EEE 550
Transform Theory
Spring 2003
TTh 1:40-2:55, BAC 318

Instructor: Kostas Tsakalis, GWC 358, 965-1467, tsakalis
This page: http://www.eas.asu.edu/~tsakalis
Textbook: Mathews + Howell, Complex Analysis for Mathematics and Engineering, 4th Ed, Jones and Bartlett 2001
Class notes

Course Outline:

  1. Functions, Basic definitions, Analyticity, Cauchy-Riemann equations
  2. Sequences and Series
  3. Integration, contour integration, Cauchy integral formulae
  4. Taylor and Laurent expansions
  5. Residue theory
  6. Conformal Mapping
  7. Fourier transform, Laplace transform and properties
  8. Applications to control, fundamental performance limitations imposed by RHP poles and zeros

Grading: HW 20%, 2 Midterms, 25% each, Final 30%

Important Dates:
Midterms:   (1)  Thu 3/13,   (2) Tue 4/22
Final Exam, Thu., 5/8, 12:20-2:10  (Notice the time!!!)

Reading Material:
Notes on Performance Limitations of Feedback Systems
Various Solved Problems:

HW Assignments

EEE 550, HW#1
1.6.9, 2.3.3, 2.3.13, 2.4.6b, 2.4.8, 2.6.14
Due date:  2/13

EEE 550, HW#2
3.1.6,  3.2.14,  3.3.8,  4.1.6,  4.1.10
Due date: 2/27


EEE 550, HW#3
 4.3.6,  4.3.12,  4.4.4,  4.4.6  
Due date: 3/6

Also, study 3.1.7ac, 3.1.13,  3.2.9,  3.3.9,  3.3.13,  4.1.1b,  4.1.7,  4.3.5 (solutions at the end of the textbook)

EEE 550, Test 1 3/13, Material:  Ch 1-4  (Solutions)

EEE 550, HW#4
5.3.1,  5.4.7(a,b,c), 6.3.5, 6.4.11, 6.5.13, 6.6.5
5.4.10(b,e), 6.3.6, 6.5.14, 6.6.6
Due date: 4/1 

EEE 550, HW#5
7.1.3, 7.2.4, 7.2.7, 7.3.4, 7.3.9, 7.4.3
Due date:  4/15

EEE 550, Test 2 4/22,  Material: Ch 5-7.  (Solutions)

EEE 550, HW#6
8.2.4
8.5.1
8.7.9-10 (Compare with the standard Fourier theory computation)
8.8.9
11.9.7-8-9 (Find the inverse transforms for all possible ROC)
Due date: 5/5 (Monday)

EEE 550, Final Exam Material.
Ch. 1-8, 11 (Laplace transforms)