EEE 550
Transform Theory
Spring 2003
TTh 1:40-2:55, BAC 318
Instructor: Kostas Tsakalis, GWC 358,
965-1467,
This page: http://www.eas.asu.edu/~tsakalis
Textbook: Mathews + Howell, Complex Analysis for
Mathematics and Engineering, 4th Ed, Jones and Bartlett 2001
Class notes
Course Outline:
- Functions, Basic definitions, Analyticity,
Cauchy-Riemann equations
- Sequences and Series
- Integration, contour integration, Cauchy
integral formulae
- Taylor and Laurent expansions
- Residue theory
- Conformal Mapping
- Fourier transform, Laplace transform and
properties
- Applications to control, fundamental performance
limitations imposed by RHP poles and zeros
Grading: HW 20%, 2 Midterms, 25% each, Final
30%
Important Dates:
Midterms: (1) Thu 3/13, (2) Tue
4/22
Final Exam, Thu., 5/8, 12:20-2:10 (Notice
the time!!!)
Reading Material:
Notes on Performance Limitations of Feedback Systems
Various Solved Problems:
HW Assignments
EEE 550, HW#1
1.6.9, 2.3.3, 2.3.13, 2.4.6b, 2.4.8, 2.6.14
Due date: 2/13
EEE 550, HW#2
3.1.6, 3.2.14, 3.3.8, 4.1.6, 4.1.10
Due date: 2/27
EEE 550, HW#3
4.3.6, 4.3.12, 4.4.4, 4.4.6
Due date: 3/6
Also, study 3.1.7ac, 3.1.13, 3.2.9, 3.3.9, 3.3.13,
4.1.1b, 4.1.7, 4.3.5 (solutions at the end of the
textbook)
EEE 550, Test 1 3/13, Material: Ch 1-4 (Solutions)
EEE 550, HW#4
5.3.1, 5.4.7(a,b,c), 6.3.5, 6.4.11, 6.5.13, 6.6.5
5.4.10(b,e), 6.3.6, 6.5.14, 6.6.6
Due date: 4/1
EEE 550, HW#5
7.1.3, 7.2.4, 7.2.7, 7.3.4, 7.3.9, 7.4.3
Due date: 4/15
EEE 550, Test 2 4/22, Material: Ch 5-7. (Solutions)
EEE 550, HW#6
8.2.4
8.5.1
8.7.9-10 (Compare with the standard Fourier theory computation)
8.8.9
11.9.7-8-9 (Find the inverse transforms for all possible ROC)
Due date: 5/5 (Monday)
EEE 550, Final Exam Material.
Ch. 1-8, 11 (Laplace transforms)