
Chapter 4

Stability, Controllability and
Observability

4.1 Introduction

This chapter contains a discussion on some fundamental system properties. Stability, from a geometric
point of view, is related to the properties of system trajectories around an equilibrium point. Elementary
Lyapunov techniques are employed to analyze and quantify the stability of a linear system. Controllability is
another geometric property of a system, describing the ability to \drive" the system states to arbitrary values
through the control input. Its dual notion of observability describes the ability to infer the system states
given output measurements in an interval. An elegant analysis of these structural properties is presented
using vector space methods.

4.2 Stability

Consider a di®erential equation _x = f(x). An equilibrium point is a vector xe such that f(xe) = 0. In
other words, if x(t0) = xe, then x(t) = xe, for all t ¸ t0. Obviously, linear systems ( _x = Ax) always have
0 as an equilibrium point. Geometric stability (in the sense of Lyapunov) is de¯ned with respect to such
equilibrium points: \Given any ² > 0, there exists a ±(²) > 0 such that kx(t0)¡ xek < ± ) kx(t)¡ xek < ²,
8t ¸ t0. That is, the solution will stay close to the equilibrium for any initial condition \su±ciently close"
to it. Further, an equilibrium is said to be asymptotically stable if it is stable and x(t) ! xe as t ! 1
for any initial condition su±cienly close to the equilibrium. In addition, if the convergence is exponential
(kx(t)¡ xek ∙ K(x0)e¡a(t¡t0), where a > 0 and K(x0) is a constant that depends on the initial conditions)
the equilibrium is exponentially stable.

This notion of stability is di®erent from the input-output (operator) stability where a system is L-stable
if any input in L produces an output in L. Here L is a vector space, e.g., bounded functions, energy functions
etc. The input-output stability is associated with concepts like operator gains, approximation and robustness
and is useful in describing performance speci¯cations. On the other hand, Lyapunov stability is suitable to
describe convergence properties and provides a more appealing computational framework. While in the case
of linear time invariant systems the two stability notions are closely related, their di®erences become more
pronounced (and technically involved) in the general nonlinear case.

The basic Lyapunov analysis begins with a positive de¯nite function of the states, interpreted as the
energy stored in the system, e.g., V (x) = x>Px where P = P> > 0. A su±cient condition for the asymptotic
stability (stability) of the zero equilibrium is that the derivative of thus function along the trajectories of
the system (dV=dt = (@V @x) _x) is negative de¯nite (semi-de¯nite). This can be viewed as a condition on the
energy dissipation within the system. It is also a necessary condition in the sense that if an equilibrium is
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asymptotically stable, then there exists a Lyapunov function with the above properties. 1 In general, it is
di±cult to construct such a function. Nevertheless, in the case of linear systems the Lyapunov functions are
quadratic making their computation a straightforward exercise in matrix algebra.

To demonstrate the application of Lyapunov analysis, let us consider the system _x = Ax and the function
V = x>Px. The derivative of V along the trajectories of the system is computed as follows:

_V =
@V

@x

dx

dt
= x>(A>P + PA)x

Next, suppose that the matrix Q = ¡(A>P + PA) is positive de¯nite. Then, the following inequalities can
be established:

_V ∙ ¡¸min(Q)kxk2 ∙ ¡¸min(Q)
¸max(P )

V

Using the so-called comparison principle, it now follows that V (t) ∙ V (0)e¡at where a = ¸min(Q)
¸max(P )

. In

turn, this implies that for any initial conditions, the system trajectories converge to the zero equilibrium
exponentially fast. These derivations illustrate the essense of Lyapunov analysis for linear systems and are
made precise by the following theorem:

4.2.1 Theorem: Given a matrix A 2 Rn£n the following statements are equivalent:

1. The eigenvalues of A have strictly negative real parts (A is Hurwitz).

2. There exist positive constants K; a such that keAtk ∙ Ke¡at.
3. There exists some Q = Q> > 0 such that A>P + PA = ¡Q has a unique solution for P and it is
positive de¯nite.

4. For any Q = Q> > 0, there exists a unique P such that A>P + PA = ¡Q and this P is positive
de¯nite.

55
Notice that, for a Hurwitz matrix A, not every positive de¯nite P produces a positive de¯nite Q; only

the converse holds. The equation A>P + PA = ¡Q is referred to as Lyapunov equation. It is linear in
P and can be solved as a system of linear equations. In fact, this equation has a unique solution (positive
de¯nite or not) i® any two eigenvalues of P satisfy ¸i + ¸j 6= 0. From a system theoretic viewpoint, a more
interesting property of Lyapunov equations is that for a Hurwitz A, their solution has the form

P =

Z 1

0

eA
>tQeAtdt

The last expression is extremely important for its analytical value. Among other applications, it allows an
easy computation of controllability and observability Gramians as solutions of linear Lyapunov equations.
These are an integral component of general model order reduction algorithms.

Lyapunov equations play an important role in several recent results on the design of control systems via
numerical optimization. For example, consider the (intermediate) problem where given a matrix A we would
like to estimate the exponential rate of decay of the states to zero. This can be found as the real part of the
eigenvalue of A closest to the jw-axis. However, eigenvalues are nonlinear functions of the entries of A and
are not suitable objectives for any (additional) optimization. Alternatively, we can ask to ¯nd the matrix

Q that maximizes the ratio a = ¸min(Q)
¸max(P )

. As previously shown this ratio provides an estimate of the rate of

decay of the states (V (x) » kxk2). It can be shown that the optimal Q for this purpose is the identity. This
problem can be cast as the optimization of a convex objective subject to convex constraints (linear matrix
inequalities), and its solution can be obtained with numerically e±cient and reliable algorithms. The value

1While these statements are adequate to describe the general picture, they lack the necessary precision for use with general
nonlinear systems.
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of this approach lies in its ability to handle cases where the matrix A is itself a convex function of other
parameters. A simple example of that is to ¯nd a single Lyapunov function, if it exists, that has a negative
de¯nite derivative for two systems, i.e.,

P = P> > 0 : A>1 P + PA1 ∙ ¡I ; A>2 P + PA2 ∙ ¡I

The existence of such a P would imply the stability of a system whose matrix A undergoes arbitrarily
fast transitions between the values A1 and A2. This type of problems arises in the analysis and design of
gain-scheduled control systems.

For linear systems it is straightforward to show that exponential stability of the zero equilibrium (A being
Hurwitz) also implies the input-output stability (in a BIBO or energy sense) of the system [A;B;C;D], for any
B;C;D. The converse is not always true unless some additional conditions are imposed, e.g., controllability
and observability. Furthermore, a somewhat similar statement is valid in a general nonlinear setting but
with signi¯cantly more involved technical conditions.

4.3 Controllability and Observability

The fundamental controllability problem is associated with the question whether an input can be found such
that the system states can be steered from an initial value x0 to any ¯nal value x1 in a given time interval.
In general, the answer to this question depends on the time interval. This induces di®erent notions of
controllability (uniform, instantaneous, di®erential) all of which become equivalent for linear time invariant
systems. In the following discussion, only this simpler case is considered.

4.3.1 De¯nition: For the system _x = Ax + Bu, x(0) = x0, the state x0 is said to be controllable if for
any x1 there exists a time t1 > 0 and an input u[0;t1] such that x(t1) = x1. Furthermore, we say that (A;B)
is completely controllable (c.c.) if every x0 is controllable. 55

Using the general solution of the linear di®erential equation, it is easily shown that

² (A;B) is c.c. i® every x0 can be steered to the origin at t1.
² (A;B) is c.c. i® every x1 can be reached from the origin at t1.

Another important result can be obtained in terms of the so-called controllability Gramian

M(t0; t1) =

Z t1

t0

eA(t1¡¿)BB>eA
>(t1¡¿)d¿

4.3.2 Theorem: (A;B) is c.c. i® M(t0; t1) is positive de¯nite for some t1 > t0. 55
Proof: (if) SinceM is positive de¯nite, it is nonsingular and therefore its inverse is well-de¯ned. De¯ne

the input as

u(¿ ) = B>eA
>(t1¡¿)M¡1(t0; t1)[x1 ¡ eA(t1¡t0)x0]

Then, by direct substitution, it follows that x(t1) = x1.
(only if) This is a more involved argument and we will need the following intermediate result:

Lemma: Let F : [t0; t1]7! Cn£m be a continuous matrix valued function. F has linearly independent rows

i® the Gramian G(t0; t1) =
R t1
t0
F (¿ )FH(¿)d¿ is positive de¯nite.

A fairly standard approach to this type of proofs is to consider a quadratic form vHGv where v is an
arbitrary vector. Then vHGv = 0, vHF (t) ´ 0.

Returning to our proof, let F (t) = eA(t1¡t)B and suppose that M is not positive de¯nite. (Notice that, still,
M ¸ 0.) Then, there exists v 6= 0 such that v>Mv = 0. By virtue of the Lemma, this implies vF (t) ´ 0.
Let x0 = e

A(t0¡t1)v. By the c.c. assumption, there exists an input u such that it steers x0 to the origin in
the interval [t0; t1]. It now follows that 0 = v+

R t1
t0
eA(t1¡¿)Bu(¿ )d¿ and taking the inner product with v we
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get that 0 = v>v +
R t1
t0
v>eA(t1¡¿)Bu(¿ )d¿ . But the second term is zero, leading to the conclusion v>v = 0

that contradicts the assumption that M is singular. 22

An elegant re-statement of the last property comes with the interpretation of controllability as a rank
condition on the linear map that relates inputs to ¯nal states. That is, consider the linear map

A : L2 7! Rn; » = A[u] =
Z t1

t0

eA(t¡¿)Bu(¿ )d¿

where L2 is the space of square integrable functions on [t0; t1]. L2 is a Hilbert space with inner product

< x; y >=
R t1
t0
x>(¿ )y(¿ )d¿ . In this framework, controllability simply means that A is onto. In view of the

four fundamental subspaces associated with linear maps, this condition translates into N (A¤) = f0g. Since
the range of A is ¯nite dinensional and therefore closed, this would imply that A is onto. The adjoint map
A is de¯ned in terms of the inner products of the domain and co-domain: For any u 2 L2 and » 2 Rn, we
should have

< »;A[u] >Rn=< A¤[»]; u >L2
It is now easy to verify that the adjoint map is a multiplier mapping vectors into functions:

A¤[»](t) = B>eA>(t1¡t)»

This equation describes immediately one of the equivalent controllability conditions: N (A¤) = f0g i® the
columns of B>eA

>(t1¡t) (rows of eA(t1¡t)B)are linearly independent functions of time. We may also observe
that N (A¤) = N (AA¤). The operator AA¤ maps Rn to Rn, i.e., it is a matrix. It is easy to verify that
AA¤ =M(t0; t1) from which the previous theorem follows.

In this vector space framework it is easy to answer an additional question: \What is the minimum norm
input that transfers x0 to x1?" (Notice that A may be onto but it cannot be 1-1 since the domain is
in¯nite dimensional while the range is ¯nite dimensional.) The answer to this question is immediate from
the Classical Projection Theorem:

uopt = PN (A)? [u1]
where u1 is a solution to A = ». Under the c.c. condition that M(t0; t1) is invertible, the solution can be
written directly, without computing an intermediate u1:

uopt(t) = A¤(AA¤)¡1» = B>eA>(t1;t)M¡1(t0; t1)»

Also recall that all solutions are now parametrized as u = uopt +N (A), where the null space is composed of
functions orthogonal to the range of A¤.

The controllability condition in terms of the Gramian is an extremely useful tool both for analysis and
for numerical computations. Still, other equivalent conditions may be more convenient to check, depending
on the problem at hand. Staying with the Gramian for the moment, a simple computation establishes the
intuitive result: If (A;B) is c.c. in an interval [t0; t1] it is also c.c. in any interval [t0; t2] for any t2 > t1.

M(t0; t2) =

Z t1

t0

eA(t2¡¿)BB>eA
>(t2¡¿)d¿ +

Z t2

t1

eA(t2¡¿)BB>eA
>(t2¡¿)d¿

= eA(t2¡t1)M(t0; t1)eA
>(t2¡t1) +M(t1; t2)

Since the last term is always positive semide¯nite and the matrix exponential is always nonsingular, the
desired result follows. Furthermore, for time invariant systems, a simple change of variables under the
integral shows that controllability is equivalent to the nonsingularity of M(0; t). Combining the two, we get
that

² (A;B) is c.c. i® M(0; t) > 0, 8t ¸ t1, for some t1 > 0.
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Through a di®erent line of arguments, it can be shown that in the time invariant case controllability on an
interval also implies controllability on a smaller interval. This last statement makes controllability easier to
check for Hurwitz A, since M(0;1) can be computed by solving a simple Lyapunov equation:

AM +MA> = ¡BB>

We have already seen that this computation produces a positive de¯nite solution M when BB> > 0. The
same is true if (A;B) is controllable. When A is not Hurwitz, the statement is still valid for any ¯nite
interval. However, the Gramian does not converge as t ! 1 and cannot be computed as the solution of a
Lyapunov equation. In this case, di®erent techniques should be employed (e.g., splitting A into stable and
anti-stable parts).

A di®erent equivalent controllability condition is obtained through the use of Wronskians and the following
two technical Lemmas:

Lemma: Let F : [t0; t1]7! Rn;m be a matrix function of time with (n¡ 1) continuous derivatives on [t0; t1].
If the Wronskian W (t) = [F (t); F (1)(t); : : : ; F (n¡1)(t)] has rank n at some t 2 [t0; t1] then the rows
of F (t) are linearly independent functions of time on [t0; t1].

Lemma: In the previous lemma, suppose that the entries of F are analytic functions of time. Then the
rows of F are linearly independent on [t0; t1] i® the Wronskian W has rank n almost everywhere in
[t0; t1].

The second lemma is more useful to our case since the functions involved are polynomials and exponentials.
Thus, evaluating the Wronskian at t = 0 we obtain the following controllability condition

² (A;B) is c.c. i® the controllability matrix Qc = [B;AB;A2B; : : : ; An¡1B] has rank n, or equiva-
lently QcQ

>
c is invertible.

This condition is one of the easiest to check given A;B and holds regardless of the stability properties of A.
However, it is not always the most suitable. Other conditions are obtained via transformations of the above
basic conditions; they are summarized in the following theorem.

4.3.3 Theorem: For the linear time invariant system _x = Ax+Bu, the following statements are equivalent:

² (A;B) is completely controllable.
² The controllability Gramian satis¯es M(0; t) > 0 for all t > 0.
² The controllability matrix Qc has rank n (QcQ>c > 0).
² The rows of eAtB are linearly independent functions of time.

² The rows of (sI ¡A)¡1B are linearly independent functions of s.

² r([A¡ ¸I;B]) = n for all ¸ (su±ces to check only the eigenvalues of A).
² v>B = 0 and v>A = ¸v> ) v = 0 (Popov-Belevich-Hautus test).

² Given any set ¡ of numbers in C there exists a matrix K such that the spectrum of A+BK is equal to
¡; note that if A;B;K are real, ¡ should be symmetric about the real line. (Pole placement condition)

55
Analogous results can be obtained for the observability problem. Here, the fundamental question is posed

as follows: Given the system _x = Ax, y = Cx with x(t0) = x0 and measurements y(t) in an interval [t0; t1],
¯nd x0. If this is possible, x0 is said to be observable and if every x0 is observable then (A;C) is completely
observable (c.o.). In terms of operators in vector spaces, the map from initial conditions to the output is
given by a multiplier:

B : Rn 7! L2; B[x0] = CeA(t¡t0)x0
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In general, this is a least squares problem; but in our noise-free case a solution exists and the main issue
is the uniqueness of the solution. In other words, we seek to determine whether the operator B is 1-1. Its
adjoint is an integral operator

B¤ : L2 7! Rn; B¤[y] =
Z t1

t0

eA
>(¿¡t0)C>y(t)d¿

and N (B) = N (B¤B). The last operator is again a matrix mapping Rn to Rn. It is referred to as the
observability Gramian:

N(t0; t1) =

Z t1

t0

eA
>(¿¡t0)C>CeA(¿¡t0)d¿

If nonsingular, the unique solution for x0 can be found with the usual least squares formula

x0 = N
¡1(t0; t1)

Z t1

t0

eA
>(¿¡t0)C>y(¿)d¿

The observability Gramian is similar to the controllability Gramian with A;B being changed to ¡A>; C>.
The remaining di®erence is in that M contains t1 while N contains t0. This can be ¯xed by pre- and post-
multiplying with eA(t0¡t1) and its transpose. The latter being invertible does not change the rank properties
of the matrix. This observation suggests a deeper duality between controllability and observability.

4.3.4 De¯nition: Given the system [A;B;C;D], the adjoint system is de¯ned as [¡A>; C>; B>D>]. 2

55

4.3.5 Theorem: (Duality)

² [A;B;C;D] is c.c. i® [¡A>; C>; B>; D>] is c.o.

² [A;B;C;D] is c.o. i® [¡A>; C>; B>;D>] is c.c.

55
Thus, all our controllability conditions can be readily extended to the observability case. In particular,

the observability matrix is now de¯ned as

Qo =

0BBB@
C
CA
...
CAn¡1

1CCCA
instead of its transpose, and complete observability is equivalent to the invertibility of Q>o Qo. Furthermore,
whenever applicable, the in¯nite-interval Gramian is now found as the solution of the Lyapunov equation

A>N +NA = ¡C>C

As a ¯nal remark, we should comment on the di®erence between the controllability Gramian and the
controllability matrix. From the previous analysis they both provide necessary and su±cient conditions for
controllability. The Gramian represents an integral condition while the matrix is associated with instanta-
neous (or, better, di®erential) properties. While equivalent for time-invariant systems, they produce di®erent
results with time-varying systems. Furthemore, their di®erence has an impact even in the time-invariant case.
The Gramian arises whenever operator properties are concerned (optimal linear quadratic regulator, system
reduction with a system gain criterion); the matrix appears in cases where the state-space representation is
altered (pole-placement control, conversion to canonical forms, structural versions of model reduction).

2As usual, complex-conjugate transpose should be used in the complex case.
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4.4 Optimal Linear Quadratic Regulators and Observers

Controllability and observability are central in the design of control systems since, among other properties,
they guarantee the existence of a stabilizing controller. Such a controller can be designed as

u = Kx

where K is such that A+BK is Hurwitz (e.g., via the pole-placement equations). If the states of the system
cannot be measured, then an observer based controller can achieve stabilization by setting u = ¡Kx̂ where
x̂ is the state of an observer

_̂x = Ax̂+Bu+ L(ŷ ¡ y) ; ŷ = Cx̂+Du
where L is such that A + LC is Hurwitz (e.g., via the dual to pole-placement equations). This observer-
based controller satis¯es the so-called separation principle, stating that the closed-loop eigenvalues are
the eigenvalues of A + BK and the eigenvalues of A + LC. Even though stabilization is seemingly easy to
achieve, the design of such a controller with desirable closed-loop properties (overshoot, bandwidth etc.) is
more obscure.

In the 60's the state-space approach became very popular with the application of optimal control theory.
The optimal linear quadratic regulator (LQR) problem is de¯ned as the design of a control input that
minimizes an integral cost of the form

J =

Z 1

0

[x>(t)Qx(t) + u>(t)Ru(t)]dt

subject to the constraint _x = Ax + Bu, x(0) = x0, and with Q ¸ 0, R > 0. An important property of
this design is that regardless of the choice of Q;R, the resulting controller is a stabilizing one. Moreover, it
is always well-behaved and possesses some interesting and very desirable properties in terms of sensitivity
peak magnitude. The separation principle was again invoked to design a controller by coupling the LQR
with a Kalman Filter (LQ-optimal observer). Unfortunately, the result did not meet the expectations.
The introduction of an observer in the loop can destroy the nice properties of the state-feedback LQR and
introduce undesirable high gains in parts of the loop. This was manifested as a loss of robustness since a
small amount of uncertainty could cause destabilization of the closed-loop.

Subsequently, the 80's witnessed the rise of theH1 theory, which aimed to design controllers with optimal
robustness properties. The classical notions of frequency domain peak magnitude, gain and phase margins
came to the picture once again, though transformed to ¯t a multivariable framework. Here, instead of the
Q;R matrices, the controller design parameters were multivariable transfer matrix weights. In the heart
of the solution there was still an optimal LQ problem, except that now the controller and observer design
equations were coupled. This is not surprising since the LQR possesses desirable induced-L2 gain properties
and robustness was formulated as the ability to tolerate perturbations of a certain induced-L2 gain. The
results were then re-derived taking a di®erential game approach where a similar quadratic cost is minimized
with the addition of an energy-bounded disturbance being the adversary.

In the following, we present some of the fundamental properties of the LQR theory. The basic LQR
solution can be derived using Pontryagin's minimum principle or the Bellman's principle of optimality. The
solution has the form

u = Kx = ¡R¡1B>Px
where P is the positive de¯nite solution of the so-called control algebraic Riccati equation (CARE)

A>P + PA¡ PBR¡1B>P +Q = 0

A positive de¯nite solution to the CARE exists if (A;B) is c.c. and (A;Q) is c.o. Notice that if Q = C>C,
the latter condition becomes (A;C) is c.o.3

3In general, stabilizability and detectability is su±cient, i.e., any uncontrollable and/or unobservable modes should be stable.

EEE480/482 K. Tsakalis 60



Under these conditions, we claim that the control law u = Kx is a stabilizing one. For this, consider the
Lyapunov function candidate V = x>Px. Taking its derivative along the system trajectories, we get

_V = x>(A>P + PA¡ 2PBR¡1B>P )x
= ¡x>Qx¡ u>Ru

Hence, _V is at least negative semi-de¯nite implying the stability of the zero equilibrium. If Q is only positive
semi-de¯nite, then an additional argument is needed to establish asymptotic stability. This is known as
LaSalle's theorem which states that the solution will converge to the set where _V = 0. If Q = C>C and
(A;C) is observable, then the only solution of the system di®erential equation that satis¯es _V = 0 is the
trivial one. Hence, the states converge to zero asymptotically with time.

Another important result is related to the controller behavior in the presence of external disturbances
and, in particular, input disturbances. Let us consider the system

_x = Ax+B(u+ d)

with u obtained from the LQR. A similar Lyapunov argument now yields

_V = x>(A>P + PA¡ 2PBR¡1B>P )x+ 2x>PBd
= ¡x>Qx¡ u>Ru¡ 2u>Rd
= ¡x>Qx¡ (u+ d)>R(u+ d) + d>Rd

Integrating both sides we obtain
ku+ dk22;R ∙ V (0) + kdk22;R

In other words, the gain of the closed-loop operator mapping d7! u+d is less than one. In terms of classical
control theory, this implies that the closed-loop system has in¯nite gain margin and at least 60 deg. phase
margin for perturbations entering at the plant input. This type of result is central in the linear quadratic
theory. One of its important by-products is that by augmenting the system with suitable weights, the
operator from an external input to an output of interest can be manipulated to possess desirable properties
(e.g., augmentation by an integrator).

Finally, the linear quadratic observer design can be performed as the dual of LQR. Here, L = ¡PoC>R¡1o
and Po is the positive de¯nite solution of the ¯ltering ARE (FARE)

PoA
> +APo ¡ PoC>R¡1o CPo +Qo = 0

with Ro > 0, Qo ¸ 0 and (A;Qo) c.c. In the classical Kalman Filter theory, Qo; Ro are related to the
output noise and state noise intensities (covariances). However, as previously mentioned, such a selection
does not necessarily lead to good observer-based controllers. Instead, the H1 solution uses ¯ctitious noise
intensities, in addition to an augmentation with suitable ¯lters, to shape the closed-loop sensitivities in an
optimal manner.

4.5 Realization Theory Fundamentals

The basic problem in Realization Theory is to determine matrices A;B;C;D such that the state space system
[A;B;C;D] represents a given input-output map, speci¯ed by its impulse response or transfer function.

4.5.1 De¯nition:

² [A;B;C;D] and [ ~A; ~B; ~C; ~D] are zero-state equivalent (I/O equivalent) if they correspond to the same
impulse response, i.e.,

C(sI ¡A)¡1B +D = ~C(sI ¡ ~A)¡1 ~B + ~D
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² [A;B;C;D] and [ ~A; ~B; ~C; ~D] are algebraically equivalent if they are of the same dimension and they
are related by a similarity (coordinate) transformation, i.e., there exists an invertible matrix T such
that

~A = T¡1AT ; ~B = T¡1B ; ~C = CT ; ~D = D

² [A;B;C;D] is reducible (non-minimal) if there exists a zero-state equivalent representation of smaller
state-space dimension; otherwise [A;B;C;D] is irreducible or minimal.

55
Notice that algebraic equivalence implies zero-state equivalence. The converse may not be true even if

both systems have the same state-space dimension.

4.5.2 Theorem: Controllability, observability and stability are invariant under similarity transformations.
55

Proof: Direct computations establish the following relations between the Gramians and State Transition
matrices of two similar realizations:

~M = T¡1MT¡> ; ~N = T>NT ; e
~At = T¡1eAtT

22

In other words, algebraically equivalent realizations have identical controllability, observability and sta-
bility properties. An implication of that is that the following two systems cannot be algebraically equivalent
even though they are zero-state equivalent and they have the same state-space dimension:∙µ ¡1 0

0 0

¶
;

µ
1
0

¶
; (1; 1); 0

¸
;

∙µ ¡1 0
0 0

¶
;

µ
1
1

¶
; (1; 0); 0

¸
Notice that the ¯rst system is c.o. but not c.c. while the second is c.c. but not c.o.

Some properties of minimal realizations are described by the following theorem. They make use of the
so-called Hankel matrix

H = QoQc =

0BBBB@
CB CAB CA2B : : :
CAB CA2B

CA2B
. . .

...

1CCCCA
4.5.3 Theorem:

² [A;B;C;D] is minimal i® it is c.c. and c.o.
² [A;B;C;D] is minimal i® its Hankel matrix has rank n.
² Suppose [A;B;C;D] is minimal and let [ ~A; ~B; ~C; ~D] be a zero-state equivalent realization. Then
[ ~A; ~B; ~C; ~D] is minimal i® it is algebraically equivalent to [A;B;C;D]. In such a case, the similar-
ity transformation relating the two can be computed as

T = Qc ~Q
>
c ( ~Qc ~Q

>
c )

¡1 ; T¡1 = ( ~Q>o ~Qo)
¡1 ~Q>o Qo

55
In dealing with nonminimal realizations the following result is important, providing both the theoretical

framework and a computational approach to construct I/O equivalent minimal realizations.

EEE480/482 K. Tsakalis 62



4.5.4 Theorem: (Kalman Canonical Decomposition) Consider the system _x = Ax+Bu, y = Cx. There
exists a coordinate transformation T such that x = T ¹x and

¹A =

0BB@
¹A11 0 ¹A13 0
¹A21 ¹A22 ¹A23 ¹A24
0 0 ¹A33 0
0 0 ¹A43 ¹A44

1CCA ; ¹B =

0BB@
¹B1
¹B2
0
0

1CCA ; ¹C = ( ¹C1; 0; ¹C3; 0)

with the following properties:

1. [ ¹A11; ¹B1; ¹C1] is minimal.

2. [ ¹A11; ¹B1; ¹C1] and [A;B;C] are I/O equivalent.

3. The states ¹x2 are c.c. but unobservable.

4. The states ¹x3 are c.o. but uncontrollable.

5. The states ¹x4 are uncontrollable and unobservable.

where the state partition is compatible with the ¹A-matrix partition. Furthermore, the transformation T
can be computed systematically using SVD or QR decompositions of the controllability and observability
matrices: R(Qc) is the controllable subspace and N (Qo) is the unobservable subspace. 55

Using the Kalman Canonical Decomposition a computational procedure to obtain a minimal realization is
described below. This approach is not necessarily numerically e±cient or reliable; nevertheless it establishes
a systematic method to obtain minimal realizatons.

4.5.5 Corollary: Given [A;B;C;D]:

1. Compute the controllability matrix Qc and ¯nd T1, an orthonormal basis of the columns of Qc. (E.g.,
Let Qc = USV

> and set T1 = U1, the ¯rst r(Qc) columns of U .)

2. De¯ne the system [T>1 AT1; T
>
1 B;CT1; D], which is a realization of the controllable subsystem and

compute its observability matrix ¹Qo.
4

3. Find the matrix T2 that is an orthonormal basis of the columns of ¹Q
>
o . (E.g., Let ¹Q

>
o = USV

> and
set T2 = U1, the ¯rst r( ¹Qo) columns of U .)

Then
[T>2 (T

>
1 AT1)T2; T

>
2 (T

>
1 B); (CT1)T2; D]

is an I/O equivalent minimal realization. (The order of computations can be interchanged.) 55

4.6 Balanced Realizations and Model Reduction

Kalman's canonical decomposition provides the basic theory and computational algorithm to remove unnec-
essary states from a realization, while preserving the input-output map. Its reliance on the controllability
and observability matrices makes the approach somewhat susceptible to numerical problems, as these ma-
trices are often poorly conditioned. A more serious drawback, however, is that this reduction is based on
structural properties of the system (linear independence) but without explicitly considering the quantitative
aspects of the problem. In practical applications, especially when numerical computations are involved, one
is rarely faced with perfectly dependent or perfectly orthogonal vectors. Moreover, a commonly encountered
problem is that of a model reduction where modes that have independent but small contributions should
be eliminated. With such an objective in mind, the previous algorithm is inadequate. While the SVD of
the controllability matrix can give an indication on the modes that are weekly controllable, these modes

4Notice that this is not a similarity transformation.
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cannot be immediately eliminated. The reason is that they may be strongly observable and, hence, have
non-negligible contribution to the system response.

In order to deal with model reduction problems, we need a quantitative approach that correctly accounts
for the strength of the contribution of each mode to the system response. We discussed one such method
in the ¯rst chapter via partial fraction expansions.5 Several general methods for model reduction have
appeared in the literature. Here, we present one based on Gramians and Balanced realizations that has
some interesting theoretical interpretations.

Before we begin, let us take a look at the interpretation of the Gramians in terms of system properties.
We start with the conceptually easier case of the observability Gramian where we formulate the following
question: Suppose that the linear system starts at t = 0 with initial condition x0. Which states contribute
more (or less) to the output energy in the interval [0;1)?

Naturally, we assume that the system is stable so that the output energy is well de¯ned. Then, with
y(t) = CeAtx0, the output energy is

Ey = kyk22 =
Z 1

0

x>0 e
A>tC>CeAtx0dt = x>0 Nx0

where N is the in¯nite interval [0;1) observability Gramian. Bring in the SVD of N, so that N = USU>

(notice that N is symmetric, implying U = V ). Then Ey = (U
>x0)>S(U>x0). Consider for a moment the

(similarity) state transformation ~x = U>x. Then, in the transformed coordinates the contribution of the
states to the output energy is ordered from the highest to the lowest. Furthermore, if the last n¡ p singular
values in S are less that ², eliminating these states will change the output energy by no more than ²kx0k2.
Viewing this result in terms of operators between vector spaces, all that we have done is to map the unit ball
in the domain to a set (ellipsoid) in the co-domain. Obviously, any states associated with domain directions
that map to a small semi-axis in the co-domain can be ignored without introducing a signi¯cant error.

The dual interpretation of the controllability Gramian is a little more involved. A \natural" question to
ask would be how much a unit-energy input contributes to the ¯nal state. For reasons that become apparent
subsequently, it is convenient to consider inputs in (¡1; 0] and the ¯nal state as x(0). In contrast to the
observability case, the problem here is that our map u7! x(0) has a non-trivial null space. Instead, a more
appropriate formulation would require the input to be constrained on the orthogonal complement of the null
space of our operator. Equivalently, we may ask the question \what is the minimum energy input that is
required to produce a unit-norm ¯nal state?" In our operator framework, we look for an ellipsoid in the
domain that maps to the unit ball in the co-domain. Its interpretation is naturally the opposite from the
previous case. Any co-domain directions that correspond to large semi-axis of the domain ellipsoid signify
weekly controllable states; these can be ignored without introducing large errors. Thus, the problem at hand
is to ¯nd the minimum norm input such that

x0 =

Z 0

¡1
e¡A¿Bu(¿ )d¿

We have already computed the solution of this problem to be (with some minor adjustments for the interval)

uMN (t) = B
>e¡A

>tM¡1x0

where M is the in¯nite interval [0;1) controllability Grammian. The energy of this optimal solution is

Eu =

Z 0

¡1
u>(¿ )u(¿ )d¿ = x>0M

¡1
µZ 0

¡1
e¡A¿BB>e¡A

>¿d¿

¶
M¡1x0 = x>0M

¡1x0

Now, as in the observability case, large singular values of M correspond to small singular values of M¡1,
meaning directions in the state space where unit-energy inputs have large e®ects. Consequently, through an
SVD of M , we can rank the transformed states according to the energy they receive from the input.

5It is possible to obtain a generalization of this method to the multivariable case, but its numerical reliability is questionable
(e.g., multiple poles).
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The last step to take is to account for cases where weekly controllable modes are strongly observable and
vice-versa. This would correspond to a combination of the previous two steps: The map from past inputs
(¡1; 0] to states x(0) and the map from states x(0) to future outputs [0;1). The composite map from the
past inputs to future outputs is referred to as the system's Hankel operator and is an alternative way to
characterize the system. What is interesting here is that we can rank the states in terms of their association
with the energy transfer from past inputs to future outputs. For this, the following theorem is important:

4.6.1 Theorem: For a stable minimal system [A;B;C;D] there exists a similarity transformation T such
that in the transformed coordinates the controllability and observability Gramians are equal and diagonal.
Such a realization is referred to as Balanced Realization. 55

Proof: Let M;N be the two Gramians found as the solutions of the respective Lyapunov equations.
Recall that a similarity transformation x = T ¹x transforms the Gramians as

¹M = T¡1MT¡> ; ¹N = T>NT

We perform the transformation in two steps. In the ¯rst step we make the controllability Gramian equal to
the identity. Since M is symmetric, its SVD has the form M = UScU

>. De¯ne the ¯rst transformation as
T1 = US

1=2
c . In these ¯rst transformed coordinates, ¹M = I and ¹N = T>1 NT1.

In the second step, we perform an SVD on ¹N to get ¹N = V SoV
>. De¯ne the second transformation as

T2 = V S
¡1=4
o . In the new coordinates, both Gramians are equal and diagonal:

~M = ~N = S1=2o

The composite transformation is given by T = T1T2 = S
1=2
c U>V S¡1=4o . 22

In addition to an energy-related ranking of the states, balanced realizations have desirable numerical
properties. That is, the system matrices are full and the magnitude of their entries is distributed more
evenly than other canonical forms. The practical implication of this is that computations using balanced
realizations are less prone to numerical problems than, say, controllable canonical forms (this is not a
precise statement). It should also be mentioned that balanced realizations can be de¯ned and computed for
nonminimal stable systems. These, however, require a considerably more involved computation (a sequence
of four transformations).

In a balanced realization, the model reduction problem is greatly simpli¯ed. In addition, the reduction
error satis¯es attractive system-gain bounds. The properties of this balanced truncation algorithm for
model reduction are described by the following theorem.

4.6.2 Theorem: (Balanced Truncation) Let [A;B;C;D] be a balanced realization of a stable system.
Denote the balanced Gramians by § and consider the partition

§ =

µ
§1 0
0 §2

¶
Also, partition the system matrices accordingly

A =

µ
A11 A12
A21 A22

¶
; B =

µ
B1
B2

¶
; C = (C1; C2)

and de¯ne the reduced order system as [A11; B1; C1; D]. Then,

² The reduced system is stable if §1 and §2 have no common diagonal entries.

² The \size" of the error system (°2-gain) is bounded by 2 trace(§2).

55
The proof is rather involved and is omitted, but a few remarks on the application of the theorem are in

order.
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² The balanced truncation is applicable to the reduction of minimal stable systems of arbitrary dimen-
sions, number of inputs and outputs. Although the minimality assumption can be relaxed, stability
cannot. To handle unstable systems, a stable/anti-stable decomposition is performed ¯rst; the stable
subsystem is then reduced while the anti-stable is preserved without change.

² During the reduction, care should be exercised to avoid splitting equal or similar singular values.
Typically, the partitioning is selected at a point where the balanced Gramian singular values exhibit a
\gap."

² The error bounds are fairly attractive but the reduction is not optimal in the °2-gain sense. Neverthe-
less, the algorithm produces reasonably good results.

² With some modi¯cations, the balanced truncation can be used to perform a (very useful) frequency-
weighted reduction. In practice this algorithm is quite e±cient. Unfortunately, there is no general
error bound for this approximation and the reduced order model is not guaranteed to be stable either.

² Special cases of weighted reduction are the relative and multiplicative reductions. In these cases, special
formulae are availble and the results are similar to the un-weighted balanced truncation (stability
guarantees and error bounds). They do, however, require the system to be square (same number of
inputs and outputs).
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