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Introduction

• Run-to-Run Control Problem in Diffusion Furnaces

• ARRC Algorithms
– Control input updates

– Parameter estimation

• Application to a wet-oxidation test process

• Conclusions



IASTED, MIC'99 3

Run-to-Run Control in Diffusion

• Wet oxidation process for silicon oxidation

• Loss of symmetry due to thermal gradients, possible long-
term drift

• R2R control inputs: processing time, temperature set-points

• Objectives: minimize deviations from target, across-the-load
uniformity Heating zones
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• SEMY’s ARRC (Advanced Run-to-Run Control)
– Automatic data collection and recipe adjustment

• Modeling: Least squares fit of experimental data

– uk = inputs/manipulated variables, yk = measured outputs

– Issues: Parameterization, Excitation

– Fitting error: Determines control/adaptation dead-zones

ARRC Algorithms
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ARRC Algorithms (control)

• Control Updates: Newton-like corrections

– Standard trade-off between speed of convergence/drift attenuation
and steady-state variance

• Nonlinear gain: γc = γ(ec,k/γdz)
2/[1+(ec,k/γdz)

2]

– Quick correction of large errors, to maintain fast convergence

– Slow correction of small errors, to keep the steady-state variance
small.
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ARRC Algorithms (model adaptation)

• Parameter Updates: Fading-memory least-squares

–  wp =              ,  a = fading memory

–  Π: parameter projection on a constraint set

– Parameter projections and dead-zones are important to provide
some immunity to noise-induced parameter drift

– Ability to perform partial adaptation
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• Note: Adaptation constraints are essential since
segments of production data may (and do) happen to
fit to an opposite slope (insufficient excitation). In
such a case, the adaptation may drift to a burst and
cause product scrap.
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ARRC Implementation

• Wet oxidation test process at AMD

• 22-measurement initial model to establish nominal model
parameters and noise variance

• Inputs: Time, Door/Source differential temperature set-
points

• Outputs: Center, door, source average thickness

• Diagonal dominance (can use diagonal controller)

• Manual data collection and recipe adjustment (for this test)
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ARRC Implementation (results)

• Non-adaptive and adaptive control test
– Both “center” the process with reasonable steady-state variance

(some adjustment of the control gains may be required)

– Source zone exhibits larger variance (expected)

– Manual adjustments are error prone! Complete automation in the
final ARRC implementation
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Conclusions

• Accuracy and uniformity improvement of process results
with ARRC

• Integrated, user-friendly tool for modeling, control, model
adaptation and any combinations thereof

• Algorithmic and computational reliability
– Even when supervised, the tool must make correct decisions to be

useful

• Complete automation of data transfers and recipe
adjustments

• Fully multivariable versions


