
Chapter 3

Some Concepts from Linear Algebra

3.1 Introduction

This chapter contains a brief presentation of some basic results from linear algebra and, in particular, linear
vector spaces and their role in optimization. In addition to a deeper understanding of the geometric properties
of linear maps, this development has produced powerful computational tools for optimization. Among the
most celebrated results in this setting is the classical projection theorem stating conditions for the existence,
uniqueness and computation of solutions to minimum distance problems. This has numerous applications in
optimization theory and optimal control. It may also invoked in an elegant reformulation of controllability
and observability problems.

Most of the material in this chapter aims to address the problem of solving linear equations Ax = b where
x and b live in ¯nite dimensional vector spaces like Rn. While omitting some of the technical details, most
of the development is done in an abstract setting that would allow an easy transition to the general case.

3.2 Fundamental De¯nitions and Properties

3.2.1 Vector Spaces and Subspaces

3.2.1 De¯nition: A ¯eld is a set F with two operations `+' and '¢' such that for any a; b; c 2 F ,:
1. a+ b 2 F and a ¢ b 2 F .
2. (F;+) is an Abelian Group (with 0 denoting the identity).

3. (F ¡ f0g; ¢) is an Abelian Group (with 1 denoting the identity).
4. ¢ is distributive over addition (+), i.e., a ¢ (b+ c) = a ¢ b+ a ¢ c and (a+ b) ¢ c = a ¢ c+ b ¢ c.

(F;+) is an Abelian Group if

1. (a+ b) + c = a+ (b+ c) (associativity).

2. a+ b = b+ a (commutativity).

3. There exists an identity element 0 such that a+ 0 = 0 + a = a.

4. For any a 2 F there exists an opposite element ¡a such that a+ (¡a) = (¡a) + a = 0.
55

Fields are the sets of scalars, e.g., R;C, rational functions. The operations '+', '¢' are usually called
addition and multiplication; often the '¢' is omitted and ab simply means a ¢ b.
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3.2.2 De¯nition: A linear vector space (or, simply, vector space) over a ¯eld F , denoted by (X;F ) is
a set X together with two operations, addition + : X £X 7! X and scalar multiplication ¢ : F £X 7! X
such that for any x; y 2 X and a; b 2 F :
1. (X;+) is an Abelian Group, with 0X denoting the zero vector.

2. (a+ b)x = ax+ bx (distributivity).

3. a(x+ y) = ax+ ay (distributivity).

4. (ab)x = a(bx) (associativity).

5. 1x = x, 0x = 0X .

55
When clear from the context, 0 is used to denote 0X . Also, when clear from the context, the vector space

can be denoted simply by X.
Examples of Vector Spaces include (Rn;R), (Cn;C). Other, more complicated, examples are (l1;R)

(bounded sequences), (C0[a;b];R) (continuous functions on an interval [a; b]) etc.

3.2.3 De¯nition: Let (X;F ) be a vector space over the ¯eld F and W ½ X. (W;F ) is a subspace of
(X;F ) if (W;F ) is itself a vector space. Equivalently, aw1 + bw2 2W , 8a; b 2 F , 8w1; w2 2W . 55

3.2.4 De¯nition: An a±ne space or variety is a set V = W + x0 where W is a subspace of a vector
space X and x0 is a ¯xed element of X. The notation W + x0 means all vectors that can be obtained as
w + x0 where w 2 W . 55

Examples of subspaces and varieties: Let X = R2. Then

W =

½µ
x1
5x1

¶
;x1 2 R

¾
is a subspace of X and

V =

½µ
x1
5x1

¶
+

µ
1
2

¶
;x1 2 R

¾
is a variety of X.

Let X be the vector space of continuous functions on [0; 1]. Then a subspace ofX is the set of continuously
di®erentiable functions on [0; 1].

3.2.5 De¯nition: Let X be a vector space and R;S subspaces of X. Then the following sets are subspaces
of X

R+ S = fr + sjr 2 R; s 2 Sg
R \ S = fvjv 2 R and v 2 Sg

If R \ S = f0g then the set J = R + S is called the direct sum of R and S, denoted by R © S. In such a
case, for any x 2 J there exist unique r 2 R, s 2 S such that x = r+ s; the sets R;S are called complements
with respect to J . 55

Notice that the set R [ S is not necessarily a subspace of X.
3.2.6 De¯nition: A set fx1; x2; : : : xng of elements of a vector space X is linearly independent if

nX
i=1

aixi = 0) ai = 0; i = 1; : : : ; n

where ai 2 F . 55
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3.2.7 De¯nition: Let fxig = fx1; x2; : : : xng be a set of elements of a vector spaceX (linearly independent
or not). Then the span of this set is de¯ned as

spanfxig = fvjv =
X
i

aixi; ai 2 Fg

55
A span of a set of vectors is a subspace.

3.2.8 De¯nition: A set fx1; x2; : : : xng of elements of a vector space X is a basis of X if it is a linearly
independent set and its span is equal to X. The dimension of X is the number of elements in a basis and
is independent of the particular basis used. 55

R3 is a ¯nite dimensional space of dimension 3. l1; C0 are in¯nite dimensional spaces.
For sums of subspaces, dim(R+ S) = dim(R) + dim(S)¡ dim(R \ S).

3.2.9 De¯nition: Let (X;F ), (Y; F ) be vector spaces. A map (or transformation) A : X7! Y is linear if

A(ax1 + bx2) = aA(x1) + bA(x2); 8a; b 2 F; 8x1; x2 2 X
X is called the domain of A and Y is the co-domain of A. 55

So far, we have treated vectors as abstract objects. However, in view of the de¯nition of a basis (its
existence and construction is somewhat involved) we can associate the vector to its representation in terms
of a given basis. For example, let fxig be a basis for the vector space X and let x 2 X be represented by
x =

P
i aixi. Then, if there is no ambiguity regarding the basis used, we can use the vector [a1; a2; : : :] to

denote x (row or column, depending on the context). In this context, it follows that a linear transformation
admits a matrix description, say A, where the i-th column of A are the coe±cients of A(xi) with respect
to the basis fyig. In principle, the linear transformation and its matrix representation should be assigned
di®erent symbols but this is not done here to avoid proliferation of notation.

3.2.10 De¯nition: Let A : X 7! Y be a linear map between two vector spaces X and Y . The null space
of A is de¯ned as

N (A) = fx 2 X : Ax = 0g
The range space of A is de¯ned as

R(A) = fy 2 Y : y = Ax for some x 2 Xg
The rank of A is de¯ned as the dimension of R(A): r(A) = dimR(A). 55

It is easy to show that both the null and range spaces are subspaces. Furthermore, notice that R(A) =
spanfaig where faig denotes the columns of A. An interesting property connecting dimensions is dimN (A)+
dimR(A) = dim(X).

3.2.2 Inner products and norms

The following group of de¯nitions and properties pertains to certain scalar-valued functions (functionals) of
vectors. They serve to de¯ne geometrical properties in a vector space, such as orthogonality, alignment and
distance.

3.2.11 De¯nition: An inner product is a scalar-valued function of two elements of a vector space X,
< ¢; ¢ >: X £X 7! C (or R) with the following properties:

1. 8x 2 X, < x; x >2 R, < x;x >¸ 0 and < x; x >= 0, x = 0.

2. 8x; y 2 X , < x; y >= < y; x >.
3. 8x; y 2 X; a 2 F , < x; ay >= a < x; y >.
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4. 8x; y; z 2 X , < x; y + x >=< x; y > + < x; z >.
where ¹¢ denotes the complex conjugate. A vector space equipped with an inner product is called an inner
product space (or pre-Hilbert) and is denoted by (X;<;>). 55

Common examples of inner poducts are x>y inRn, ¹x>y inCn, (other notations: xHy, x¤y),
R
x>(t)y(t) dt

in (C0;R) etc.

3.2.12 Lemma: (Cauchy-Schwarz inequality) In an inner product space, j < x; y > j ∙ p< x;x >p< y; y >,
8x; y 2 X. Equality holds i® x = ay or y = 0. 55

Proof: For y6= 0 and for any a 2 F ,
0 ∙< x¡ ay; x¡ ay >=< x; x > ¡a < x; y > ¡¹a < y; x > +jaj2 < y; y >

Taking a = <x;y>
<y;y>

the inequality follows. 22

3.2.13 De¯nition: A norm on a vector space X is a functional k¢k : X7! R with the following properties
(8x; y 2 X; 8a 2 F ):
1. kxk ¸ 0 and kxk = 0, x = 0 (nonnegativity).

2. kaxk = jajkxk (homogeneity).
3. ky + xk ∙ kxk+ kyk (triangle inequality).

A vector space equipped with a norm is called a normed (vector) space and is denoted by (X; k ¢ k). 55

3.2.14 Corollary: In an inner product space, kxk ¢
=
p
< x; x > is a norm. It is referred to as the norm

induced by the inner product and is often denoted by k ¢ k2. 55
Notice that norms may be de¯ned without the notion of an inner product. Norms themselves provide

a sense of distance, i.e., kxk can be interpreted as the distance of x from 0. As a distance the norm also
induces a topology for the vector space (i.e., open sets, neighborhoods). However, a topology and a distance
may be de¯ned without the use of a norm.

3.2.15 De¯nition: Two elements x; y of an inner product space are said to be orthogonal if < x; y >= 0.
A set of elements fxig is an orthogonal set if < xi; xj >= 0, 8i6= j; it is said to be orthonormal if, in
addition, < xi; xi >= 1, 8i.

Two elements x; y of an inner product space are said to be aligned if < x; y >= kxkkyk. 55
While orthogonality requires the notion of an inner product, alignment can be de¯ned in more general

terms between a normed space X and its "dual," X¤, the space of all bounded linear functionals on X.
These concepts are further explored in Functional Analysis.

An important result that connects orthogonality and norms induced by an inner product is the Pythagorean
theorem:

3.2.16 Theorem: In an inner product space, let x; y be two orthogonal vectors. Then kx + yk2 =
kxk2 + kyk2. 55

Proof: kx + yk2 =< x + y; x + y >=< x; x > + < y; y > + < x; y > + < y; x >. Observing that the
last two terms are zero, the result follows. 22

3.2.17 De¯nition: In an inner product space X, the orthogonal complement of a set S µ X is de¯ned
by

S? = fx 2 Xj < x; s >= 0; 8s 2 Sg
55

The orthogonal complement of a set is always a subspace. Furthermore, the following properties hold:

(R + S)? = R? \ S? (R \ S)? = R? + S?
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To show these properties, pick an element of the set in the left-hand side and show that it belongs to the
right-hand side and vice-versa.

An important property of orthogonal complements is that they are closed, i.e., they contain all their limit
points (or boundary or closure points). 1 In general, we have S µ S??. Equality holds i® S is a closed
subspace.

3.2.3 Banach and Hilbert Spaces

The following de¯nitions are introduced to establish the terminology. While they are associated with impor-
tant results, their deeper understanding is not required in the present development.

² A sequence fxng in a normed space is said to be Cauchy if kxn ¡ xmk ! 0 as n;m!1.
² A normed vector space X is complete if every Cauchy sequence of elements in X has a limit in X.
Such a space is called Banach.

² A complete pre-Hilbert space is called a Hilbert space. It is also a Banach space with norm induced
by the inner product.

Some important consequences of these de¯nitions are:

² In a Banach space a subset is complete i® it is closed. (Not necessarily true in general normed spaces.)
² In a normed vector space, any ¯nite dimensional subspace is complete. (Finite dimensionality alleviates
many technical problems!)

² Let R be a closed subspace of a Hilbert space X . Then X = R ©R?.

3.2.4 Linear Maps

A linear map between two Hilbert spaces (e.g., Rn;Cn) induces a certain geometric structure of these spaces.
That is, it allows the decomposition of the two spaces in subspaces related to the properties of the map.

3.2.18 De¯nition: Let A : X 7! Y be a linear map between Hilbert spaces. The adjoint map is de¯ned
as a map A¤ : Y 7! X such that

< y;Ax >Y=< A
¤y; x >X

for all x 2 X , y 2 Y . 55
The adjoint map is also linear. When X;Y are Rn;Rm then A¤ = A>, i.e., it is associated with the

usual transpose of the matrix. For the complex case, the adjoint is the complex-conjugate transpose (AH or
A¤).

3.2.19 Lemma: (Four fundamental subspaces, ¯nite dimensional case) For a linear map A : X 7! Y ,
R(A)? = N (A¤), N (A)? = R(A¤). 55

Proof: For the ¯rst equality, let y 2 R(A)?. Then for all x 2 X, < y;Ax >= 0. Hence, < A¤y; x >= 0
which implies that A¤y = 0 or y 2 N (A¤). Hence, R(A)? µ N (A¤).

Now, let y 2 N (A¤) implying that < A¤y; x >= 0, for all x 2 X. This implies that < y;Ax >= 0 and,
therefore, y 2 R(A)?. Hence, in view of the ¯rst part, N (A¤) µ R(A)?. Therefore N (A¤) = R(A)?.

For the second equality, let x 2 N (A). So, for all y 2 Y , < y;Ax >= 0 =< A¤y; x >. Hence, x 2 R(A¤)?
and N (A) µ R(A¤)?

Next, let x 2 R(A¤)?. Then, for all y 2 Y , < x;A¤y >= 0 =< Ax; y >. So, Ax = 0 and x 2 N (A).
Hence, R(A¤)? µ N (A). The two imply that R(A¤)? = N (A).

Taking orthogonal complements N (A)? = R(A¤)??. In general the right-hand side is the closure of
R(A¤) which is equal to R(A¤) itself if it is a closed subspace, e.g., when it is ¯nite dimensional. 22

1x 2 X is a closure point of a set P if given any ² > 0 there is p 2 P : kx¡ pk < ². On the other hand, P ½ X is open if for
any p 2 P there exists an ² > 0 such that all x satisfying kx¡ pk < ² are also members of P .
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3.2.20 De¯nition: A linear map A : X 7! Y is said to be

² onto, if R(A) = Y .
² one-to-one (1-1) if N (A) = f0g (Ax1 = Ax2 ) x1 = x2)

² invertible if it is 1-1 and onto.
55

3.2.21 Properties: For a linear map A : X7! Y ,

² A is onto i® r(A) = dim(Y ) (full row rank).
² A is 1-1 i® r(A) = dim(X) (full column rank).
² A is invertible i® r(A) = dim(X) = dim(Y ).
² r(A) = r(A¤)
² if A is onto then there exists a right inverse of A, say A¡R such that AA¡R = I.
² if A is 1-1 then there exists a left inverse of A, say A¡L such that A¡LA = I.
² if A is invertible then A¡R = A¡L = A¡1.

55
For example, A = (1; 2) is onto, with a right inverse (3;¡1)>. On the other hand A = (1; 2)> is 1-1 with

a left inverse (3;¡1). But,

A =

0@ 1 1 1
2 1 1
3 1 1

1A
is neither.

In relation to norms, the gain or induced norm of a linear operators is de¯ned as follows:

3.2.22 De¯nition: For a linear map A : X 7! Y ,

kAkY X = sup
x6=0

kAxkY
kxkX = sup

kxkX=1
kAxkY

55
Often, the notation is simpli¯ed to kAkip or kAkp when the p-norm is used for both X and Y vector

spaces. While matrix norms are not always easily computable, it follows that the induced 2-norm (i.e.,

with vector norms induced by the inner product) kAk2 = ¹¾(A) = ¸1=2max(A¤A) = ¸
1=2
max(AA¤) (the maximum

singular value of A). The geometric interpretation of the maximum singular value is the radius of the smallest
unit ball in Y that contains the map of the unit ball in X.

It can be shown that induced norms are also norms for matrices (i.e., making the matrix vector space, a
normed space). However, the converse is not always true. In particular, an important property of induced
norms is that they are consistent, that is kAxk ∙ kAkkxk and kABk ∙ kAkkBk. This, together with the
triangle inequality of norms o®er the basic tools in various bounding procedures.

An example of a matrix norm that is consistent but not induced is the so-called Frobenius norm kAkF =
(
P

i

P
j jai;j j2)1=2. This norm is consistent with the usual Euclidean vector norm or 2-norm, induced by the

inner product. On the other hand, the norm maxi;j jai;j j satis¯es all the norm axioms but is not consistent.

EEE480/482 K. Tsakalis 46



The proof of this statement is by counterexample: Verify that the submultiplicative property does not hold
for the case

A = B =

µ
1 1
1 1

¶
3.2.23 Other Matrix Properties:

² A matrix A is called symmetric if A> = A (Hermitian for the complex case where the transpose is
replaced by complex conjugate transpose). Symmetric matrices have real eigenvalues and posess a
complete orthonormal set of eigenvectors. They are diagonalizable by an orthogonal matrix.

² A matrix A is called orthogonal if A> = A¡1 (Unitary in the complex case). The eigenvalues of an
orthogonal matrix have magnitude one. Orthogonal matrices de¯ne a rotations transformation and
they are norm-preserving (kAxk2 = x>A>Ax = kxk2).

² A matrix is skew-symmetric if A> = ¡A. For real vectors, x>Ax = 0.
² A matrix is normal if it commutes with its transpose (AA> = A>A). Normal matrices are all the
matrices that can be diagonalized by an orthogonal matrix.

² A real matrix A is called positive de¯nite if it is symmetric and x>Ax > 0 for all x 6= 0. When
x>Ax ¸ 0, 8x the matrix is called positive semi-de¯nite. (Notation: A = A> > 0 and A = A> ¸ 0
respectively.)

² A symmetric matrix is positive de¯nite (semi-de¯nite) i® all its eigenvalues are positive (nonnegative).
² For a symmetric matrix A the following inequality holds

¸min(A)x
>x ∙ x>Ax ∙ ¸max(A)x>x

where ¸min; ¸max denote the minimum and maximum eigenvalues respectively.

55

3.2.5 Projections

Consider a decomposition of a vector space as X = R©S. Then every element in X can be written uniquely
as x = r + s where r 2 R, s 2 S. A projection PR;S is de¯ned as a map X 7! R by PR;Sx = r. In
general, these are called oblique projections (on R along S). Note that both subspaces R and S must be
speci¯ed since the complement of a subspace is not unique. However, when the orthogonal complement is
used (S = R?) then the projection is called orthogonal and it is denoted by PR.

A projection is a linear operation and it is identity on the subspace onto which it projects. This obser-
vation gives rise to the following properties.

3.2.24 Properties: For a linear map associated with a matrix P ,

² P is a projection i® it is idempotent, i.e., P 2 = P .
² P is a projection i® I ¡ P is a projection.
² P is an orthogonal projection i® P 2 = P = P ¤.

55
Typical examples of projections are:

² Assume A¤A is invertible (A is full column rank). Then P = A(A¤A)¡1A¤ is an orthogonal projection
onto R(A).

² Assume AA¤ is invertible (A is full row rank). Then P = A¤(AA¤)¡1A is an orthogonal projection
onto R(A¤) = N (A)?.
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3.2.6 Singular Value Decomposition

The singular value decomposition (SVD) is a canonical decomposition of a matrix, similar to the eigenvalue-
eigenvector decomposition. In contrast to the latter, however, it exists for all matrices and it can be computed
with numerically robust algorithms. It plays a signi¯cant role in the solution of linear systems of equations as
it provides a numerically reliable method to compute a basis and projection matrices for the four fundamental
subspaces.

3.2.25 Theorem: Let A 2 Rm£n be a matrix of rank q. Then there exist orthogonal matrices U 2 Rm£m,
V 2 Rn£n such that A = USV >.

S is a special matrix with block diagonal structure:

S =

∙
§ 0
0 0

¸
where § = diag(¾1; : : : ; ¾q) is a diagonal q £ q matix. Its entries are positive and called the singular values
of A. The rest of the matrix S is zero blocks of appropriate dimensions. 55

² The SVD of a matrix is not unique.
² The singular values of A are also the square-roots of the non-zero eigenvalues of A>A and AA>.
² Even though the SVD can be de¯ned in terms of eigenvalue-eigenvector decomposition of A>A and
AA>, these do not provide good numerical methods for its computation.

² Using the natural partitioning of S, the SVD of a matrix A can be written as

A = (U1; U2)

µ
§ 0
0 0

¶µ
V >1
V >2

¶
where U1 is an m£ q matrix and V >1 is a q £ n matrix. Then, A = U1§V >1 .

² span(U1) = R(A), span(U2) = R(A)?.
² span(V1) = N (A)?, span(V2) = N (A).
² U1U>1 de¯nes a projection on R(A).
² U2U>2 = I ¡ U1U>1 de¯nes a projection on R(A)?.
² V1V >1 = I ¡ V2V >2 de¯nes a projection on N (A)?.
² V2V >2 de¯nes a projection on N (A).

3.2.7 Optimization in Vector Spaces

One of the most powerful and important optimization principles is the projection theorem. Much of its
power and simplicity hinges on the availability of an inner product and the induced special way distances
are measured. In its simplest form, it states that the shortest distance from a point to a line is given by
the perpendicular from the point to the line. Easily generalized to n-dimensional and in¯nite dimensional
vector spaces, it provides a general tool to assess existence and uniqueness of solutions as well as to guide
the development of computational procedures.

The optimization problem considered is this: Given a vector x in a pre-Hilbert space X and a subspace
M in X, ¯nd the vector m 2M closest to x in the sense that it minimizes kx¡mk.

The fundamental questions on the uniqueness and characterization of the solution are addressed by the
following preliminary theorem.

3.2.26 Theorem: Let X be a pre-Hilbert space, M a subspace of X and x 2 X an arbitrary vector. If
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there is a vector m0 2 M such that kx ¡m0k ∙ kx ¡mk, 8m 2 M , then m0 is unique. A necessary and
su±cient condition that m0 2 M is the unique minimizing vector in M is that the error vector x ¡m0 is
orthogonal to M . 55

Proof: We show ¯rst that if m0 is a minimizing vector, then x ¡m0 is orthogonal to M . Suppose to
the contrary, that there exists m 2M not orthogonal to x¡m0. Without loss of generality, we can assume
kmk = 1 and < x¡m0;m >= ±6= 0. De¯ne m1 = m0 + ±m 2M . Then

kx¡m1k2 = kx¡m0 ¡ ±mk2
= kx¡m0k2¡ < x¡m0; ±m > ¡ < ±m; x¡m0 > +j±j2
= kx¡m0k2 ¡ j±j2 < kx¡m0k2

Thus, m0 cannot be a minimizer.
Next, we show that if the orthogonality condition holds, then m0 is unique. For any m 2 M the

Pythagorean theorem gives

kx¡mk2 = kx¡m0 +m0 ¡mk2 = kx¡m0k2 + km0 ¡mk2

Thus, if m6= m0, then kx¡mk > kx¡m0k. 22

The remaining question of existence requires a strengthening of the hypotheses. In particular, the problem
lies in the closedness of the sets which would ensure the existence of a minimizer. Loosely speaking, without
the closedness condition, the minimizer may be on the \boundary" of the set; then, a sequence fmig may
be constructed so that kx ¡mik converges to the in¯mum of the distance kx ¡mk; but the sequence does
not converge to an element in M .

3.2.27 Theorem: (Classical Projection Theorem) Let H be a Hilbert space, M a closed subspace of
H . Corresponding to any vector x 2 X, there is a unique vector m0 2 M such that kx ¡m0k ∙ kx ¡mk,
8m 2 M . A necessary and su±cient condition that m0 2 M is the unique minimizing vector in M is that
the error vector x¡m0 is orthogonal to M . 55

Proof: The uniqueness and orthogonality have been established by the previous theorem. To establish
existence, de¯ne ± = infm2M kx ¡mk > 0. (If the in¯mum is zero, then x 2 M and m0 = x.) We wish to
produce an m0 2M for which kx¡m0k = ±. For this purpose, let fmig be a sequence of vectors in M such
that kx¡mik ! ±. By the parallelogram law2

k(mj ¡ x) + (x¡mi)k2 + k(mj ¡ x)¡ (x¡mi)k2 = 2kmj ¡ xk2 + 2kx¡mik2

Rearranging, we obtain

kmj ¡mik2 = 2kmj ¡ xk2 + 2kx¡mik2 ¡ 4kx¡ (mi +mj)=2k2

For all i; j, the vector (mi +mj)=2 is in M , so kx¡ (mi +mj)=2k ¸ ± and we obtain
kmj ¡mik2 = 2kmj ¡ xk2 + 2kx¡mik2 ¡ 4±2

Since kx ¡mik ! ± as i ! 1 we conclude that kmi ¡mjk ! 0 as i; j ! 1. Therefore, fmig is a Cauchy
sequence and since M is a closed subspace of a complete space, it has a limit m0 2 M . Finally, by the
continuity of the norm, it follows that kx¡m0k = ±. 22

Much of the usefulness of the Classical Projection Theorem comes with the availability of algorithms to
perform the necessary projections. Its true value, however, is in the in¯nite dimensional case which would
be di±cult to handle with conventional arguments. It is an extremely valuable tool in approximation theory
and Fourier series.

An important direct extension of the projection theorem is in the case of minimizing the distance to a
convex set.3

2In an inner product space, kx+ yk2 + kx ¡ yk2 = 2kxk2 + 2kyk2; proof by direct expansion of the norms in terms of the
inner product.

3A set K in a vector space is convex if, given any x; y 2 K, then all points on the line ax+ (1¡ a)y with 0 ∙ a ∙ 1 are in
K.
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3.3 Solution of Linear Equations

The topic of this section is the solution of linear equations of the form Ax = b. Throughout the presentation
A is a real matrix m £ n and b is a real vector m£ 1. This fundamental problem arises very frequently in
modeling and approximation. A slightly more general version occurs when the ¯eld (scalars) is the set of
complex numbers. In such a case, the results are still valid with some minor changes (complex conjugate
transpose instead of a transpose). The more interesting generalization is to the in¯nite dimensional case
through the use of linear operators and their adjoints. While still similar in form, the results involve a fair
amount of technical issues.

The existence and uniqueness of solutions for the basic problem can be easily addressed in the framework
of the previous section. That is, for the system of equations Ax = b,

1. there exists a solution i® b 2 R(A);
2. there exists a solution for all b 2 Rm i® R(A) = Rm (A is onto);

3. the solution is unique i® N (A) = f0g (A is 1-1);
4. there exists a unique solution for any b 2 Rm i® A is invertible.

5. For the special case Ax = 0, there exist nontrivial solutions i® r(A) < n (A is not 1-1).

Certainly, the computation of the solution, whenever it exists, is an important problem. However, in
practice it is often the case that solutions do not exist (e.g., approximation problems). To address this issue,
it is useful to embed the basic problem into a more general class of optimization problems, that is:

min
x2Rn

kAx¡ bk

This is the celebrated Least-Squares problem, with its name justi¯ed by the selection of the norm (Eu-
clidean or 2-norm). Clearly, when solutions exist, this minimization problem is equivalent to solving Ax = b.
In view of the Classical Projection Theorem, this problem can be recast as

min
y2R(A)

ky ¡ bk

which has a unique solution. Now, there exists a solution for Ax = y but it may not be unique. Depending
on the problem at hand, we may be interested in characterizing all solutions or selecting one that has certain
additional properties. For the latter, it is convenient (and often possible) to express the additional desired
properties as the solution of an optimization problem. That is, suppose that S is the set of solutions to
Ax = y. Then we seek a vector x¤ solving the problem:

min
x2S

kx¡ x0k

where x0 is a given vector. When x0 = 0, this problem is referred to as the Minimum Norm problem.

3.3.1 Characterization of all solutions

The problem here is to characterize all solutions to Ax = b, assuming that there exists at least one solution.

3.3.1 Proposition: Suppose that x0 is a solution to Ax = b. Then a vector x is a solution i® it belongs
to the variety x0 +N (A). 55

Proof: (if): Suppose that x 2 x0+N (A), i.e., x = x0+xn with xn 2 N (A). Then Ax = A(x0+xn) =
Ax0 +Axn = Ax0 = b.

(only if): Suppose Ax = b. Then Ax¡Ax0 = b¡b = 0 so A(x¡x0) = 0 implying that x¡x0 = xn 2 N (A).
22
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This simple argument provides a very important tool. Its usefulness can be seen, for example, in opti-
mization. Suppose that we want to minimize a functional f(x) subject to the constraint Ax = b. Let N be
a matrix whose columns are a basis for N (A). Then, given a particular solution x0, the constraint becomes
x = x0 +Ny where y is a dimN (A)-dimensional vector. Substituting, we get the equivalent unconstrained
optimization problem to minimize f(x0+Ny) = g(y) with respect to y. Furthermore, since the relationship
between x and y is a±ne, the form of f is left essentially una®ected (e.g., quadratic forms in x remain
quadratic in y).

3.3.2 The Minimum Norm problem

Let A be an m£n real matrix with m < n and A being onto (full row rank). We are interested in computing
the minimum norm solution to Ax = b.

Since A is onto, then a solution exists for any b 2 Rm. In view of the parametrization of all solutions,
we are interested in solving the optimization problem

min
m2N (A)

kx0 ¡mk

where x0 is a particular solution. (The desired x would then be x0 ¡ m.) From the Classical Projection
Theorem we have that the solution to this problem, saym0, exists, is unique and x0¡m0 should be orthogonal
to N (A). In other words, x0 ¡m0 is the projection of x0 onto N (A)?. This projection can be computed
easily by

PN (A)?(x0) = A>(AA>)¡1Ax0
Notice that A being onto ensures the invertibility of AA> (the proof of that is not trivial but it is straight-
forward). Finally, since x0 is a solution, we have that Ax0 = b from which we get an expression that is
independent of x0.

Thus, the solution to the minimum norm problem is

xMN = arg min
Ax=b

kxk = A>(AA>)¡1b
kxMNk = min

Ax=b
kxk = (b>(AA>)¡1b)1=2

Observe that even though we began by considering a particular solution, the ¯nal answer involves only
the problem data (A; b).

3.3.3 The Least Squares problem

Let A be an m £ n real matrix with n < m and A being 1-1 (full column rank). We are interested in
computing the least squares solution to Ax = b.

Here, a solution may not exist in a strict sense since, in general, R(A) ½ Rm and an arbitrary b 2 Rm

may not be in R(A). For this reason, we seek to minimize the di®erence between the left- and right-hand
side. To solve this problem, let y = Ax so y 2 R(A), whereby the least-squares optimization problem
becomes

min
y2R(A)

ky ¡ bk

From the Classical Projection Theorem we have that there exists a unique minimizer y0 and such that y0¡ b
is orthogonal to R(A). 4

Next, in order to compute y0 and the corresponding x0, we observe that y0 is the projection of b onto
R(A). Thus,

y0 = PR(A)(b) = A(A>A)¡1A>b
and since Ax0 = y0 it follows that x0 = (A

>A)¡1A>b; this solution is also unique since A is 1-1.
4In general, the uniqueness of y0 does not imply uniqueness of an x0 such that Ax0 = y0. This is true in our special case

since A was assumed to be 1-1.
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In conclusion, the least squares solution can be computed by the following simple formula:

xLS = arg min
x2Rn

kAx¡ bk = (A>A)¡1A>b
kAxLS ¡ bk = min

x2Rn
kAx¡ bk = [b>(I ¡A(A>A)¡1A>)b]1=2

where for the latter, we used the fact PR(A)? = I ¡ PR(A).
An interesting observation in this problem is that regardless of A, R(A>) = R(A>A) as long as R(A)

is closed. To show this, decompose the domain of A> to N (A>) © N (A>)? and use N (A>)? = R(A),
provided that the latter is closed. This implies that solutions to A>Ax = A>b exist. It can be shown
that these solutions are also minimizers for the origninal least-squares problem and vice-versa. The set of
equations A>Ax = A>b is referred to as the normal equations.

3.3.4 The general problem: Solution through SVD

In the previous discussion we have developed some simple expressions for the solution of special-case least
squares and minimum norm problems. The assumptions were concerned with the nonsingularity of a certain
matrix that may not be satis¯ed in the general case. A more critical issue is that with actual data these as-
sumptions may be formally satis¯ed but the correpsonding matrix can be near-singular or badly-conditioned.
This would increase the sensitivity of the solution to numerical round-o® errors and/or perturbations in the
data. To address these issues, a numerically more reliable solution can be obtained via the SVD of the
matrix A.

Let A be an m£ n matrix and consider the problem

minx kxk
s.t. kAx¡ bk = min

x
kAx¡ bk

Using the SVD, write A = USV >, and de¯ne w = V >x. Since V is invertible, the above minimization
problem is equivalent to

min
w
kUSw ¡ bk = min

w
kU(Sw ¡ U>b)k = min

w
kSw ¡ (U>b)k

where the last equality follows from the fact that U is orthogonal (unitary) and, therefore, norm-preserving.
Furthermore, notice that since V is also orthogonal (unitary), kwk = kxk and any minimization of kwk is
equivalent to the minimization of kxk.

Next, let q be the rank of A and de¯ne the vector c = U>b. Bringing in the special structure of S, the
minimization problem becomes

min
w

°°°°°°°°°°°°°°°°°

µ
§ 0
0 0

¶
0BBBBBBBB@

w1
...
wq
wq+1
...
wn

1CCCCCCCCA
¡

0BBBBBBBBBBB@

c1
...
cq
cq+1
...
...
cm

1CCCCCCCCCCCA

°°°°°°°°°°°°°°°°°
where § is a q £ q matrix. Clearly, the least squares solution is

w1 = c1=¾1; : : : ; wq = cq¾q; fwq+1; : : : wng arbitrary

and the corresponding least squares error is (jcq+1j2+ ¢ ¢ ¢+ jcmj2)1=2. Furthermore, the minimum norm least
squares solution is obtaind by setting wq+1 = ¢ ¢ ¢ = wn = 0.
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Thus, translating the result back to the original coordinates, we have

xLSMN = V

0BBB@
§¡1[U>b]q1
0
...
0

1CCCA = [V ]q1
¡
§¡1[U>b]q1

¢

where [U>b]q1 denotes the ¯rst q elements of the vector U
>b and [V ]q1 denotes the ¯rst q columns of V .

The practical usefulness of this approach is in the ability to set a threshold on the singular values of the
matrix A that will be inverted. Thus the sensitivity of the solution is reduced at the expense of a slight
increase in the error that can be decided a priori.

Finally, it should be mentioned that variants of this approach can be constructed that do not require the
SVD of the whole matrix, something that can be important in large problems (i.e., large m).

3.3.5 Weighted Least Squares Minimum Norm Problems

We conclude this chapter with a few comments on weighted versions of the basic Least Squares Minimum
Norm problem. Such a case may arise in applications where, for example, certain directions in the approxima-
tion should be emphasized. Similarly, in the minimum norm problem there may be directions (components
of x) that is desirable to keep small.

Both of these cases can be handled by using weighted norms, de¯ned as follows:

kxkQ =
p
x>Qx

For the above expression to constitute a norm Q must be a positive de¯nite matrix (Q = Q> > 0). Similarly,
one can de¯ne Q-orthogonality via the inner product x>Qy etc. Degenerate cases where Q ¸ 0 can also
occur but they require somewhat di®erent techniques and are not considered here. A standard way to handle
such problems is through a coordinate transformation via the square-root of Q. For a positive (semi) de¯nite

matrix the square root exists and is also positive (semi) de¯nite and satis¯es
p
Q
>p

Q = Q. Now, de¯ne the
new coordinates as ¹x =

p
Qx, where k¹xk = kxkQ. In the new coordinates, the weighted norm becomes the

standard Euclidean norm and orthogonality works in the usual sense.
As an application of this approach consider the weighted LSMN problem

minx kxkR
s.t. kAx¡ bkQ = min

x
kAx¡ bkQ

De¯ne the new coordinates for the domain and co-domain as ¹x =
p
Rx and ¹y =

p
Qy. So, kxkR = k¹xk and

kAx ¡ bkQ = k
p
QA

p
R
¡1
¹x ¡pQbk. With an obvious notation the weighted problem is now equivalent to

the original one, but in new coordinates:

min¹x k¹xk
s.t. k ¹A¹x¡ ¹bk = min

¹x
k ¹A¹x¡ ¹bk

Of course, once the solution is found, it should be converted to the original coordinates through the inverse
transformation. Even though this is not hard, it is usually possible (and preferable) to manipulate the
expressions so that the solution is computed directly in the original coordinates.
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