
Chapter 0

Examples of System Models

0.1 Introduction

In the following, we examine the modeling of a few practical problems where feedback control is crucial. The
selection of these examples is based on the type of models that describe underlying systems to be controlled
(plants) and on the ability to provide simple approximations of these models. Our main objective is to
expose typical modeling problems that arise in control systems design. Common features of these problems
are:

² Modeling of the plant can rely on theory from diverse disciplines.

² The complexity of practical problems can increase almost without bounds, depending on the desired
level of detail.

² Successful applications of feedback control (like any engineering design) hinge on making reasonable
simplifying assumptions.

² Quantifying the modeling error is critical for a successful controller design (with minimal trial and
error).

In particular, regarding model simpli¯cations, it is true that very detailed models are often unnecessary.
This is the beauty of feedback control as well as its main di±culty: The modeling approximations should
be valid/reasonable during feedback operation. The domain of validity of the model is a question that
should be resolved at the modeling step. This should then be used -in the form of speci¯cations- to design a
controller that does not cause the system to operate beyond this domain. In a sense, what we try to achieve
is reasonably good closed-loop performance with the simplest possible model. The alternatives are not very
appealing: Trial-and-error controller designs or extremely detailed models are time-consuming and expensive
approaches.

For feedback controller design purposes, the modeling error can be quanti¯ed in a simple, theoretically
sound, and practically meaningful way by estimating the spectral properties of the \multiplicative model
uncertainty."1 In a quick overview, given a system G and a model G0, the multiplicative uncertainty is
de¯ned as a system ¢m such that G = (1 + ¢m)G0. (That is, it represents a percent-error in the system
description.) Its spectral properties (magnitude) are then given by 2

j¢(jw)j = jG(jw)¡G0(jw)jjG¡10 (jw)j
For computational purposes, this expression is useful when analytical models are available. Alternatively, if
we apply a test input u to the system and de¯ne y = G[u] as the measured (actual) output and y0 = G0[u] as

1See details in the class notes `On the notion of the \size" of a system and its applications.'
2Here we assume thatG andG0 are local LTI systems represented by transfer functions. For nonlinear systems, the maximum

(worst-case) should be computed over several linearization points.
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the model (predicted) output, then y¡y0 = ¢m[y0]. This simple expression suggests the following procedure
for determining the spectrum of ¢m:

1. Perform an experiment with a test input u and collect the system response data y. 3

2. Compute the model response y0 = G0[u], e.g., via simulation.
4

3. Compute the Fourier transform (e.g., FFT) of the error y ¡ y0 and y0.
4. Compute the uncertainty bound estimate j¢m(jw)j = j(y ¡ y0)(jw)j=jy0(jw)j.

A simple interpretation of this bound is very useful: The closed-loop bandwidth should be restricted to the
interval where j¢m(jw)j < 1.

Note: In the following examples, the units of all numerical values are in SI, unless otherwise mentioned.

0.2 Power Control System: Static model with high frequency par-
asitics

The delivery of a controlled and adjustable amount of power is required in a variety of applications, such as,
welding, lighting, heating, motor-speed control. While voltage control is a rather expensive approach, the
use of SCR/triacs has provided an e±cient and cheap approach to control the current (and hence power)
delivered to a load. A typical application of this circuit is as a control actuator. As such, the power is
controlled indirectly, by measuring its e®ect on the output of interest (temperature, motor speed, light
intensity).

A simpli¯ed circuit for power control using two SCRs is shown in Fig. 0.1. 5 In this circuit, two SCRs

~Line
Vm sin wt

Control
Circuit

SCR Load
RL

Input voltage

Load Voltage

a = wt

Conduction angle

Figure 0.1: SCR Power Control circuit.

3The test input should contain energy in a wide range of frequencies. For nonlinear systems, u should be a perturbation
around a steady-state/linearization point.

4Typically the model is (or is interpreted as) a local model which allows the adjustment of o®sets and initial conditions.
For example, suppose that (us; ys) is a steady-state of the actual system and ymeas is the measured response to the applied
input uappl. Then the local model G0 aims to predict the variation in the output ymeas ¡ ys for a given variation of the input
uappl¡us. (The model prediction of the output would be G0[u¡us]+ys.) Looking at the variations only, we let y = ymeas¡ys,
u = uappl¡us and the rest of the procedure remains unchanged. Such an adjustment is consistent with the design of controllers
that have integral action which guarantees zero steady-state o®sets.

5Ref: Millman and Halkias, Integrated Electronics: analog and digital circuits and systems. McGraw Hill, New York, 1972.
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connected in inverse parallel are used to control the negative and positive cycles of the AC power line. The
SCR control circuit determines when one of the SCRs is triggered ON, connecting the line voltage to the
load. The output power can be varied by controlling the phase of the conduction (conduction angle) of the
SCRs. With an appropriate circuitry, the latter can be achieved by means of a voltage signal generated
by, e.g., a computer. Thus, the overall power control system can be viewed as a system with input the
conduction angle and output the power delivered to the load.

To derive a model for this system, we use the expression of the instantaneous power

P (t) = V (t)I(t)

where I(t) = 0 when the SCR is OFF and I(t) = V (t)=RL =
Vm
RL
sinwt when it is ON. 6 For a conduction

angle Á, the SCR is on for the part of the cycle where ¼ ¡ Á < a < ¼ and 2¼ ¡ Á < a < 2¼, where a is wt
modulo 2¼. 7 Hence, the average power (over a cycle) delivered to the load is

Pa =
1

¼

Z ¼

¼¡Á

V 2m
RL

µ
1

2
¡ 1
2
cos 2a

¶
da =

V 2m
2¼RL

µ
Á¡ sin 2Á

2

¶
For control systems design purposes, we can then write the following input-output model:

Pa(¿ ) =
V 2m
2¼RL

µ
Á(¿ )¡ sin 2Á(¿)

2

¶
Alternatively, with the customary notation u; y for the input and output and normalizing u to the interval
[0; 1],

y(¿ ) = K

µ
u(¿ )¡ sin 2¼u(¿ )

2¼

¶
where K = V 2m=2RL.

In this expression we used ¿ as the time variable to emphasize the distinction between the actual instan-
taneous power and its average. Notice that, the power is delivered to the load in a discontinuous manner
and the use of this circuit for power control relies heavily on the averaging properties of the underlying
system. For example, if the power is used for heating purposes it is \obvious" that the approximation of
the supplied power by Pa is su±cient to describe the bulk of the system behavior. The contribution of the
fast switching of the current (60 Hz and higher harmonics) becomes negligible as it is greatly attenuated by
the low-pass nature of the heat transfer. 8 In a control systems terminology, we say that the uncertainty in
above simpli¯ed model of the power control system becomes large at high frequencies and hence its control
objectives should be limited to low frequencies.

With this in mind, we return to the use of t as the time variable. Our power control circuit has a static
(memoryless) nonlinear description

y(t) = K

µ
u(t)¡ sin 2¼u(t)

2¼

¶
As an additional simpli¯cation, we can attempt to provide a linear approximation of this model. Using the
average slope over the entire operating region a linear model of the linear approximation of the system is
just

y(t) = Ku(t)

Notice that the actual slope ranges from 0 to 2 so, locally, the di®erence in slopes can be quite large. Similarly,
variations in Load resistance (e.g., due to temperature) will also a®ect the gain constant K. Any control
system should therefore be able to tolerate such model di®erences.

6Here we assume a pure resistive load.
7Here we assume that the SCR voltage drop is negligible relative to Vm.
8This argument assumes a relatively \large" heating mass and speci¯c heat.
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Simulation Experiment: The ¯le scr_control.mdl contains a Simulink model of the SCR Power Control
System. You should study the di®erence between the \complete" circuit model and the averaged
approximate model for di®erent time constants of the output power ¯lter.

Numerical values: Vm = 100, RL = 100, w = 2¼60.

0.3 Car Cruise Control: Simple 1st-order model

Cruise control is commonly available in many modern vehicles. The system to be controlled describes the
dependence of the output variable of interest (speed) on the manipulated variable (throttle position). Most
of this dependence can be expressed with a straightforward application of Newton's law. However, the
complexity of the model increases vastly when more detail is desired. Friction, wind resistance, and engine
dynamics require considerable e®ort and experiments to model.

Newton's law relates the velocity of the car with the sum of the forces applied on it. Including some of
the important terms (throttle acceleration (Fa), friction and wind resistance (Ff ), gravity (Fg)), the model
takes the form

m
dv

dt
= Fa + Ff + Fg

where m is the vehicle mass and v is the velocity.
Fa is the force applied on the car due to the torque produced by the engine. This depends on engine and

gearbox characteristics, but for our purposes we will simply take that Fa = cau, where ca is a proportionality
constant and u is the throttle position.9

The friction term Ff is typically of the form Ff = ¡cf jvjv with cf being an aggregate friction/wind
resistance coe±cient. Obviously, this is a gross simpli¯cation, but it is su±cient to account for the main
contributions during normal operation. Changes in this term due to wind gusts or following other vehicles
present perturbations that should be compensated by the control system. We will not even attempt to model
the precise aerodynamic forces, although they could be very important in, e.g., racing cars.

The last term serves to describe the e®ect of gravitational forces when the vehicle moves on an incline.
Thus, Fg = ¡mg sinÁ where Á is the angle between the horizontal and the velocity vector. This angle is
treated as an unknown external disturbance for which amplitude and frequency spectrum bounds can be
available.

Collecting all the terms, we obtain a model of the form

dv

dt
=
ca
m
u+

¡cf jvjv
m

¡ g sinÁ

Next, we linearize the model around an operating point where v = v0. This linearization is meaningful since
we do not expect great variations in the vehicle speed when the cruise control system is engaged. De¯ning
the output of interest as y = v ¡ v0, we have

dy

dt
= ¡Ay +Bu+ d

where A = 2v0cf=m, B = ca=m and d = ¡cfv20=m ¡ g sinÁ. Notice that, while the basic dynamics of this
model are ¯rst order, A depends on the vehicle speed, B also depends on the speed indirectly through the
engine characteristics (ca) and d depends on speed and road incline. The control system should therefore
adjust the throttle position u to compensate for the e®ect of external disturbances and tolerate variations
in the model parameters.

Simulation Experiment: The ¯le car_control.mdl contains a Simulink implementation of the simple
nonlinear model of the car speed. Construct a linearized model and compare its behavior with the
nonlinear one. (How could you estimate the model parameters using experimental measurements?)

Numerical values: m = 1500, ca = 1500, cf = 0:5.

9A more realistic model could be obtained by de¯ning u to be a \commanded force" which is subsequently resolved to
throttle position and brake application.
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0.4 Temperature Control: From distributed-parameter to simple

models

Temperature control systems form the core of many industrial applications. One of the main reasons is
that physical and chemical properties of substances show a considerable dependence on temperature. First-
principles modeling of a temperature control system relies on the application of energy balance principles
(energy accumulation = energy in - energy out). This results in fairly complicated, usually nonlinear, partial
di®erential equations (distributed parameter (in¯nite dimensional) systems). Typically, the accuracy of such
models is good provided that su±cient detail has been included in the model. Such models are useful in
process design and optimization but their solution requires numerical methods. On the other hand, the use
of macroscopic properties allows the derivation of much simpler models that describe the bulk of the dynamic
behavior of the system. Such models require the experimental determination of aggregate parameters (e.g.,
heat transfer coe±cients) and have a relatively narrow range of validity but they are useful in control systems
design.

As a ¯rst example of a temperature control system, let us consider the heating of a tubular piece of
equipment. Suppose that heat is supplied to the tube at an adjustable rate q, e.g., by means of a heating
coil. The tube loses energy (heat) to the surroundings at a rate proportional to the surface area times
the di®erence between tube and ambient temperature. Finally the rate of change of the tube energy is
proportional to the rate of change of its temperature. Thus, the macroscopic energy balance can be written
as

mcp
dT

dt
= q ¡ hsAs(T ¡ T0)

where m is the mass, cp is the speci¯c heat (heat capacity) of the material, As is the exterior surface area,
hs is the heat transfer coe±cient (to the ambient) and T0 is the ambient temperature.

10 From this we see
that the temperature dynamics follow a ¯rst-order low-pass model with respect to the supplied heat

dy

dt
= ¡Ay +Bu+ d

where u is the supplied heat normalized to the interval [0,1] (i.e., q = qmaxu) y is the tube temperature and
A;B; d are constants depending on the model parameters.

It should be emphasized that in reality, the temperature T predicted by this model does not necessarily
correspond to the temperature of any particular point of the tube but it is an average temperature (in
some sense). Furthermore, the various constants actually depend on the temperature itself as well as other
external variables (e.g., pressure). Still, the model is useful in determining at least the local properties of
the temperature response which are important in the design of a control system.

As a second example of a temperature control system, let us consider the previous tube with the addition
of air °owing through its interior. For this, we write macroscopic heat balances for the tube and the air.

mcp
dT

dt
= q ¡ hsAs(T ¡ T0)¡ haAa(T ¡ Ta)

½aV ca
dTa
dt

= ¡½aFca(Ta ¡ Ta0) + haAa(T ¡ Ta)

where Ta is the air temperature inside the tube (also equal to the exit temperature), Ta0 is the inlet air
temperature, ca is the speci¯c heat for air, ½a is the air density, F is the air °ow, ha is the heat transfer
coe±cient from the tube to the air and Aa is the interior surface area.

Our model now takes the form

d

dt

∙
T
Ta

¸
=

∙
A11 A12
A21 A22

¸ ∙
T
Ta

¸
+

∙
B
0

¸
u+

∙
d1
d2

¸
10We assume that the tube temperature and its heat transfer properties are uniform.
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Depending on the case, the output variable can be either one of the two temperatures:

y = [1; 0]

∙
T
Ta

¸
; or y = [0; 1]

∙
T
Ta

¸
In both cases, the dependence of the output on the applied power is described by a second-order model with
(usually) ¯rst-order dominant dynamics that are slow relative to the intended closed-loop bandwidth.

This model contains gross simpli¯cations: The temperature depends on the location in the tube and
the air density and speci¯c heats depend on the temperature. Avoiding the latter issue that would require
simultaneous heat/momentum/mass balances, the former can be addressed by increasing the model dimen-
sion. The question here is to what extend we can consider the temperature as constant inside the tube.
Performing a simple heat balance in thin slices of the tube we arrive at the model 11

micp
dTi
dt

= qi ¡ hsAs;i(Ti ¡ T0)¡ haAa;i(Ti ¡ Ta;i)¡ kAd (Ti ¡ Ti¡1) + (Ti ¡ Ti+1)
±L

½aVica
dTa;i
dt

= ¡½aFca(Ta;i ¡ Ta;i¡1) + haAai(Ti ¡ Ta;i)

where the i subscript is used to indicate the corresponding quantity for the i-th slice; ±L is the thickness of
the slice; and Ad is the cross-section area of the tube. At the boundary, Ta;0 = Ta0, the inlet air temperature.

For the tube, the boundary condition is kAd
(T2¡T1)
±L = hsAd(T1¡T0) (similarly at the other end of the tube).

Letting ±L approach 0 we obtain

@T

@t
=

q

mcp
¡ hsAs
mcp

(T ¡ T0)¡ haAa
mcp

(T ¡ Ta) + k

½scp

@2T

@2x

@Ta
@t

= ¡FL
V

@Ta
@x

+
haAa
½aV ca

(T ¡ Ta)

where k is the thermal conductivity of the tube, ½s its density, and x is the distance from the inlet. The
boundary conditions are Tt=0; Ta;t=0 =initial pro¯les, Ta;x=0(t) = Ta0, and k

@T
@x jx=0 = hs(Tx=0 ¡ T0),

k @T@x jx=L = hs(Tx=L ¡ T0).
This partial di®erential equation model can be solved numerically by e.g., taking a ¯nite di®erence

approximation of the spatial derivatives (the previous model of thin slices) and solving the resulting high-
order ODE. 12

A rough analysis using the numerical values supplied below, indicates that for low °owrates (1 lit/min)
the spatial distribution of the temperature has a \time-constant" in the order of centimeters. So, except for
the vicinity of the end-points the temperature gradient in the tube should be small. This means that the
lumped model would provide a reasonably accurate approximation of the solution. The di®erence between
the two will be ampli¯ed if the output is measured at a particular point in the tube instead of taking the
average. The accuracy of the lumped model will deteriorate further when there are uniformity deviations
in the spatial distributions, e.g., abrupt changes in inlet °ow/temperature. Finally, the gas heating alone
has a time constant in the order of seconds. This is much faster than the tube thermal time constant
mcp=hAs » 45min, indicating that the temperature dynamics would be essentially dictated by the heat
losses.

Simulation Experiment: The ¯le temp_control.mdl contains Simulink implementations of the two tube
temperature models (lumped and n-point discretization of the PDE). Compare the response of two
models for various conditions. 13 Also, construct a ¯rst order approximation of the 2nd order lumped

11These equations are derived with a perfect mixing assumption inside each slice. For low °owrates this assumption is not
valid and a di®erent derivation should be used. The di®erence is in higher order terms leaving the ¯nal partial di®erential
equation the same. Notice, however, that this model is still inaccurate in that it is missing the °ow equations. The more
complete model would contain, not only a third PDE, but also an additional (radial) dimension.
12This approach may require a fairly dense spatial grid to obtain a reasonably accurate solution, depending on the values of

the various parameters. In this aspect, ¯nite element solvers have an advantage.
13The number of points does a®ect the PDE solution; for the sake of expediency you may use a low number (» 100¡ 200)

but you should keep it the same in all simulations.



EEE480/482 K. Tsakalis 7

model and discuss the properties of the modeling error. (See details in the class notes `On the notion
of the \size" of a system and its applications,' section on Model Reduction. )

Numerical values:

Heating Element: Maximum power = 10kW.

Quartz Tube: Inner radius =0.1, Thickness = 0.01, Outer radius = 0.2 (including insulation, for the
computation of heat loss area), length = 1, density = 2500, cp = 1078, k = 2.

Air: Flowrate = 1-10 lit/min, Density = 1.2 (low temp.) - 0.5 (high temp.), ca = 1134, hs = 5,
ha = 30.

0.5 Inverted pendulum: 2nd-order unstable nonlinear model

The inverted pendulum has been a popular control experiment to demonstrate the stabilization of unstable
systems. Its popularity stems from its suitability for classroom use (easy to construct, model and operate).
In addition to that, there are many physical systems that exhibit similar dynamics (upright human posture,
rocket control). The inverted pendulum actuator can take two di®erent forms. One is through a torque
applied directly on the pivot point (torque-pendulum), and the other is through the acceleration of the pivot
point (cart-and-pendulum). Here we consider the ¯rst case. (The second is only slightly more complicated
to model but signi¯cantly harder to control.)

To develop a model for this system, let us consider a rigid rod of length L, 14 supported at a free rotating
pivot point, and with a mass m attached to its free end. Also, let µ be the angle between the rod and the
vertical, measured counter-clockwise and with zero being at the bottom equilibrium. Torque T is applied on
the pendulum rod at the pivot point, e.g., with a motor. Finally, we assume that the mass m is much larger
than the mass of the rod so that the latter can be neglected.

Writing the equations of motion we have that J Äµ =
P

i Ti where J = mL
2 is the inertia, Äµ = d2

dt2
µ is the

angular acceleration, and Ti are the torques acting on the pendulum. In addition to the externally applied
torque T , the gravity provides a torque ¡mgL sin µ. The friction at the pivot point also contributes a torque
for which a simpli¯ed model is 15 ¡c _µ.

Thus, we arrive at the expression
Äµ + ² _µ + a sin µ = bTn

where Tn is the applied torque normalized in the interval [-1,1], and ² = c=mL
2, a = g=L, b = Tmax=mL

2.
This model is described by a second-order nonlinear di®erential equation. A typical control problem is to
stabilize the pendulum in the upright position µ = ¼. One approach to solve this problem is to design a
controller for the linearized model of the pendulum. The linearization of the model is performed around a
nominal trajectory (solution). For our case, this trajectory is Tn = 0, µ = ¼, _µ = 0. By de¯ning u; y as the
perturbations around the nominal trajectory, i.e., u = Tn¡0, y = µ¡¼, we obtain the local linearized model

Äy + ² _y ¡ ay = bu
From the linearization theory we know that if a controller stabilizes the local linear model then it will also
stabilize the nonlinear one locally, i.e., provided that the initial conditions µ; _µ are close to the equilibrium
(nominal trajectory).

Simulation Experiment: The ¯le pendulum_control.mdl contains a Simulink implementation of the sim-
ple nonlinear model of the pendulum. Construct a linearized model and compare its behavior with
the nonlinear one. Notice that since the equilibrium of the inverted pendulum is unstable, open-loop
comparisons are meaningful for short time intervals only.

Numerical values: (Based on the GWC483 apparatus) m = 0:275, L = 0:5, Tmax = 0:5, c = 0:01.

14Modeling the rod °exibility results in a distributed parameter system.
15The usual friction model has the form ¡cj _µj _µ. This is complicated by the fact that at low anqular velocities stiction becomes

important. Stiction is manifested by lack of acceleration despite the application of a small force/torque. Since a detailed model
is beyond the scope of this example, we simply assume that the friction torque is proportional to the angular velocity.
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0.6 Inverted pendulum on a cart

This second case of an inverted pendulum is the more traditional experiment on feedback systems design.
The objective here is to keep the pendulum in the inverted position (angle ' ¼), possibly while commanding
the cart to move from an initial position to a di®erent one. This setup is signi¯cantly harder to control:

² There are two variables of concern (cart displacement and pendulum angle) and only one input (cart
force).

² Torque can be applied only through acceleration of the cart. At an equilibrium the torque must be
zero so that the pendulum angle can only be 0 or ¼. (In contrast to the previous case, here we do not
issue angle commands.)

² The controller design must deal with RHP zeros that give the system its typical \inverse response."
(For the cart to move to the right, it must ¯rst move to the left and unbalance the pendulum in the
correct direction.)

² To the standard control input saturation, an output constraint is now added (the cart rail has ¯nite
length).

The modeling of the cart-and-pendulum system follows similar steps as the torque pendulum.16 Suppose
that a weightless rigid pendulum of length L and with a mass m at its free end is ¯xed on a cart of mass
M . The cart moves by applying a horizontal force F on it. De¯ne x as the horizontal displacement of the
center-of-mass of the cart-and-pendulum and y that of the cart itself.

The application of the force F results in a horizontal movement described by

(m+M)Äx = F ¡ cc _y
where cc is the friction coe±cient for the cart motion. The cart position relative to the center-of-mass is
given by

y = x¡ Lm

m+M
sin µ

where, as usual, µ is the pendulum angle with 0 being the stable equilibrium. From this, we obtain the
equation for the cart motion

(m+M)Äy = F ¡ cc _y ¡mLÄµ cos µ +mL _µ2 sin µ (1)

Next, the pendulum rotates around its pivot point because of gravity and the acceleration of the pivot
point itself. Looking at the tangential forces (generating torques), we get

mL2Äµ = ¡cp _µ ¡mgL sin µ ¡mLÄy cos µ (2)

where cp is the friction coe±cient for the pendulum rotation.
Equations (1) and (2) describe the model of the cart-and-pendulum motion. Notice that their conversion

to the standard state-space form is complicated by the fact that the highest derivative of each variable
depends on the highest derivative of the other. Nevertheless, after a few manipulations, the model can be
written as a fourth-dimensional ODE, with states y; _y; µ; _µ, relating the control input u = F to the two
measured outputs y and µ.

Simulation Experiment: The ¯le pend_cart.mdl contains a Simulink implementation of the simple non-
linear model of the pendulum. Construct a linearized model and compare its behavior with the nonlin-
ear one. Notice that since the equilibrium of the inverted pendulum is unstable, open-loop comparisons
are meaningful for short time intervals only.

Numerical values: m = 0:275, L = 0:5, cp = 0:01. M = 0:5, Fmax = 1, cc = 0:05.

16See also the textbook example, Franklin, Powell, Emami-Naeini, Feedback Control of Dynamic Systems, 3rd Ed., Addison
Wesley, 1994.


