Summary

A significant part of the adaptive control literature has —justifiably— been devoted to the sta-
bility /robustness/performance issue, under conditions of insufficient excitation. This practically
important problem originates in the desire to allow the adaptation to adjust the estimated param-
eters at all times. Such adaptive controllers exhibit good RMS behavior and they are able to track
slowly varying parameters. However, their main drawback is arguably the possibility of parameter
drifts in low SNR situations (insufficient excitation). These drifts may, in turn, induce error bursts

that limit the practical usefulness of adaptation.

Analytical studies of adaptation bursting have often concentrated on the nonlinear dynamics aspect
of the phenomenon. In this work, we approach the problem from an optimization point of view.
Parameter drifts can then be interpreted as non-robustness of ill-posed optimization problems. In
this framework, error bursts are an immediate consequence of Lipschitz continuity of the parameter

estimates (finite adaptation gains).

Guided by these observations, we construct simple but general bursting scenaria that expose the
fundamental performance limitations of adaptive algorithms. We show that for a wide class of
adaptive algorithms, error burst magnitudes proportional to the diameter of the parametric uncer-
tainty set can be obtained when perturbations are present but there is lack of sufficient excitation.
Algorithms in this class are essentially characterized by fading memory and finite adaptation gains.
An interesting by-product of this analysis is a proof that dead-zone algorithms (a common remedy

in the time-invariant case) are not immune to bursting when estimating time-varying parameters.

In fact, the estimation of time-varying parameters in the absence of sufficient excitation poses a
challenging theoretical problem. In this case, achieving limsup performance guarantees is as hard as
achieving Lo, performance from initial conditions that are zero in the state errors but arbitrary in
the parameters. In a somewhat loose interpretation of the results, burst suppression in the general

case seems to require estimators with “infinite” adaptation gains or injection of excitation.
Main Result

Under seemingly benign assumptions, adaptive algorithms satisfy the following performance lower
bound:

For any 6 > 0, there exist bounded, piecewise continuous regressor (or input) and a disturbance d
with ||d||s < 6 and such that the worst-case, lim-sup estimation error proportional to the diameter

of the parametric uncertainty set.
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Example

Bursting scenaria can be constructed systematically to expose this fundamental performance limi-
tation of adaptive algorithms. In particular, the severity of the bursts in adaptive control may be

significantly amplified by the temporary “destabilization” of the closed loop.

Consider the plant with input disturbance d

Yp = [up + d]

S+ a

with nominal parameters a = 0,b = 1. Let the control input u, be designed so that the nominal

plant output tracks the output of the reference model

1
s+1

[7]

Ym =

for any bounded reference input r. For example, u, = [r,y,]0 where 0 is updated by a gradient-
based adaptive law with projection. For simulation convenience, we update # in discrete-time with

sampling interval Ty = 0.2, according to the following equations:
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The estimation error and regressor vector are taken as the sampled versions of their continuous
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time counterparts
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The projection set M is selected to contain the nominal controller parameter vector (6, = [1,—1]");
here M =[0.3,3] x [—4,4].

Further, define the reference input and disturbance signals as

= Ry[sin(4t) + sin(t)] + Re
d = Sat().g,[—Kyp]

where satg s denotes a saturation nonlinearity with linear region [—0.5,0.5] (clearly, ||d|lcc < 0.5).

It follows that whenever Ry, Ry are sufficiently small so that Ky, is in the linear region of the
saturation, and r is PE, the adaptation algorithm drives the parameter estimates towards the
point [1, K — 1]. Thus, if K —1 > 0, the nominal unperturbed closed-loop is unstable, something
that becomes evident in the form of a burst as soon as the disturbance is removed and/or the
magnitude of the reference input is increased. (The burst magnitude is essentially independent of
the disturbance bound.)
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Remedies

Several techniques can be used to remedy this situation. One is the use of some form of a dead-zone
that modifies the optimization objective so that error convergence to zero is not required. The other
was introduced in [IJACSP] and uses a “standard” adaptive scheme but employs set-membership

concepts to estimate and reduce the parametric uncertainty set on-line.
Unfortunately, none of these works in the time-varying case.

A dead-zone can be introduced in the adaptive law by simply replacing the estimation error e; with

€1 —dg ifer > dy
€dz — 0 if |€1| < do
e1+dy if e < —dg

where dj is the dead-zone threshold (here, dyg = 0.6).

A different approach to burst suppression is to decrease the size of the effective parametric un-
certainty using set-membership (SM) estimation ideas [IJACSP]. In this approach, the adaptive
controller employs two estimators: One is responsible for the updating on the controller parame-
ters via a simple gradient scheme with projection. The other is an SM etimator, responsible for
updating the parametric uncertainty set used for projecting the parameters of the first estimator.

That is, the parameter updates are performed according to

2e1(k)C(F)

Ak = Mo | = G ot (R)Ch)

The sets Fj are updated by the auxiliary set-membership estimator operating in hybrid mode.
The SM updates of the parametric uncertainty set Fj (i.e., Ry and cj) are performed every 0.5
time units, with a threshold ju(t) = 0.6/y/m + 5e %2 which is consistent with dead-zone case. In
addition, for comparison purposes, we also simulate the closed-loop response where the controller

parameters are updated by an SM estimator alone.
Simulation Results

The figures show the closed-loop responses (tracking error and parameter estimates) with the four
adaptive controllers. These are fixed set projection, dead-zone, set membership, and updated

projection sets; the error plots are shifted and clipped to emphasize steady-state details.

In all cases, we begin with zero initial conditions while the reference input and the perturbation

alternate between the following two phases:

Phase 1 : (Drift phase) K =5, Ry = 0.1, Ry = 0 (85 time units).

Phase 2 : (Burst phase) K =0,R; =0, Ry = 1 (15 time units).
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Figure 1:

a. Tracking error response of MRAC with the four adaptive laws. Reference input and disturbance
selection: Phase-1 followed by Phase-2. Key: 1: fixed projection set, 2: dead-zone, 3: SM, 4:
updated projection set.

b. Parameter trajectories of MRAC with the four adaptive laws. Reference input and disturbance
selection: Phase-1 followed by Phase-2.

As expected, the tracking error bursts are considerably reduced with dead-zone adaptation. This
improvement, however, is obtained at the expense of a deterioration of the RMS performance. The
latter is manifested by a significant increase of the error in the Phase-2 intervals where the reference
input is large (the peak error is close to two, its estimated worst case value.) Similar conclusions
can be drawn for the MRAC with the SM estimator, although in this case the deterioration of the
RMS performance is considerably smaller. This can be attributed to the more efficient utilization

of information by the SM estimator.

On the other hand, the MRAC with updated projection sets exhibits good asymptotic performance
in both the RMS and lim sup sense. Its initial transient is similar to the MRAC with fixed projec-
tion set since, at that point, the available data offer very little information about the parametric
uncertainty set. During the rest of the cycles, however, the reduction of the latter does not permit
any significant parameter drift towards the destabilizing region and, consequently, limits the size
of the error bursts. In contrast to the dead-zone and SM adaptation, this algorithm ensures the
“convergence” of the tracking error to zero during the Phase-2 intervals where the plant disturbance

is absent.
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