u);pause

% -------- auxiliary filter definition

den=poly(-ones(1,filord)*filpol);num=[10];

[f,q,cc,dd]=tf2ss(num,real(den));

cy=eye(length(q),length(q));zq=q*0;n=length(q);

% -------- prefilter definition

nuf=poly([-prenum])*preden(1)/prenum(1); def=poly([-preden]);

if prenum~=preden

uf=lsim(nuf,def,u,t); yf=lsim(nuf,def,y,t);

else, uf=u;yf=y;

end

% -------- filter states

wu=lsim(f,q,cy,zq,uf,t);wy=lsim(f,q,cy,zq,yf,t);

disp('lsim results')

www=[wu,wy];if nc == -1,www=[www,uf]; end

% -------- parameter estimation

if valid == 1

thx=inv(www'*www)*www'*(yf);thx=real(thx);

th1=thx(1:n);th2=thx(n+1:2*n);

th3=-thx(length(thx))*min(0,nc);

end

% -------- Display Results

disp('Estimated parameters')

[th1',th2',th3] %rem: lth=-th3/(th2'*inv(f)*q)

[numo,deno]=ss2tf(f'+th2*q',th1+th2*th3,q',th3,1);

[magno,phaso]=bode(numo,deno,frw);

disp('Numerator'),numo

disp('Denominator'),deno

disp('Poles'),z1=roots(deno)

disp('Zeros'),z2=roots(numo)

% -------- Compute estimation error without prefiltering

wu=lsim(f,q,cy,zq,u,t);wy=lsim(f,q,cy,zq,y,t);

err=y-[wu,wy,u]*[th1;th2;th3];

% -------- Frequency domain analysis

disp('fft analysis')

fftu=fft(u);fftu=fftu(1:nn/4);fftu=fftu-u(1)/2-u(nn)/2;

ffty=fft(y);ffty=ffty(1:nn/4);ffty=ffty-y(1)/2-y(nn)/2;

fftfr=[0:nn/4-1]'*2*pi/nn/stp;fftfr(1)=fftfr(2)/10;

frpla=ffty./fftu; %rem: fft estimate of freq.resp.

disp('uncertainty computations')

EEE480/482 K. Tsakalis 38



ffte=fft(err);ffte=ffte(1:nn/4);ffte=ffte-err(1)/2-err(nn)/2;

frrespo=freqs(numo,deno,fftfr);frrespn=freqs(numo,den,fftfr);

frrespd=freqs(den,deno,fftfr);

fftmunc=abs(ffte./fftu)./abs(frrespn);fftmync=abs(ffte./ffty).*abs(frrespd);

fmunc=smoothin(fftfr,fftmunc,frg);fmync=smoothin(fftfr,fftmync,frg);

% -------- PLOTS

hold off, clg, plot(t,err), title('prediction error')

pause

clg,subplot(221),loglog(frw,magno),grid,title('frequency response')

subplot(223), semilogx(frw,phaso), grid

subplot(122), z1r=real(z1);z1i=imag(z1);

if length(z2) > 0

z2r=real(z2);z2i=imag(z2);

plot(z1r,z1i,'x',z2r,z2i,'o'),grid,title('pole-zero plots')

else

plot(z1r,z1i,'x'), grid,title('pole-zero plots')

end

pause

clg,loglog(frw,magno,fftfr,abs(frpla))

title('magnitude of freq. resp.'),grid,pause

loglog(frg,(fmunc.^(-1)))

title('estimate of inverse multiplicative unc.(T-bound)'),grid,pause

loglog(frg,abs(fmync.^(-1)))

title('estimate of inverse feedback unc. (S-bound)'),grid,pause

2.6.2 RBS Generator

function r=prbs_1(n,a,bl,bt);

% function r=prbs_1(n,a,bl,bt);

% n: RBS sequence of 2^n points;

% a: minimum time between switches (~1/BW)

% bl: number of leading zeros

% bt: minimum number of trailing zeros

tns=2^n;

rx=rand(round((tns-bl-bt)/a-.5),1)-.5;

rx=rx*100000;rx=max(rx,-1);rx=min(rx,1);

rt=kron(rx,ones(a,1));

r=[zeros(bl,1);rt;zeros(tns-bl-length(rt),1)];

2.6.3 FFT Smoothing

function [zsm,zstd]=smoothin(f,z,w);

% [zsm,zstd]=smoothin(f,z,w);

% A quick simple way to smooth frequency responses

% f: input frequency vector, z: frequency resp. in, w: desired frequncy vector

% zsm: averaged z at w, zstd: st. deviation at w

zsm=0*(w);zstd=0*(w);tem=log(z);

for i=1:length(w)

k=max(i-1,1);l=min(i+1,length(w));

ind=find(f <= w(l) & f >= w(k));

if length(ind) == 0

ind=[max(find(f <= w(i)));min(find(f >= w(i)))];

EEE480/482 K. Tsakalis 39



end

zsm(i)=mean(tem(ind));zstd(i)=std(tem(ind));

end

zsm=exp(zsm);zstd=exp(zstd);

2.6.4 Newton Algorithm Example

f=[sin(x(1)+x(2));cos(x'*x)]

df=[cos(x(1)+x(2)),cos(x(1)+x(2));-2*x(1)*sin(x'*x),-2*x(2)*sin(x'*x)];

F=df*df'; m=min(eig(F)); n=length(F);

if m < 1.e-4, S=F+(m-1.e-4)*eye(n,n);

else, S=F;

end

x=x-df'*inv(S)*f

EEE480/482 K. Tsakalis 40


