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Run-to-Run Control in Diffusion

« Wet oxidation process for silicon oxidation

e Lossof symmetry dueto thermal gradients, possible long-
term drift

* R2R control inputs: processing time, temperature set-points

* Objectives. minimize deviations from target, across-the-load
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ARRC Algorithms

« SEMY’sARRC (Advanced Run-to-Run Control)
— Automatic data collection and recipe adjustment

 Modeling: Least squaresfit of experimental data
q =argmin,{|| Y, - Tlu.alll}

— U, = inputs/manipulated variables, y, = measured outputs

— Issues. Parameterization, Excitation
— Fitting error: Determines control/adaptation dead-zones
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ARRC Algorithms (control)

o Control Updates. Newton-like corrections
Upoy = U FOMW 8 /AHOW Wy ), W, =TT /U

— Standard trade-off between speed of convergence/drift attenuation
and steady-state variance

* Nonlinear gain: g.= ol e,/ o) 7/ [ 1+( e/ ) %]
— Quick correction of large errors, to maintain fast convergence

— Sow correction of small errors, to keep the steady-state variance
small.
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ARRC Algorithms (model adaptation)

o Parameter Updates. Fading-memory |east-squares

q k+1 = P{q k +g p I:)k- 1Wp,kep,k /(1+ g pr,k ' I:)k- 1Wp,k )}
P., =aP +(1-a)Q+ g,aw, W, '

- w,= Tf /99, a= fading memory
— P parameter projection on a constraint set

— Parameter projections and dead-zones are important to provide

some immunity to noise-induced parameter drift

— Ability to perform partial adaptation

» Note: Adaptation constraints are essential since
segments of production data may (and do) happen to
fit to an opposite slope (insufficient excitation). In
such a case, the adaptation may drift to a burst and
cause product scrap.
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ARRC Implementation

Wet oxidation test process at AMD

22-measurement initial model to establish nominal model
parameters and noise variance

Inputs: Time, Door/Source differential temperature set-
points

Outputs. Center, door, source average thickness
Diagonal dominance (can use diagonal controller)
Manual data collection and recipe adjustment (for this test)
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ARRC Implementation (results)

« Non-adaptive and adaptive control test

— Both “center” the process with reasonable steady-state variance
(some adjustment of the control gains may be required)

— Source zone exhibits larger variance (expected)

— Manua adjustments are error prone! Complete automation in the
final ARRC implementation
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Conclusions

Accuracy and uniformity improvement of process results
with ARRC

Integrated, user-friendly tool for modeling, control, model
adaptation and any combinations thereof

Algorithmic and computational reliability

— Even when supervised, the tool must make correct decisionsto be
useful

Complete automation of data transfers and recipe
adjustments

Fully multivariable versions
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