EEE 203, HW 1

NAME:__SOLUTIONS \qquad

Problem 1.

Consider the signal $x(t)$ whose graph is shown below. Sketch the following signals: $2 x(t-1),-x(-1-t), R T_{1}[x]$, where R denotes the reflection operation and $\mathrm{T}_{\mathrm{t} 0}$ denotes shift delay operation by t 0 .


```
\(x(t)=r(t-1)-r(t-2)-u(t-3)\)
\(2 x(t-1)=2 r(t-2)-2 r(t-3)-2 u(t-4)\)
\(-x(-1-t)=-r(-1-t-1)+r(-1-t-2)+u(-1-t-3)=-r(-2-t)+r(-t-3)+\)
\(u(-t-4)\)
\(T_{1} x(t)=r(t-1-1)-r(t-1-2)-u(t-1-3)=r(t-2)-r(t-3)-u(t-4)\)
\(R T_{1} x(t)=r(-t-2)-r(-t-3)-u(-t-4)\)
```


Problem 2.

Describe the following signals in terms of elementary functions (δ, u, r, \ldots) and compute $\int_{-\infty}^{\infty} x(t) \delta(t-3) d t$ and $\int_{-\infty}^{\infty} y(t) \delta(t+3) d t$.

$$
\begin{aligned}
& x(t)=r(t-1)-r(t-3)-2 u(t-3) \Rightarrow \int x(t) \delta(t-3) d t=\frac{x\left(3^{-}\right)+x\left(3^{+}\right)}{2}=1 \\
& y(t)=u(t-1)-r(t-2)+r(t-3) \Rightarrow \int y(t) \delta(t+3) d t=y(-3)=0
\end{aligned}
$$

EEE 203, HW 2

NAME:_SOLUTIONS

Problem 1. Compute the convolution $h^{*} x$ when $x(t), h(t)$ are as shown below.
Express both signals in terms of elementary functions and use both an analytical and a "graphical" approach

$$
\begin{gathered}
x(t)=r(t)-r(t-1)-u(t-1), \quad h(t)=\delta(t-1)-\delta(t-2) \\
(h * x)(t)=x(t-1)-(t-2)=r(t-1)-r(t-2)-u(t-2)-r(t-2)+r(t-3)+u(t-3)
\end{gathered}
$$

$h^{* x}$

Problem 2. Consider the filters

1. $y(t)=x(t-1)+x(t-2)$

2. $y(t)=\int_{-\infty}^{t+1} e^{-\tau+t} x(\tau-1) d \tau$
3. Find and graph their impulse responses.
4. $h(t)=\delta(t-1)+\delta(t-2)$
5. $h(t)=\int_{-\infty}^{t+1} e^{-\tau+t} \delta(\tau-1) d \tau=e^{t-1} \int_{-\infty}^{t+1} \delta(\tau-1) d \tau=e^{t-1} u(t)$
6. Find and graph their step responses.
7. $y(t)=u(t-1)+u(t-2)$
8. $y(t)=\int_{-\infty}^{t+1} e^{-\tau+t} u(\tau-1) d \tau=\int_{-\infty}^{t} e^{\tau-1} u(\tau) d \tau=\int_{0}^{t} e^{\tau-1} d \tau u(t)=$

$\frac{1}{e}\left[e^{t}-1\right] u(t)$
9. Which filters are causal? (Justify)
10. Is causal, $\mathrm{h}(\mathrm{t})=0$ for $\mathrm{t}<0$.
11. Is causal, $\mathrm{h}(\mathrm{t})=0$ for $\mathrm{t}<0$.

12. Which filters are stable? (Justify)

1 . Is stable, $\int|h|=2<\infty$
2. Is not stable, $\int|h|$ diverges. Also, the step response (bounded input) is unbounded.

Problem 1: Let $x(t)$ be the periodic signal shown in the figure below (sawtooth wave). Compute the coefficients a_{k} of the Fourier series expansion of $x(t)$.

The derivative of x is $\frac{d x}{d t}=-1+\sum_{n} 2 \delta(t-2 n+1)$. From the tables, and using the time-shift property, the Fourier series (FS) coefficients of the impulse train are $a_{k}=$ $\frac{2}{2}\left(e^{j k \pi}\right), \forall k$. Then, the FS coefficients of x , say b_{k} are given by $b_{k}=\frac{1}{j k w_{0}} a_{k}, k \neq 0$, $w_{0}=\frac{2 \pi}{2}$. Thus, $b_{k}=\frac{e^{j k \pi}}{j k \pi}, k \neq 0$.
For $\mathrm{k}=0$, we compute the FS coefficient directly from the definition, $b_{0}=\frac{1}{T} \int_{T} x(t) d t=$ $0 \Rightarrow b_{0}=0$.

Problem 2: Let $X(j w)$ be the Fourier transform of $x(t)=e^{-|t|}$. Find $X(j 0)$ and $\int_{-\infty}^{\infty} j w X(j w) d w$.

From the definition of the Fourier transform and its inverse, $X(j 0)=\int x(t) e^{-j 0 t} d t=$ $\int e^{-|t|} d t \Rightarrow X(j 0)=2$.
On the other hand, $\frac{d x}{d t}(0)=\frac{1}{2 \pi} \int(j w X(j w)) e^{j w 0} d w \Rightarrow \int j w X(j w) d w=2 \pi \frac{d x}{d t}(0) \Rightarrow$

$$
\int j w X(j w) d w=0
$$

Problem 3:

Consider the filter with impulse response $h(t)=e^{-(t+1)} u(t-1)$.

1. Find the transfer function and sketch the Bode Plot
2. Find the Fourier transform of the output when $x(t)=e^{-t} u(t)$ and when

$$
x(t)=\sin (-t)
$$

3. Find the output when $x(t)=e^{-t} u(t)$ (a) using convolution, and (b) taking the inverse Fourier transform of your answer to part 2 .

$$
\begin{aligned}
& h(t)=e^{-(t+1)} u(t-1)=e^{-2} e^{-(t-1)} u(t-1) \Rightarrow H(j w)=\frac{e^{-2} e^{-j w}}{j w+1} \\
& |H(j w)|=\frac{e^{-2}}{\sqrt{w^{2}+1}}, \angle H(j w)=-w-\tan ^{-1} \frac{w}{1}
\end{aligned}
$$

In MATLAB,
>> $\mathrm{H}=\mathrm{tf}\left(\exp (-2),\left[\begin{array}{ll}1 & 1\end{array}\right]\right)$
>> H.iodelay=1
>> bode(H)

2.

Exponential input : $F\{x\}=\frac{1}{j w+1}, \quad Y(j w)=H(j w) X(j w)=\frac{e^{-2} e^{-j w}}{(j w+1)(j w+1)}$
Sinusoid input : $F\{x\}=F\{\sin (-t)\}=\frac{\pi}{j}[\delta(w+1)-\delta(w-1)], Y(j w)=H(j w) X(j w)=$ $=-\frac{\pi}{j} e^{-2}\left[\frac{e^{-j}}{j+1} \delta(w-1)-\frac{e^{j}}{-j+1} \delta(w+1)\right]$ (evaluate $\mathrm{H}(\mathrm{jw})$ at the \sin frequency)
3. $y(t)=\left(h^{*} x\right)(t)=e^{-2} \int_{-\infty}^{\infty} e^{-(t-1-\tau)} u(t-1-\tau) e^{-\tau} u(\tau) d \tau=e^{-2} e^{-(t-1)} u(t-1) \int_{0}^{t-1} 1 d \tau=$ $=e^{-2} e^{-(t-1)}(t-1) u(t-1)$
$=F^{-1}\{Y(j w)\}=F^{-1}\left\{\frac{e^{-2} e^{-j w}}{(j w+1)(j w+2)}\right\}=\left.e^{-2} F^{-1}\left\{\frac{1}{(j w+1)^{2}}\right\}\right|_{t-1}=$
$=e^{-2}\left[\left.t e^{-t} u(t)\right|_{t-1}\right]=e^{-2} e^{-(t-1)}(t-1) u(t-1)$

EEE 203, HW 4

NAME:__SOLUTIONS

Problem 1:

Find the largest sampling interval T_{s} to allow perfect reconstruction of the signals: (NOTE: $h^{*} x$ denotes convolution of h and x)

1. $\frac{\sin 2 t}{4 t} * \frac{\cos 5 t}{3}$
2. $\frac{\sin t}{6 t}+\frac{\sin t}{3}$
3. $\frac{\sin 3 t}{t} * \sin 2 t$

Using the shortcut method, we compute the Nyquist rates (2 x max signal frequency) of the individual signals and then estimate the Nyquist rate of the composite signal:

1. $w_{N 1}=4, w_{N 2}=10 \Rightarrow w_{N}=\min \left(w_{N 1}, w_{N 2}\right)=4 \Rightarrow T_{S}=\frac{2 \pi}{w_{N}}=\frac{\pi}{2}$
2. $w_{N 1}=2, w_{N 2}=2 \Rightarrow w_{N}=\max \left(w_{N 1}, w_{N 2}\right)=2 \Rightarrow T_{S}=\pi$
3. $w_{N 1}=6, w_{N 2}=4 \Rightarrow w_{N}=\min \left(w_{N 1}, w_{N 2}\right)=4 \Rightarrow T_{S}=\frac{2 \pi}{4}=\frac{\pi}{2}$

Note: In fact, a direct computation of \#1 shows that the resulting signal is 0 , hence any sampling rate can be used. This is consistent with our understanding of the shortcut method producing conservative estimates of the sampling rate.

Problem 2:

Design a sampling system for a measuring a signal with power mostly below 500 Hz . Suppose that your sampling frequency cannot be higher than 2 kHz and there is noise present between $2-3 \mathrm{kHz}$. Include a suitable anti-aliasing filter (AAF) to reject unwanted noise and determine the parameters of the reconstruction filter. How would you modify the system if you cannot built a good enough analog AAF but you can sample faster?

Since most of the interest is in frequencies below 500 Hz , the corresponding Nyquist rate is 1 kHz , so our 2 kHz sampling frequency is sufficient to provide a solution (the faster, the better). It is also essential to include an AAF to reject the $2-3 \mathrm{kHz}$ noise that would cause aliasing. On the other hand, in this problem we would need to balance signal distortion (for which the cutoff frequency should be closer to 1 kHz) and noise attenuation (for which the cutoff should be closer to 500 Hz). The reconstruction filter should have amplitude $\mathrm{T}=0.0005(2 \mathrm{kHz}$ sampling) and cutoff frequency 1 kHz . This would provide a more flat DAC transfer function.

Alternatively, if we could implement a faster sampling rate, we could afford a less efficient AAF. In this case, and in order to maintain the same final data rate (2 kHz) we would need to include a Discrete time lowpass filter in and downsample the filtered data to the 2 kHz rate.

EEE 203, HW 5

Problem 1: Consider the continuous time causal filter with transfer function

$$
H(s)=\frac{s}{(s-1)(s+1)}
$$

Compute the response of the filter to $\mathrm{x}(\mathrm{t})=2 \mathrm{u}(\mathrm{t}-2)$.
To account for the delay, we will use LTI properties and compute the response to $2 \mathrm{u}(\mathrm{t})$ first, and then shift by 2 .

$$
\begin{gathered}
y_{s}(t)=L^{-1}\left\{\frac{s}{(s-1)(s+1)} \cdot \frac{2}{s}\right\}=L^{-1}\left\{\frac{1}{(s-1)}+\frac{-1}{s+1}\right\}=e^{t} u(t)-e^{-t} u(t) \\
=>y(t)=e^{t-2} u(t-2)-e^{-t+2} u(t-2)
\end{gathered}
$$

Problem 2: Consider the continuous time causal filter described by the differential equation

$$
2 \frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+y=3 x-\frac{d x}{d t}
$$

Compute the steady-state response of the filter to $x(t)=\sin (3 t) u(t)+3 u(t-3)$.

$$
H(s)=\frac{-s+3}{2 s^{2}+3 s+1}
$$

The system is stable (transfer function poles or roots of the denominator are ($-1,-0.5$) are in the LHP, i.e., have negative real parts), hence the steady-state response is welldefined. The steady-state part of the input is $\sin (3 t)+3$, so the steady-state output will also two components

$$
\begin{gathered}
y_{s s}(t)=|H(j 3)| \sin (3 t+\angle[H(j 3)])+H(0) 3 \\
y_{s s}(t)=0.22 \sin \left(3 t+163^{\circ}\right)+9
\end{gathered}
$$

EEE 203, HW 6

NAME:

Problem 1: Consider the causal filter described by the difference equation
$y[n+1]=-2 y[n]+4 x[n-1]$

1. Determine the transfer function
2. Compute the response of the filter to $x[n]=u[n]$

Problem 2: Compute the steady-state response of the following discrete-time, causal filters to $x[n]=u[n-12]$:

$$
\begin{aligned}
& H_{1}(z)=\frac{z+1}{(z-1)(z+0.5)}, \\
& H_{2}(z)=\frac{z-1}{(z+0.2)(z+0.8)} \\
& H_{3}(z)=\frac{z}{(z-0.5)(z-0.8)} \\
& H_{4}(z)=\frac{0.5 z+0.5}{(z)(z)}
\end{aligned}
$$

